An introduction to
Full Counting Statistics

INn Mesoscopic Electronics

Wolfgang Belzig
University of Konstanz

Lancaster School on Counting Statistics
January 2006
If you find a misprint: Wolfgang.Belzig@uni-konstanz.de




® |[ntroduction

# General aspects of full counting statistics
# Probability theory
# Keldysh-Green'’s functions

» Simple applications
# Tunnel junction
#® General two-terminal contact
» Levitov formula
#® Andreev contact

$» Advanced examples
# Two-particle interference in an Andreev interferometer
# Gigantic charges in superconducting point contacts



Distribution of events
(classically occuring in certain time interval tg)

event N events
A

time

period t,

Examples for countable events:
1. trains arriving in a station
2. the occurrence of 0s in roulette games
3. number of electrons in electric current

Question: How to characterize the distribution of events?



Averages (by repeated experiments/observations)

® mean number of events N

#® variance of number (IN — N)2

» however: much information disregarded!

Complete characterization of events: number distributions
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Measuring electric current = counting electrons

Average current measurement: Itg = (N) = N

Individual measurement gives not necessarily N, but some (integer) number N
Described by probability distribution P(IN)

Fundamental question:

What is the statistics of the transfered charge IN?

Full Counting Statistics P(IN)

Information on

o

e o 0

what is the elementary charge transfer
statistics of particles (e.g. fermions/bosons/uncorrelated)
correlations of two and more particles

mesoscopic PIN-code (all transmission eigenvalues)



Probability theory:  Probability distribution: P(IV)

Definition:

Normalization: Z P(N)=1= M,
N

Average of N: (N) = N =Y NP(N)
N

General moments: M,, = (N™)
Central moments: M,, = <(N — W)n>

moment generating function

oo

B(x) = (V%) = 3" ()" M,
CON\"
- = (ig) e00]

Normalization: ®(0) = 1



Definition: cumulant generating function (CGF)

S(x) = In®(x)
BS(X) — <eiNx> — ZN ezNXP(N)
. . =1
Expansion (defines cumulants): S(x) = Z — (zx) C,
n= 1
Relation cumulants «<—moments
C, =M,

Cy = M3 = (N?) — (N)?
Cs = M3 = ((N N
Cy = 4—3M2

Normalization: S(0) = 0



Multivariate distributions :

Joint probability for K different events: P(Ny, Na, ..., Ng) = P(N)
correspondingly x — X = (X1sX2 -+« XK)

Cumulant generating function: e°X) = <e“\7>'<'>

Correlations: C;; = (N;N;) — (IN;) (Nj)

Example: independent events P(NN1, N2) = P;(N1)P2(N2)

Thus S(x1,x2) = S1(x1) + S2(x2)
—CGF's of independent events are additive

Consequence: Ciz = ((IN1 — N1)(IN2 — N32)) = — 8?(1 8‘;25()‘5) 2=0

= 0 If 1 and 2 are independent

Reverse: if CGF can be written as sum —
terms can be interpreted as independent events




Some well known probability distributions

P(N) S(x)

delta-distribution & & iNx
1 —2 __

Gauss \/%e—wziv) iNx — ox?/2

—N

N ~ .
Poisson We_N N (e —1)

- - M\ N M—N ix

Binomial ~N P (1 —p) MIn |1+ p (e —1)]

Multinomial distribution

Y M! Ny N N M-, N;
P(N) — Ni!Nal--Ng ! (M—3, Ni)pl ‘py - 'pKK (1 — Zz pi) >

S(X) = Mn |1+ X5, py (e —1)]




Formal classical definition of FCS:

P(N) = (§(N - N))
A to ~
Charge operator. N = / dtI(t)
0
Cumulant generating function eS™) — <eixN>

Quantum mechanical definition
Keldysh time-contour: =0 C2 Hx(t)

. X

~lo

J

| \
=
C1 Hif) > Ck
Characteristic function ®(x) = <TK€_% Jex th(t)f(t)>

Electrons on upper and lower branch see different Hamiltonians

+x tel;

