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@ Introduction

© Photoelectric counting: classical field
@ Mandel formula

© Photo-count formula in quantum optics
@ Mandel formula generalisation: discussion

@ Some quantum optics techniques
@ Master equations and quantum dissipation
@ Application: microscopic field-detector theory
@ Quantum optics techniques: P-representation
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Overview: photons, photon-counting, fluctuations
Counting photons

@ Counting photons, but...
@ ...'the eternal question: what is a photon'.
@ '‘What is light 7'

Einstein 1951: '...these days every
fool pretends to know what a photon
is. | have been thinking about this
for the whole of my life, and |
haven't found the answer".

...cavity mode H = wa'a, n-photon eigenstate |n).
...photon as gauge-boson of QED .



Overview: photons, photon-counting, fluctuations

Irony of history: quantum mechanics

=—|E>

@ 'No photons’ for the
photoelectric effect.

@ Quantum mechanics was
discovered in its own classical
limit.




Overview: photons, photon-counting, fluctuations

Irony of history: quantum optics

@ Big breakthrough: Hanbury Brown, Twiss experiment: intensity
correlations, ‘photon bunching’.

o Correlation functions (af creates cavity mode):

GM(t,t+7) = (al(t)a(t+ 7)) (1)
GO(t,t+7) = (&f(t)al(t + 7)a(t + 7)a(t)). (2)

@ But not yet a complete triumph for quantum optics...

o

Tri um p h came Wlth resonance Resonance fluorescence
fluorescence: photon antibunching,
-1

CB dot, tunneling




Overview: photons, photon-counting, fluctuations

Photon counting: some issues

Count photo-electrons instead of photons.

Counting statistics: correct theory for

pn(t,t+ T) probability for n photo-electrons in [t, t + T).

Detector back-action. System-bath problem ‘with two baths'.

@ ... no entirely trivial!
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Photodetector model: ionize single atom
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@ Classical electromagnetic field,
vector potential —
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Semiclassical theory for p,(t,t 4+ T): Mandel formula

Photodetector model: ionize single atom

=—IE>
o Classical electromagnetic field,
vector potential —
A(r)e—lwt + A*(r)e"“. _IE0>

Probability p;(t,t + At) of one count: Fermi's Golden Rule

Pt 4 AL) = /OoodEu(E>\<E\§pA(r)rEo>ZDAt(E—Eo—w)

= nl(r)At, I(r) = |A(r)|*(intensity). (1)

o Dat(e) = ([sin %sAt]/[%a])z, At — 0. Polarisation A(r) = ZA(r).




Mandel formula: many counts

How to obtain probability of n transitions p,(t,t + T)

@ Short-time probability p;1(t,t + At) = nl/(r)At for single electron
transition (n/(r) transition rate).

@ Long-time probability of n transitions p,(t,t + T) < n electrons.
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@ Short-time probability p;1(t,t + At) = nl/(r)At for single electron
transition (n/(r) transition rate).

@ Long-time probability of n transitions p,(t,t + T) < n electrons.

Individual transitions are statistically independent...

~~ Poisson distribution.

Characterized by average n only ~~

po(t,t+T) = —e ™ n=nlr)T. (2)



Mandel formula: many counts

How to obtain probability of n transitions p,(t,t + T)

@ Short-time probability p;(t,t + At) = nl(r)At for single electron
transition (n/(r) transition rate).

@ Long-time probability of n transitions p,(t,t + T) < n electrons.

@ Markovian master equation for probabilities. p,(t) = pn(0, t),

pa(t +dt) = pa(t) x [1 —nl(r)dt] + po1(t) x nl(r)dt (2
Spa(t) = l)pna(t) — pol0)] G
o Generating function G(s,t) = Y 12, s"pn(t),
0:+G(s,t) =nl(r)(s —1)G(s, t).
@ Solve with pg(0) =1, p,(0) =0, n >0, G(s,0) = 1.
o Thus G(s,t) = exp[n/(r)t(s — 1)] = Y02y s"Zre™" 7 = nl(r)t.



Mandel formula: many counts

How to obtain probability of n transitions p,(t,t + T)

@ Short-time probability p;(t,t + At) = nl(r)At for single electron
transition (n/(r) transition rate).

@ Long-time probability of n transitions p,(t,t + T) < n electrons.

SUMMARY so far:

o Classical photo-electron counting formula (Mandel formula)

"n

palt,t+ T)="re™™  A=nl(r)T.
n!

@ Poisson process.
o Generating function G(s, t) = Y 12 s"pn(t) = exp[n/(r)t(s — 1)].
@ Nothing said here about PHOTONS! This is a DETECTOR theory.



