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Outline

➢ Introduction
➢ Detection of single electron transport
➢ Current fluctuations and full counting statistics 

in a semiconductor quantum dot
➢ Tunneling through multiple states: bunching
➢ Conclusion



  

Semiconductor quantum dots
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DC current measurement
in a quantum dot

➢ Spectroscopy of electronic states
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DC current measurement
in a quantum dot

➢ Spectroscopy of electronic states
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Quantum dots realized
by AFM lithography
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Measurement of current fluctuations

➢ Shot noise due to discreteness of charges
– classical shot noise for independent particles 

(Poissonian noise): S
I
 = 2eI

➢ Usual measurement limited by noise of the 
current-meter ⇒ S

I
min ≈ 10-29 A2/Hz
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Noise in quantum dots

➢ Sub- vs. super-Poissonian shot noise in 
quantum dots

➢ Noise correlations in multi-terminal quantum 
dots

➢ Probing entanglement with the shot noise in 
quantum dot systems

➢ Kondo effect, spin blockade, etc...



  

Noise in quantum dots

➢ Noise in interacting systems
– deviations from Poissonian shot noise

➢ Early experiments in non-tunable quantum dots 
showed reduction of the shot noise: S

I
 < 2eI

– Birk et al., PRL 75, 1610 (1995)

– Nauen et al., PRB 70, 033305 (2004)

➢ Challenge in lateral quantum dots

– very low noise level: I < 1 pA ⇒ S
I
 < 10-31 A2/Hz !

– strongly non-linear systems



  

Detection of
single electron transport

➢ Quantum point contact 
as a charge detector
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Detection of
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➢ Quantum point contact 
as a charge detector

➢ Low bias voltage on 
the quantum dot
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Detection of
single electron transport

➢ Quantum point contact 
as a charge detector

➢ Large bias voltage on 
the quantum dot
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Detection of
single electron transport
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Detection of
single electron transport
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Determination of the individual 
tunneling rates

➢ Exponential distribution of waiting times for 
independent events

➢ 
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Measuring the current
by counting electrons

➢ Count number n of electron entering the dot 
within a time t

0
: I = e<n>/t

0

➢ Max. current = few fA (bandwidth = 30 kHz)
➢ BUT no absolute limitation for low current and 

noise measurements

– we show here: I ≈ few aA, S
I
 ≈ 10-35 A2/Hz

N

N+1



  

Coulomb diamond measured
by electron counting
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Coulomb diamond measured
by electron counting

➢ I = e<n>/t
0



  

Current fluctuations measured by 
electron counting

➢ More than noise: access to the full counting 
statistics (distribution function)

– I = eµ/t
0
,

µ = <n>

– S
I
 = 2e2µ

2
/t

0
,

µ
2
 = <(n-<n>)2>

– S
I
3 = e3µ

3
/t

0
,

µ
3
 = <(n-<n>)3>

– and many more...



  

Distribution function for electrons in 
a conductor

➢ Classical noise for independent particles
⇒ Poisson distribution: µ = µ

2
 = µ

3

➢ Particles with repulsive interaction ⇒ sub-
Poissonian distribution:  µ

2
 < µ , µ

3
 < µ,...



  

Histogram of current fluctuations

➢ Poisson distribution for 
asymmetric coupling

➢ Sub-Poisson distribution 
for symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)
Bagrets & Nazarov, PRB 67, 085316 (2003)



  

Counting statistics in a
single-level quantum dot

Bagrets & Nazarov, PRB 67, 085316 (2003)
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Histogram of current fluctuations

➢ Poisson distribution for 
asymmetric coupling

➢ Sub-Poisson distribution 
for symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)
Bagrets & Nazarov, PRB 67, 085316 (2003)



  

Bias dependence of the fluctuations



  

Adjustable asymmetry of the 
tunneling rates
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Adjustable asymmetry
of the tunneling rates
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Current fluctuations vs. asymmetry

➢ Reduction of the second and third moments for 
symmetric coupling

Theory: Hershfield et al., PRB 47, 1967 (1993)
Bagrets & Nazarov, PRB 67, 085316 (2003)



  

Bunching of electons
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➢ Two time scales

– 
1
 ~ 20 kHz, 

0
 ~ 1.5 kHz

➢ Fast tunneling 
sometimes blocked by a 
slow tunneling 



  

Bunching of electrons:
super-poissonian shot noise

➢ super-poissonian noise 
occurs at the edge of 
conductance steps
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Bunching of electrons:
the model

➢ Needs two states with 
different coupling to 
the leads
– the slow state blocks 

the conduction, due to 
Coulomb blockade

– similar to Belzig, PRB 71, 161301(R) (2005)
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Bunching of electrons:
the model

➢ Master equation

– Cumulant generating function determined from the 
eigenvalues of M()

2 B A
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Bunching of electrons:
super-poissonian shot noise

➢ Well described by our model
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Bunching of electrons:
super-poissonian shot noise

➢ Well described by our model, but requires a 
long relaxation rate: T

1
 > 1ms... spin effect?
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Bunching of electrons:
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➢ Well described by our model, but requires a 
long relaxation rate: T

1
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Conclusion

➢ Real-time detection of single electron traveling 
through a semiconductor quantum dot

➢ Measurement of current fluctuations
➢ Reduction of both the second and the third 

moments for symmetric coupling
➢ Bunching of electrons due to Coulomb blockade 

(information about relaxation time)

➢ Noise measurements are now 
available in lateral quantum dots

(even full counting statistics)