Hy oy (t) = Hy £ v I obtained by x(t) = .
1(2)() 0L X y x(t) {—X t e C,



Motivation for quantum definition of CGF (rough sketch)
Charge detector density matrix (in Wigner representation)

p(¢,Q,t0) = > P(¢,N,to)p(¢,Q — N, 0)
N

¢ = conjugate variable of
“Probability” determines the time evolution of the detector density matrix

P(¢, N,to) = /dxeiNX+S(¢+x/2,¢—x/2,to)

where

: t ~ . t
eS(X1,X2,to) T etXx1 [o° dtI(t)pOTe—zxz [o° dtI(t)

= Trsystem

If S(x1,Xx2,%t0) depends only on difference x = x1 — x2 — P (NN, tg) independent
on ¢ —probability of charge transfer

[Nazarov and Kindermann, Eur. Phys. J. B 03]



Use standard Green’s function methods with time-dependent Hamiltonian.
eSS — i 1 (2x)" <T Nn>
n! K

'Cumulant expansion’ "=0 . . \m
exp |3 (2x) <T Nn>
K connected

n=1

It follows that:

® S(x) = 21 . (z’%)”Cn ,

® where| n |= »¥¥&8—n—-1

°

Vertex: N = i f(f" dtl in Keldysh matrix space

°

Line: single particle Green’s function G

°

Current operator matrix ¥ = 7T, (corresponds to 4=y for lower/upper contour)
other matrix structures included in I



Definition of x-dependent Green’s function:

o0 A X | 2] =
— — Hy — eI G(x, t, ) = 6(t — ¢t/
iy~ o~ Sricl| Glxt,t) = 3t — 1)

'Charge’ operator is a matrix in Keldysh-space: N = 7k g"’ dtl

The 'unperturbed’ Green’s function is

(written in obvious matrix-notation)

Pertubation expansion for Green’s function G(x) yields

G =Y (ig)n_l Go (NGo)™ ™"

n=1



We define the x-dependent current via

tol(x)/e = > .., (i§)n_1 Tr (NGO)n

(s

Comparison of expansion for S(xx) and I(x) leads to
relation of Green’s function formalism to counting statistics

N[

= 5

R

allows to use (in principle...) all techniques for GF

[Nazarov 1999]



Quasiclassical approximation

Green’s functions in real space oscillate on length scale of Fermi wavelength A\ g:
é(iE, wl) ~ eikp(w—w’)g(w, wl)
g(x,x") is the envelope function

The relevant length scales in many systems are
® [;,.., elastic mean free path
® ¢ = hvp/kpT temperature coherence length
® (s = hvp/A superconducting coherence length
» etc.

In the limit Ap < lipnp, 7, &5

guasiclassical approximation
(theory for envelope functions only!)



Fast oscillations of Green’s functions are integrated out
—(quasiclassical Green’s functions

g9(7, Ur)

T =3 L (Z 4+ &) center of mass coordinate
v direction on Fermi surface

Effective equation of motion —Eilenberger equation
—ihrpV§ = [iho + id, §|

ho = ‘rest Hamiltonian’ ; & = self-energy
® much simpler equation
® homogenous —bulk solutions have to be supplied
® invalid near interfaces —extra boundary conditions necessary

Normalization condition: g% = 1



Bulk solutions for Keldysh-Green'’s functions : G = < OR

R, A : spectral properties (Retarded, Advanced)
K : occupation of spectrum (K eldysh)
A A G F
Nambu substructure: R, A, K = R, 4,K R,4,K
—Fr Aok —GRraAK

G . normal Green’s function (density of states, distribution function)
F' . anomalous Green’s function (pair correlations)

Normal metal Superconductor (in equilibrium)
R=—A =+ R(A) = (Et3 — iAT2) /Qr(a)
ﬂ2R(A) = (E =+ io)z — |Al?

. (1-27(E) e (5
K ( 2F(_E) 1) ) K= (R— A) tanh(E/2kgT)

7; = Pauli matrices



Examples for selfenergies:

® Cimp = ﬁ@)w elastic impurity scattering

® A superconducting gap-matrix
® electron-phonon scattering, etc.