‘Quantum Mandel formulas'’

Kelley-Kleiner, Carmichael etc. version
o po(t,t+T)=(: Le 2y with Q=¢ [T dE~(¢)EF(Y).
@ No backaction of detector on field.

@ ‘Non-absorbed photons escape, open system.’

o Typically many field degrees of freedom, field is a ‘BIG QUANTUM
SYSTEM'.




‘Quantum Mandel formulas'’

Kelley-Kleiner, Carmichael, etc. version
o po(t,t+T)=(: Le 2y with Q=¢ [T dE~(¢)EF(Y).

n!
@ No backaction of detector on field.

@ ‘Non-absorbed photons escape, open system.’

o Typically many field degrees of freedom, field is a ‘BIG QUANTUM
SYSTEM'.

Mollow; Scully/Lamb; Srivinas/Davies; Ueda etc. version

@ Backaction of detector leads to damping (continuous measurement)
of the field.
@ ‘Eventually all photons absorbed, closed system.’

o Typically few field degrees of freedom, field is a ‘SMALL QUANTUM
SYSTEM'




Scully-Lamb photodetector

M. Scully, W. Lamb Jr., Phys. Rev. 179, 368 (1969)
@ ‘Photon statistics’ means (reduced) density operator p(t) of a light
field (more generally: boson field).
@ ‘Photon statistics’ is inferred by photoelectric counting techniques.

Ik} == [«i2) % [ kiN) )

lgin? lgt2)) lgtN))

Fig. 1. Pictorial representation of photodetector consisting of N-
independent atoms. Each atom in detector has a ground state
|g) and continuum of excited states |k). Atoms are labeled by
indexing atomic state with particle number, e.g., |k(m)).




System-bath theory

Divide ‘total universe’ into system S
and bath B,

H = Hs+ Hp+ Hsp
= Ho+V, V=%Hsg (2

Total density matrix x(t) obeys the Liouville-von-Neumann equation

S0 = TP ()L



Master equation

o Effective density matrix of the system p(t) = Trg[x(t)].

@ Interaction picture with respect to Hp,

& i(e) = e [V(2), x(t = 0)] - /0 ot Trg V(1) [V/(), $(£)]-

Born approximation, ¥(t') &~ Ry ® p(t’), Ro bath density matrix.
System-bath interaction as V =), Sk ® B,

Bath correlation functions Cy(t,t') = Trp [Bk(t)él(t’)Ro],
TrgBi(t)Ry = 0.



Master equation

o Effective density matrix of the system p(t) = Trg[x(t)].

@ Interaction picture with respect to Hp,

& i(e) = e [V(2), x(t = 0)] - /O ot Trg V(1) [V/(), $(£)]-

Born approximation, ¥(t') &~ Ry ® p(t’), Ro bath density matrix.
System-bath interaction as V =), Sk ® B,

@ Bath correlation functions Cy(t,t') = Trg [Bk(t)é,(t’)Ro],
TrgBi(t)Ry = 0.

G0 = = [ @S [Gule =) {S051)ie) = Si)ie)5(0)

kI
+ Gt = ) {A)3()5(0) — S0A)3(E) } |-



Scully-Lamb Photodetector

Detector model

@ System: single photon mode a and N detector single level ‘quantum
dots’ j with one (|1);) or zero (|0);) electrons.

e Photon absorption empties dots into bath: leads j, clj]vac).

Hsp = Y (VAch10);(1la+ VicoyI1); 01a") = > Sc0 B (5)
k

aj
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Scully-Lamb Photodetector

Detector model

@ System: single photon mode a and N detector single level ‘quantum
dots’ j with one (|1);) or zero (|0);) electrons.

e Photon absorption empties dots into bath: leads j, clj]vac).

Hsn = Y (Vicl;10)j{Lla + VicI1); 0la") = Y %e8 ()

aj
v

Master equation: trace out the leads
o Terms Cy(t — t')Sk(t)S(t)(t)); Cu(t — t') = (Bi(t)Bi(t)).
o 'Broadband detection’ at all energies, > |Vé;|26(5 — Eqj) = V.

d . . .
b = vy {I);(tlatape + featal1);(1] — 210);(1laeal|1); (0]}

J




Scully-Lamb Photodetector

State with m excitations
o Detector states |m; A) = [1)]0)1...]0) m|1) my1...|1)n. Permutations

@ m-resolved field ‘pseudo’ density matrix 5&"” = >\ (my A|pe|m; A).




Scully-Lamb Photodetector

State with m excitations

o Detector states |m; \) = [14]0)1...]0)m|1) m1...|1)n. Permutations

@ m-resolved field ‘pseudo’ density matrix ﬁgm) = > o (m; Ape[m; A).