(...)or = [ dS2,. /47 average over the Fermi surface

Quasiclassical current:
- ev o .
] = v /dETr(vFTKg)vF

v . density of states at the Fermi energy



Disordered system: Ar < lipp < E1,€A, - - -

1
2Tr,;mp

Dominating term in Eilenberger equation: impurity selfenergy (@) vy
Green’s function are (almost) isotropic
Ansatz: §(z, Tr) =~ G(x) + Trgi(x) , Trgi(z) <€ G(x)

Eilenberger —'Usadel’-equation

VD(x)G(x)VG(x) = [—iE&3, G(x)]
I(x) = —0(x)G(x)VG(x)

Matrix Diffusion Equation



Inclusion of full counting statistics (H (x) = Hp + i%%KIop):
Counting charge somewhere inside terminal
Current through some cross section C

Definition: F'(x), which changes from0to 1 atC
on length scale A K liyp, ET5 - - -

Current operator on C:. jc(x) = Trix (VF(x))

Eilenberger equation in the vicinity of C: —i9rV g = gﬁ’F%K (VF(x)),g

Solution ('gauge transformation’): G(z) = e*2 "5 F(@) G e~ 13 7x F(2)

L
2

New boundary condition: G(x) = e*2 ¥ Gge™*

Go = Green’s function in the absence of counting (e.g. Gn, Gs)



FCS defined in terms of extended Keldysh-Green’s function formalism

Approach

® New terminal Green’s functions

G(x) = e!? K Gge 27K

Remark: these Green’s functions merely determine the boundary condition at
oo (a la Landauer), they are always quasiclassical

® proceed 'as usual’ to find the average current (but respecting in all steps the
full matrix structure, i.e. the dependence the counting field x)

® the CGF is obtained via the relation

- e OS
I(x) = % 3§<X)

® all correlation functions determined



Hamiltonian: H = Hy, + Hr + Ht

Perturbation expansion in Hr (to second order)

Result for the current (G tunnel conductance)
Gr s -
I(X) = g /dETr <’TK [GL(X),GR}) .

The CGF is (using %GL(x) = % [k, GL(X)])

t X Grt - -
S(X) — z_O/ dX,I(X,) — T20 /dETr{GL(X),GR}
e Jo 4e




Extracting the dependence on the counting field

S(x) = Nr(e™ —1) + Np(e™*X —1).

NL(R) = % deTr [(1 + fK)éL(l + fK)éR}
FCS = bidirectional Poisson distribution

Nr(r) are the average numbers of charges that are tunneling to the right (left)

holds for normal and superconducting junctions
cumulants Cap,41 = Ng — N , C2, = Ngr+ N

© oo o0 0

tunneling only in one direction (IN; or Ng vanish)

Statistics is Poisson: P(N) = JX: e~ (e.g. third cumulant C5 = €2N)

® in equilibrium Ny = Ng: non-Gaussian statistics

Caution: here the Keldysh time-ordering is essential. “Classical” CGF gives wrong

__ 13
result (e.g. third cumulant <{f§° dtI(t) — eN] > = 0!)



General contact (described by scattering matrix):
important quantities {7, } (transmission matrix eigenvalues)
Current is given by [Nazarov, 1999]

5 e2 T, |GL,GR]
I : - - ~ ~
T Zn 44T, ({GL,Gr} — 2)

Counting statistics obtained from

S(x) = ztzo /OX dxX'I(x') ;5 I(x)= 4—16/dEtr kred

Result:  Tr= Z/dE tr ; tr=trace in Keldysh-Nambu-... space

S(0) = (2 Trinf1 + - ({G1(x), Gr} — 2)

— Full counting statistics of mesoscopic two terminal contact
[W.B. and Yu.V. Nazarov, PRL 2001]



One channel contact (T3) between two normal metals (occupations fr r):
[Lesovik and Levitov, JETPL 1993]

S(x) =% [dEI[1 + Tifr(1 — fr) (X — 1) + Tufr(l — fr) (e7X — 1)

~~

L — R transfer R — L transfer
counting factor counting factor

At zero temperature and bias V.

t .
S(x) = e 1+ Ty (ex —1) ]
2

® Binomial statistics: P(N) = ()TN (1 — T1)M~N with M = &V # of
attempts
® Anticorrelated transport of electrons (second cumulant Co = MT (1 — T))

® third cumulant: C3 = MT (1 —T)(1 — 2T)



Origin of the trinomial statistics:

electrons in leads (ng,ng) occupations scattering | charge g

(0,0) (1—fr)(1 — fr) 1 0
(1,0) fo(1 — fr) T +1

R 0
(0,1) fr(1 — fr) T -1

R 0
(1,1) frSL 1 0

Pauli!
The CGF for a single scattering process
eSe(x) — ZnL,nR p(nr, nR)ein

CGFs for all scattering processes add up coherently!

sco=> 2 [

spin

1+ TfL(1— fr) (e —1) +Tfr(l — fr) (e7™* — 1)

dESE(X) —Levitov formula



One channel contact (T7) between normal- and superconductor :
[Muzykantskii and Khmelnitskii, PRB 1994]

S(x) = 2t_31- [dEIn [1 -+ Zﬂ; 1402 (e"izx — 1)J+i401 (eaix — 1)J

~~ ~~

2-particle transfer 1-particle transfer
AtT = 0 and bias eV <K A.:
S(x) =MIn |1+ Ry (e?X — 1
(X) 1+ Ra( ) ]

Ra =T¢/(2 —T1)?
probability of Andreev reflection

Statistics is binomial: Interpretation:

from S(x + m) = S(x) follows ® M = same as NN-contact

P(N=2n+1)=0 ® Andreev reflection
—doubled charge transfer

P(N =2n) = (V)R (1—R)M" ® Noise
— vanishes for odd IV Co =4MRA(1 — Ry)



Uncorrelated two-particle scattering: (for simplicity zero temperature)

Se = Y. In[14T(ex —1)]
= In|1+4T(ex — 1)]2
= In|14+T?(?* —1)+2T(1 —T)(e* —1)]

Different for Andreev:

Sa = In|[l1+ Ru(e** —1)]

S o cannot be written as sum of independent terms!

Electrons in Andreev pair are strongly correlated (entangled).



Theoretical approach: new terminal Green'’s functions
G(x) = €2 Goe "2 7K

Full counting statistics of mesoscopic two terminal contact

= ({100, Gr) — 2)

to

Simple two-terminal contacts
® tunnel junction
® |evitov formula
® Andreev contact



Noise and Counting Statistics In a
diffusive wire



Diffusive conductor between two normal terminals
(mean free path [, length L, conductance G )

Transmission eigenvalue distribution

t - .
Averaging the CGF: S(x) = 4—0 /dEtr/dTP(T) In[4 + T ({G1(x), G2} — 2)]
T

gives [Lee et al. 1996, Nazarov 1999, Bagrets et al. 2003, W.B. 2003]

Gnt 1 .
S(x) = 81220 /dEtr [acosh2 (5 {GL,GR})]

holdsfor g 1\ormal contacts

® superconducting contacts (eV, kT < E.)



Two normal terminals

Result (at kgT = 0):
GnVitg

SNN (x) = acosh? (2e*X — 1)

® statistics is universal (conductance is the only sample parameter entering)
® Fanofactor FF = C,/C; = 1/3.
® Third cumulant C3/Cy = 1/15.



Diffusive conductor between superconductor and normal terminal
(mean free path [, length L, conductance G )

V
NT R,L S

0
T

At (eV,kgT <« E. = hD/L? <« A): coherent Andreev reflection

© o 0o 0

G Vi

SN (x) = > 4e acosh? (2e*?X — 1)

same characteristics function as in the normal case
statistics of doubled charge transfer (2x!)
conductance unchanged Gns = G

Fano factor F = 2/3 doubled



Incoherent regime (T, V > E. = D/L?): W.B. and P. Samuelsson EPL 2003
only Andreev reflection at interface to superconductor

Mapping on combined electron- and hole-circuit

EaX H)_X
V. T -V, T

Interface resistance negligible —
E,X H7 —X
— G _Q_ Gy H
V. T —V.T
Equivalent circuit (for normal diffusive connectors) —
E7 H7 _
V,T —V, T

Counting statistics:

Gy Vi :
S(x) = 2N 460 acosh?(2e"X — 1)

® FCSis same as in the coherent regime



® universal statistics for E < E.and F > FE.