E'Dt

> {10);(Ua"aje + fealal1);(1] - 210);1]apea’[1),0] |

s e 1) m; X) = (N = ) (m; A mi )

J

mterms
D miA0);(1]Fe[1);0lm; X) = D> (m—1; X |pelm —1; )
J N

v {(N = m) [alap{™ + §Mala] —2(N — m+1)ap{" Val



Scully-Lamb Photodetector

State with m excitations
o Detector states |m; \) = [14]0)1...]0)m|1) m1...|1)n. Permutations

@ m-resolved field ‘pseudo’ density matrix 5&"” = > o (m; Ape[m; A).

N> m, y=2nNv ~

d (m)
dtpt

= —i[He,pt™] = (a'apl™ + oM ala —2ap(" Val ) . (5)



Scully-Lamb Photodetector

State with m excitations
o Detector states |m; \) = [14]0)1...]0)m|1) m1...|1)n. Permutations

@ m-resolved field ‘pseudo’ density matrix 5&"” = > o (m; Ape[m; A).

N> m, y=2nNv ~

d (m)
dtpt

= —i[He,pt™] = (a'apl™ + oM ala —2ap(" Val ) . (5)

e Now counting statistics as ppy(t) = Trpgm)!

Jump super-operator J, Jp = vapa', time evolution generator L

o Define Lop= Yp+ pYT with Y = —iHp — Jala.

A = Lopt™ + spl" Y. (6)




Summary: counting statistics in Scully-Lamb detector
model

m-resolved field density matrix
A" = Lop™ + Jp{" Y.
o Counting statistics as pm(t) = Trp{™!




Summary: counting statistics in Scully-Lamb detector
model

m-resolved field density matrix
A" = Lop™ + Jp{" Y.

o Counting statistics as pm(t) = Trp{™!

Generating operator G (s, t)

o Define G(s, t) = Y o smpgm), s: counting variable.
o Usually s complex, e.g. s = e/® with real ¢.

@ Infinite set of master equations now becomes a single equation,

2G(s,t) = (Lo +sJ)G(s, t).
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Solve di = —i[Hp, G] — (aTaG + Gafa— 2saGaT>

P-representation in harmonic oscillator Hilbert space
o Glauber introduced coherent states |z), a|z) = z|z).
° glauber—SudarAshan representation of operators such as G as
G = [d?zP(G; z,2%)|z)(z|.
e z and z* independent variables. Short form P(z) instead P(G; z, z*).
o Rules aGal « zz*P(z), ataG < (z* — 3,)P(2),
Gala < (z — 0, )P(2).




Solve di — —i[Hp, G] — (aTaG + Gafa— 2saGaT>

P-representation in harmonic oscillator Hilbert space
o Glauber introduced coherent states |z), a|z) = z|z).
@ Glauber-Sudarshan representation of operators such as G as
G = [ d?zP(G; z,z*)|2){z|.
e z and z* independent variables. Short form P(z) instead P(G; z, z*).

o Rules aGal « zz *P(z), ataG — (z" —02)P(2),
Gata o (z— 8, )P(2).

PDE for P-function of generating operator
@ Field Hamiltonian Hy = Qafa.

SP(t) = [-yede — y' 0 + 21+ 2P~ 1))] Pule, )

y = —io- 2. (8)




Solve 2P, = [—yzd, — y*z* 0, + (1 + |z|*(s — 1))] Ps

Case s = 1: simply damped harmonic oscillator

@ 1st order PDE'’s are solved by method of characteristics

Pi(z,t) = e PO (zei(Q—i7/2)f> (9)

Example (G(s,t = 0) = pO(t = 0) = |z)(z])

Piz,t=0) = 6@ (z—2)~ (10)
Pi(z,t>0) = e"t6® (zeim_mﬁ)t — zo> =4 (z - zoe_i(Q_i7/2)t>

(two-dimensional Delta-function!). State spirals into the origin.




Solve 2P, = [—yzd, — y*z* 0, + (1 + |z|*(s — 1))] Ps

Arbitrary s:
Py(z, t) = €7t PO (ze(@=1/2)t) exp{—|z|*(s — 1)(1 — %)}

o Now TrG(s, t) = Yo s’"Trpgm), read off photoelectron counting
distribution pm(t) = Trpgm)

Tr(:'(s, t) = /dzzPS(z’ t):/d2zp(0)(z)e—z|2(s_1)(evt_l)

= Z /dzzP ‘Z| nt) 7|z|2’7f, n=1—e "

@ Use normal ordering property of P-representation,

T m
pm(£) = Tep(0) : ) ematonc .y =1 _ et (1)




Single-mode counting formula: discussion of
tan, )"
pm(t) = Trp(0) : %e‘jam o np=1—et

e Coherent state p(0) = |zp)(zo| ~~

» Poisson-distribution.
> Average (n) = (afa) = |z|*.
» Coincides with semiclassical Mandel formula for vt < 1.

e Fock-state p(0) = |n)(n| ~~
n m n—m
pm(t) =\ ) nd(L=ne)""" n=>m.