Consequence of universality for E < E. and E > E..

Ratio between cumulants
C.S’N
n

NN
Cn

What happens in the nonuniversal regime for £ ~ E_.?

Usadel equation
VD(x)G(x)VG(x) = [—iE&F3, G(x)]

Right hand side describes decoherence between electrons and holes

Normal case:

right hand side absent —Counting statistics independent of E,.



Intermediate energies require “Usadel’-equation:
characteristic energy E. = D/L? (Thouless energy)

Diffusion-like equation:
[Usadel, 70; Larkin and Ovchinikov, 68;
Eilenberger, 68; and many others]

spectral part (determines coherence):

DO?6(E,x) = —i2Esin(0(E, x))

Kinetic equation (“Boltzmann equation”):

03 =0 ;5 =0(E,x)0:hr

local energy-dependent conductivity:

o(E,x) = on cosh?(Reb(E, x))

Result: [Nazarov and Stoof, PRL 96]

1.15-

R dl/dV

1.05¢ reentrance effec

differential conductance

| >4

20



Shot noise in the diffusive SN-wire:

Fano factor foreV < E.andeV > E.. F = 2/3

Intermediate energy £ ~ E..
Matrix 'Usadel’-equation

DVGVG = [—iEé&3,G]

|

I
|9

Q)

<

Q)

Shot noise In linear response
to counting field x

~

G — x3 [fx, GY]

Gn(x)
Sy = —z——deTr(TKI)

Result: [W.B. and Nazarov, PRL 01]
[ [
1.1 kg T=0 i
q) L
N i
o
> I
45' L
£ 1.05-
U) -
| 3R /4e) dSdV
g | / (Ryse)ds
o I
e 1 |
5 J\ Universal
- Universal
0.95- |
| | | | | | | |
0 5 10 15 20

eV/ EC



Elimination of 'trivial’ energy dependence:

Boltzmann-Langevin calculation with energy-dependent conductivity
o(E,x) = on cosh?(Reb(E, x))

assuming independent electron- and hole-fluctuations.
Result (at T' = 0):

S1(V) = el (V)

— we consider the effective charge

3dS; (_ CSN C{\’N)

(V) = 2228 [ =
Gers (V) =5 —7 ©ONN OSN

Note: normalization by twice the normal state Fano factor 2/3



Effective charge:

vy St Lo R dl/dV
Qeff\V) = 5ar1 i

1.1

1.05

| L1 1 1 | 1 | | |8 | L1 1 | | L1 1 1 | ]

1
095 | | | | | | | | | | | | | | |
0 ) 10 15
eV/E,

® effective charge suppressed
® origin: anti-correlated electron-hole pairs, i.e. Co ~ RA(1 — Ry4)

® enhancement of open Andreev channels for £ < E.

[for theory of Andreev reflection eigenvalues distribution,
see P. Samuelsson, W. Belzig and Yu. Nazarov, PRL 04]

N
o



Andreev interferometer structure with a loop threaded by a magnetic flux

magnetic flux ® = { phase difference

0p = ¢p1 — P2
] 11 characteristic energy Eq = %
L P :
For example:
N Q| S
AN ® ¢9=0 (5¢ — O)
- ) 2 quasi-1D-wire of length 2L
o (non-uniform cross section)
charact. energy =~ FEy/4

size AR/R = 20%
¢ = 2o (6 = )

destructive interference in left arm
1D-wire of length L

charact. energy Ej

size AR/R = 20/3%

experimental realization:
[B. Reulet, A.A. Kozhevnikov, D.E. Prober, W. B.,
Yu.V. Nazarov, PRL 03]



Differential resistance:

differential resistance (normalized

| N

experiment

0.95

0.9

R SO oy,

b=/

[
0'8“0

50 100 150
V [uV]

20C

differential resistance (normalized

0.95

O
©

T = 43mK ; E. = 30ueV

theory (no fit parameter)

_P=p /2

\

[
0'8“@

50 100 150
V [uV]

at ® = 0: reentrance effect at E. ~ D/(2L)? = 30uV.
at ® = 2Po: 1/3 reentrance effectat E. ~ D/L? = 120pV.