» Bernoulli-distribution.
» m successful events (counts), n — m failures (no counts) regardless of
order.



Summary part 1

Done so far
@ Photon counting: photo-electron counting.
@ Semiclassical Mandel formula.
@ Photo-detector theory: Scully/Lamb.

@ Some techniques: quantum master equations, P—representation,
counting variables and generating functions/operators.




Summary part 1

Done so far
@ Photon counting: photo-electron counting.
@ Semiclassical Mandel formula.
@ Photo-detector theory: Scully/Lamb.

@ Some techniques: quantum master equations, P—representation,
counting variables and generating functions/operators.

Still to do
@ More general situations.

@ Sources, fields, and detectors.
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© Correlation functions

@ Source-field dynamics and counting
@ Quantum optics basics
@ Quantum sources of light
@ Resonance fluorescence: driven spontaneous emission

e Master equations and quantum jumps
@ Counting the jumps
@ Quantum trajectories



Revision: towards a counting formula in quantum optics

@ Mandel (Poissonian)
ﬁn
pa(t,t+T)=—e " n=nl(r)T.
n!
» Classical field with intensity /(r). Golden rule (photo-electric effect).
@ Mollow, Scully-Lamb single mode

1 n _
pn(0, t) = Trp(0) : ﬁ(aTanO exp(—alan):, nr=1—e "t

» Correctly describes detector backaction. ‘Closed system’. Free cavity
fields only, no sources.

@ 'Quantum Mandel’, Kelley-Kleiner
Q
po(t t+T)=(:— e S,

> Heisenberg operators, Q = §f:+T dt'E=(¢')Et(t).

» Not correct for long times. ‘Open system’. Various generalisations on
the market.



Coherence functions

Definitions
Notation x = (r, t).

6W(x,x) (EOG)ED(X) (12)
cP0a,xe,x,x) = (ED()EO(G)ED ) EM (). (13)

@ Based on photon absorption ~ intensity (/(x)) = G (x, x).

o G describes first order coherence: Mach-Zehnder (Young,
Michelson) interference.

o G describes second order coherence: Hanbury Brown, Twiss.



Coherence functions

Special cases, normalised versions, single-mode example H = wa'a

CO(t,t+7) = (ECNED(t+ 1)) (12)
GOt t+7) = (EOE(t 4+ 7)ED (¢ + 7)ED) (1)f13)
GO(t, t+7)

@)(t, ¢ = 14
gt t+T) GO (t, ) GO (t 4+ 7,t +7) (14)
-1 1
number state p(0) = |[n)(n| ~ g(z)(r) = n(nn2 ) =1--
coherent state p(0) = |2)(z| ~ g®(r) = Z| f |222 =1. (15)
z*z

Definition (bunching, antibunching; sub/super-Poissonian)

- Bunching: g®(7) < g(?(0), anti-bunching g®(7) > g(®(0).
- Super-P. g(?(0) > 1, sub-P. g(®(0) < 1: relation to p,(t,t + T).




Coherence functions

Example for bunching: cavity mode a' in thermal bath (temperature [7'71)
@ Mode angular frequency w, damping x.
@ Master equation.

o Use quantum regression theorem.

@ Long-time limit, t — oo, ng = [eﬁ“’ — 1]*1
tIer;O<aT(t)a(t +7)) = nge (wHw)T (12)
lim (af(t)al(t +7)a(t +7)a(t)) = nd(1+e 7). (13)

t—o00

o Thus, g®(7) =14 e and g@(7) < g®(0): photon bunching.

(cf. Carmichael book etc.)



Now from single mode af to many modes ag.



Quantization of Maxwell's equations

@ Vector potential in Coulomb gauge.

e Fourier expansion into field modes ug(r), mode index Q.

(V2 +wd)ug(r) = 0.

e Quantization, annihilation operator ag, creation operator aJ{Q.

o Electric field operator

1/2
E(r) = izQ: (Z“éf) ug(rag + H.c. = E®(r) + EC)(r).



The most basic case: two-level atom...



Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)

wo

H = - 0z I ;’YQ <O'_|_3Q + a_aE) I ZWQQEBQ.

Q

Pauli matrices, photon creation operators ag.




Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)

wo
H = 70}4‘2’7(} <O’+3Q+U aQ) ZwQaQaQ (14)

Pauli matrices, photon creation operators ag.
Algebra of Pauli matrices

_ (01 0 —i _ (1 0
9% = \10) % io0 ) 2=\ 0 -1
. _ (00 (01
-~ \10) "t7\oo

o+ = E(Uxiiay% ox=04+o_, oy,=—i(o} —0_)

[04,0-] = 0z, [0z,04] =+204. (15)




Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)

wo

H = 702—1—2%) <0’+3Q+0’ aQ) ZWQaQaQ (14)

Pauli matrices, photon creation operators ag.

@ Schrodinger equation for total wave function

W(1)) = c()[1)[vac) + Y bo(t)[0)ajlvac), c(0)=1  (15)
Q

o Can be solved (Wigner-Weisskopf) within some approximations. In
particular, c(t) = e Tt/2-iwot,

@ No re-absorption of any emitted photon « single mode model (only
one @, Jaynes-Cummings Hamiltonian, revivals).




Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)

wo
H = 70}4‘2’7(} <O’+3Q+U aQ) ZwQaQaQ. (14)

Pauli matrices, photon creation operators ag.

o Electric field E(F)(r, t) = Eff)(r, t)+ EgﬁL)(r7 t), source field in terms
of source operators

@ Heisenberg EOM ag(t) = —iwgag(t) — ivko—(t) ~

. t . /
ag(t) = aQe—'wof—iw/o dt'o_(t')e we(t=t)  (15)



Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)
wo
H = 702 + Z"YQ <0’+3Q +o_ aQ) ZwQaQaQ. (14)
Pauli matrices, photon creation operators ag.
o Field at the detector in terms of atom dipole operator
t ] ,
EN(rt) = / dt' | Y fo(r)e et=) | 5_(t') (15)
0 Q
t
~ / dt’ [E@)5(t — 1 — r)c)] o_(¢') = EF)o_(t — r/c).

0

- Note dipole form of £(F).



Spontaneous emission from a two-level atom

Two-level atom with states |1), |0)

wo
H = 702—1—2%) <0’+3Q+0’ aQ) ZwQaQaQ (14)

Pauli matrices, photon creation operators ag.

@ Not too much can be learned here: transient process, exponentially
decaying probability.

@ We want to describe stationary processes ~~ ‘driven spontaneous
emission’ (resonance fluorescence).

@ Analogy to tunneling of a single electron from a single level quantum
dot.



Resonance fluorescence: analogy to single electron
tunneling

-

Resonance fluorescence

—
@

CB dot, tunneling



Resonance fluorescence model

- Spontaneous emission from TLS plus driving with classical field
E cos(wi t), Rabi-frequency Q = dE/h, d dipole moment.

Q . .
He=Hse + 5 (e7™o, +e“o ), (RWA). (15)

- Time-dependent unitary trafo leaves Liouville-v.Neumann equation
invariant

_ . 1 OU -
H: = —/U,_Ta—; + UIHtUn Pt = UZPtUt- (16)

- The form U; = exp(—iNpw t)diag(e~™tt, 1) leads to (wo = wy)

He=2 (04 +0-)+ Yora (o120 + 0-ah ) + Lolwe —wi)abae (17)




Master equation for TLS-‘source’ density operator p;

pr = i%[‘7+ +o_,p] = B(oro_pt + pioyo_ —20_pioy)
@ Spontaneous emission rate =7, ’yéé(wl_ —wq), effect of driving
in 3 neglected (< ‘intra-collisional field effect).

@ Compare with our previous detector equation,
AT = it A3 (0 + 5 o1a 230701,




Master equation for TLS-‘source’ density operator p;

pr = i%[UJr +o_,pt] = B(oy0_pt + proyo_ —20_pioy)
@ Spontaneous emission rate § = m ) 5 750(wL — wq), effect of driving
in 3 neglected («~ ‘intra-collisional field effect).

@ Compare with our previous detector equation,
AT = it A3 (0 + 5 o1a 230701,

@ Remember spontaneous emission: field at the detector in terms of
atom dipole operator,

ESV(r, t) ~ E(F)o_(t — r/c).

Thus a ~ E£+) ~Oo_.

~> detector photon absorption ~ electron jumps from up to down, o_.



Cook's ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)
n-resolved master equation for resonance fluorescence of driven TLS
A" = iloy + o, p"] - (0 o_p" + p\"oso_ —20_p\" Vo >

o Splitting up pr = > 72 0p§ ) 'n photon emissions.




Cook's ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS
.(n o n n n n—1

A = iSloy +o_,0" - B (U+U—P£ 4+ oo 0_ —20_p )U+>

o Splitting up pr = > 72, pgn), n photon emissions.

@ Cook’s original idea: momentum
transfers between atom and
driving field.

PP
Excited e
states /T ﬂ
S I s 1
Ground —-—/ V V

states Pa P Py
boor

Momentum O tk 2hk 3

—*Jio-—mloh;g

@ Count number of discrete
" displacements nhk.

=

@ Alternatively, count number of
spontaneous emission events.



Cook's ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS
.(n n n—1

A" = iloy + o, p"] - ﬁ(a o_p" + p\"oro_ —20_pt )0+>

o Splitting up pr = > 72 Opg ), n photon emissions.

@ Jump super-operator J with Jp =280 _po, = 2ﬁ| ><+\p|+><—>.

o Generating operator as usual, G(s,t) =Y 2 s" pt ), counting
variable s.

o Counting statistics as pn(0, t) = Trp\".

@ Photons are integrated out: just 4 by 4 equation

0:G = i%[a+ +o0_,G]l—p(040-G+ Goyo_ —2s0_Goy).



Cook's ‘counting at the source’

R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS
.(n o n n n n—1

A = iSloy +o_,0" - B (0+07P£ 4+ oo 0_ —20_p )U+>

o Splitting up pr = > 72, pgn), n photon emissions.

@ Solution G = exp{(Lo + sJ)t}p(0), needs diagonalisation.

o In Laplace space, G(s,z) = [z — Lo — sJ]"1p(0), needs Laplace
inversion.

@ G as vector, resolvent matrix

[Z - co . SJ]_]_ _ 72/85 V4 0 Q



Cook's ‘counting at the source’
R. J. Cook PRA 23, 1243 (1981)

n-resolved master equation for resonance fluorescence of driven TLS

R iSlos + o, 0" - B (0+U—Pgn) + oo o — 2U—p(tn_1)0+>

o Splitting up pr = > 72, pgn), n photon emissions.

Result in Laplace space

TrG(s, z) = (18)
(z+B)(z+28) + Q2+ (s — 1)28[(z+ B)p§ T + Qlmp] |
z(z+ B)(z +20) + Q2[z + B(1 — )] '




Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

N _ f(z)

TrG(s, 2) 2F(2) T B = 5)' f(z) = (z+ B)(z +28) + Q.




Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

> _ f(z)
TrG(s,2) = 2f(z) + BQ2(1 — 5)’

f(z) = (z+ B)(z +28) + Q.

@ Need to transform back into time-domain.

8”
pa(0,t) = e TrG(s,t)|,_g - (19)
(n) = SS TrG(s,t)|,_; 1st moment. (20)

2
(n(n—1)y) = 9 TrG(s,t)|,_; 2nd factorial moment.(21)

0s2



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

~ _ f(z)
TrG(s,2) = 2f(z) + BQ2(1 — 5)’

f(z) = (z+ B)(z +28) + Q.

@ Large t: pole zy closest to z = 0.
e Expand zp = > ° ; cm(s — 1)™
B
~ <n>t—>oo = 2,32 +Qz (19)
6,3°Q?
o= (O = (0 1 G g |

o Negative Mandel Q-parameter Q = F — 1, Fano factor
F=(An?/(n) <1.



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

W f(2)

TrG(s, z) 2F(2) T PR —3) f(2) = (z+ )(z +20) + 2.

o Large t > 31 counting statistics p,(t) becomes a Gaussian!

I e A (19)

lim p,(t) =
t=e0 (1) \/2no?

(D. Lenstra, PRA 26, 3369 (1982)).



Resonance fluorescence: sub-Poissonian counting statistics

Information contained in

P(n,T) (e

Pln,T)
03

o.2F

o1

2 3 4 5 8 T 8
n



Counting in quantum optics: towards a counting formula...

Short revision

@ Direct ‘counting at the source’: the savest option...

» n-resolved master equations with ‘jumpers’ J — sJ, generating
operators. Cook 81 (Lesovik 89, Gurvitz 99, Bagrets/Nazarov 03 ...)

o Mandel (Poissonian) pn(t,t+ T) = Zre " A =nl(r)T.
> Classical field with intensity /(r).
> Golden rule (photo-electric effect) plus Markov.

@ Mollow, Scully-Lamb single mode
n —
pn(0,t) = Trp(0) : L (afan:)" exp(—afane):, me=1—e 7t
» Correctly describes detector backaction. ‘Closed system’.
> Free cavity fields only, no sources.

@ 'Quantum Mandel’, Kelley-Kleiner p,(t, t+ T) = (: 2 -0 ).

n!

» Heisenberg operators, Q = ffHT dt'E-(t)E*(¢).

t
» Not correct for long times. ‘Open system’. Various generalisations on

the market.
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Ueda’s photodetector theory

M. Ueda PRA 41, 3875 (1990). (Relatively) consistent attempt to put
everything together ?

@ Source-field interaction.
@ Detector-field backaction.

Three parties (source, field, receiver/detector).



Multi-mode photodetector
‘H = Ho + Hp + Hrp, Ho = Hs + Hrs + Hr

Hpp = Z (Vl?c):j\mj(l\a(g + H.c.) , field-detector interactioi19)
Qkj




Multi-mode photodetector
H ="Ho+ Hp + Hrp, Ho = Hs + Hrs + Hr

Hpp = Z ( ckj\0> (llag + H.c.) , field-detector interactiofl9)
Qkj

@ Neglect Hpg in deriving non-unitary part of master equation for x;
(field-source density operator).

d m . m

Exg) = —i[Ho,x{™] (20)

- *Z’YQQ’( anfxg Vb ximal Q3@ —230/X§m_1)35)-
QY

@ Assumes ‘broadband detection’, yoqr = 27N )", VkQ \_/kolé(s — £kj),
N > m detector atoms.



Formal solution

Generating operator G, ‘damper’ Ly, ‘jumper’ J.
o Write 9;G = LoG + sJG, G(s, t) =), smy ™),
o LoX =YX+ XYF, Y =—iHo— 13 00 voqrabaq.
o X =) 0o nyQ/aQ/XaE.




Formal solution

Generating operator G, ‘damper’ Ly, ‘jumper’ J.

Write 9,G = L£oG + sJG, G(s, t) = Y20 s™y\™.
LoX =YX+ XYY Y = —iHy — 33 00 00 ahagr-
JX = ZQQ’ "YQQIQQ/XQZ?.

Interaction picture G(s,t) = S;G(s, t), S; = efot.
Here, S,X = efotX — eYtXeY't.

Counting and jumping in interaction picture,

D:G(s, t) = seFot JeLot G(s, t).

(21)



Formal solution
Generating operator G, ‘damper’ Ly, ‘jumper’ J.
o Write 9;G = LoG + sJG, G(s,t) =) o s X(m)
o LoX =YX+ XYF, Y =—iHo— 13 00 voqrabaq.

o JX =Yoo TaqagXal,.

Solution of 9;G(s, t) = se~£ot JeLot G(s, t) as formal power series,
~ ~ t / / ~ t
G(s,t) = G(s,0)+ / dt’'se= 5ot JeLot' £ G (s, 0) +/ dt’s...
0
(%]
= / dtm / dtlsfthStmftmilJ...JSth(O)
0

00 t
G(S, t) = Z / dtm/o dtlst_thStm_tm71J...JSth(O). (21)



Formal solution
Generating operator G, ‘damper’ Ly, ‘jumper’ J.
o Write 0;G = £oG + sJG, G(s,t) = 32 o s™\™,
o LoX =YX+ XYF, Y =—iHo— 13 00 voqrabaq.

o JX = ZQQ’ ’YQQ/QQ/XQZ?.

Single-mode case first for simplicity (A(t) = e~

ﬁgm) _ ,Ym/otdt,,,.../ot2 dt1 A(tm)...A(t1)x(0)AT(t1)...AT (tm)

t to
pim = 7'"/ dtm.../ dtre Y A(tm). . A(t1) X (0)AT (£1)... Al (tm)e" .
0 0



Formal solution
Generating operator G, ‘damper’ Ly, ‘jumper’ J.
o Write 9;G = LoG + sJG, G(s, t) =), smy ™),
o LoX =YX+ XYF, Y =—iHo— 13 00 voqrabaq.

o X =) 0o nyQ/aQ/XaZ?.

Single mode case, taking traces:
t to

Trpl™ = 7'"/ dtm.../ dty (AT (t1)... Al (tm) A(tm)...A(t1))
0 0
t

to
Tepl™ = 'ym/o dtm.../o At (AL (1) AT (tm)e” Te Y A(tm).. At2)).



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

po(t) = ,ym/otdt,,,.../ot2 dtr (AT(11)... Al (tm)eY TVt A(tm)... A1)
27 0y sz/tdt'aT(t')a(t') (21)
0

v

pEK(E) = (e




Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

U — M ‘ N AT (1) Al (t)eY et LAt
pUt) = ~ /Odtm.../o dt1 (AT (). Al () Altm).Alt2))

PEE(H) = ¢ %e‘ﬁ ), ng/tdt'aT(t')a(t') (21)
b 0

v

@ No detector backaction in KK.
@ Replace damped time-evolution A(t) = e~ Ytae* by free
time-evolution a(t) = e/*otgeHot,
@ Remember single mode case (Mollow, Scully-Lamb)
pm(t) = Tr {p(0) : %(afam)mexp(—aTant) doe=1—e
o KK is short-time limit vt < 1 ~» 1y = 7t.



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU() = /dtm / dt1 (AT (1) Al (tm)eY LV A(t). A1)
pEK() = ( %e Q:, Q= 5/ dt'al( (21)

v

Up to first order in ~

eYlteYt — <1+ /dt’aT ><1+ /dt’aT >
_ <1+7/0 dt' st (t’)a(t’)...>
~ o exp <7 /0 tdt’aT(t’)a(t’)> : (22)



Relation with Kelley-Kleiner formula

Ueda vs Kelley-Kleiner

pU() = /dtm / dt1 (AT (1) Al (tm)eY LV A(t). A1)
pEK() = ( %e Q:, Q= 5/ dt'al (t (21)

v

e Sum-rule > o pm(0, t) = 0 fulfilled for

0,1) = Trp{™ = (22)
= / dtm.. / dtl 1_-1 a(tl) T(tm)a(l’m)e’yfot dt’at(t')a(t") :>

_ <_[ /0 d'al (¢ )(/)] e Ji s (®)alt) .y

m!



Multi-mode form

pm(0,8) =Trpt™ = 3" qg.00-0mas X
Q1 Q- QmQp,

t t1
T
« /dtm.../ dtyTr (xoal (1)...al (tm)e” e agy (tm)...ay (1)) .
0 0

@ Somewhat impractical ...
o Counting-at-source method much simpler.
o Alternative: integrate out fields in 0;G = LoG + sJG (?)



Quantum trajectories: this should now be easy...



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

pr = —B(0+0_pt + proro_ —20_proy)




Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

pr = —B(0+0_pt + ptoro_ —20_proy)

@ Jump super-operator J with Jp =280 _po
@ Solve 0:pr = (Lo + J)pe-

o Interaction picture with respect to Lo: p; = Sife, S¢ = ot



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

pr = —B(0+0_pt + ptoro_ —20_proy)

@ Jump super-operator J with Jp =280 _po
@ Solve 0:pr = (Lo + J)pe-

o Interaction picture with respect to Lo: p; = Sife, S¢ = ot

o Solution of 9;/(t) = e~*ot JeLot j(t) as formal power series,

0 t to
o) = 3 /0 dtp... /O dt1Se e S o o SSup(0). (23)
m=0

@ m quantum jumps occuring at times ti, ..., tm.

@ Sum over all ‘trajectories’ with m = 0,1, ...,00 jumps between ‘free’
(but damped) time-evolution.



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

pr = —B(0+0_pt + ptoro_ —20_proy)

Monte-Carlo procedure. Fixed time step At.
@ Step 1: start with pure wave function |V).
@ Step 2: calculate collaps probability, P, = SAt(V]oro_|V)
@ Step 3: compare P, with random number 0 < r < 1.
> If Py > r, replace |V) — o_|W)/[|o_|V)].

> If Pyl < r, no emission but time-evolution |W) — (1 — iAtH.g|W) /N,
where Heg) = —ifoo_.

Go back to Step 2.

Repeat procedure in order to obtain average.



Quantum jump method, Monte-Carlo for master equation

Example: spontaneous emission from TLS (rotating frame)

pr = —PB(010-pt + proro_ —20_peoy)

Monte-Carlo procedure. Fixed time step At.
@ Step 1: start with pure wave function |V).
@ Step 2: calculate collaps probability, P, = SAt(V]oro_|V)
@ Step 3: compare P, with random number 0 < r < 1.
> If Py > r, replace |V) — o_|W)/[|o_|V)].

> If Pyl < r, no emission but time-evolution |W) — (1 — iAtH.g|W) /N,
where Heg) = —ifoo_.

Go back to Step 2.

Repeat procedure in order to obtain average.

Widely used in quantum optics community.

Note: splitting £ = Lo + J is not unique.

Literature: Carmichael (book); Plenio,Knight (review).



Summary

Multi-mode quantum optics: field as ‘bath’.

Correlation (coherence) functions.

Resonance fluorescence: ‘counting at the source’, sub-Poissonian,
anti-bunched.

Multi-mode photo-detector theory.

Quantum trajectories.




Summary

@ Multi-mode quantum optics: field as ‘bath’.
o Correlation (coherence) functions.
@ Resonance fluorescence: ‘counting at the source’, sub-Poissonian,
anti-bunched.
@ Multi-mode photo-detector theory.
@ Quantum trajectories.
Still to do

@ Microscopic models for source-field-detector.
o Further understanding of counting statistics pn(t).

@ More complex quantities, e.g. time-resolved probabilities
Pa(t1, ..., tn; [t, t + T]).
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