20C



Effective charge: qerr = (3/2)dS/dI

experiment theory (no fit parameter)
—r -~ 1 T T 1 1 T 1" — 71 1 T 1 T 1 T 1 1 T 1 T
2 2F —
Oerf© Qi€
1.8 1.8- :
— ®=0
— ©=0.250,
®=040¢
1.6_ 16_ _ q):O5cD 1
0

! ! | ! | ! | ! | ! | ! | ! | ! | ! | | | | | | | | | | | | | | | | | |
O 10 20 30 4050 60 70 80 90 10 O 10 20 30 40 50 60 70 80 90 10
V [pV] V[V

® at & = 0: dip in effective charge at E. ~ D/(2L)? = 30uV.
® at® = 1P nodipat E. ~ D/L? = 120uV (both in exp. and th.!)



Normal metal electrodes

® universal FCS

® no dependence on Thouless energy

$» no phase effect

Superconducting contact

® universal FCSforeV < E.and eV > E_

reentrance effect for intermediate energies

macroscopic quantum interference (~ # of channels) no classical analog

© o 0

noise shows two-particle interference effect



Gigantic charges In superconducting
point contacts



Superconducting junction with finite bias voltage eV
For simplicity: single channel contact with transmission eigenvalue T

Quasiparticle tunneling:

® Total charge transfer: 1e Sl E S2

Probability: ~ T

Involves 0 Andreev reflections

| I I
2

minimal voltage: eV > 2A




Andreev reflection (second order process):

e oo o

S1 A E

A

Total charge transfer: 2e
Probability: ~ T2

Involves 1 Andreev reflection
minimal voltage: eV > 2A /2

S2

<] R
N



Double Andreev reflection (third order process):

e oo o

S1 A E

A

S2

Cﬂ 4—@— ----- -h--

Total charge transfer: 3e
Probability: T3

Involves 2 Andreev reflections
minimal voltage: eV > 2A/3




Triple Andreev reflection (forth order process):

e oo o

S1 A E

A

S2

e
g-—= =

Total charge transfer: 4e

Probability: ~ T4

iInvolves 3 Andreev reflections

minimal voltage: eV > 2A/4 = A /2



Average current:

® strongly nonlinear
current-voltage characteristic

® cuspsateV =2A/n

® (ualitative dependence on
transmission T (indicated for
each curve)

Questions:

® what are the elementary
processes?

® what is their statistics?

O0 05 1 15 2 25 3
eV/A

[J.C. Cuevas et al., PRL 1996, D. Averin et al. PRL 1996]



Example: shot noise
I‘ I | I | I

® T < 1 giant Fano factor:

4} different T - C2/C:1 = int(1 + 2A/eV)
® finite noise for open contact
T=1

® strongly enhanced noise
foreV <« Aforany T

Questions:

® what are the elementary
processes?

® what is their statistics?

1.5 2

1
eV/A

[J.C. Cuevas, A. Martin-Rodero and A. Levy Yeyati, PRL 1999; Y. Naveh and D.V. Averin, PRL 1999]



CGF of mesoscopic contact:
to - -
S(x) = ,~Trin [4 LT, ({Gl(x) o Gz} _ 2)}
(f10 £2) (t.8) = [ dt"Fi(t ") Fale”,¥)

Green’s functions of two superconductors at different voltages
matrices with dimension 2 x 2 (Nambu X Keldysh) X X integral operator

Discretization in energy

G(E,E') =) Gnm(E)§(E — E' + (n—m)eV

The @ product is reduced to usual matrix product (co — dimensional).

2 X 2 X oo = Nambu x Keldysh x Energy



Structure of the matrix: (e.g. left superconductor with potential eV'/2.

( Energy n+1 n—1
~n+1
g
n _I_ 1 = ~n—+1
g22
G = 7
L n f12 —
21
~n—1
\ g22

normal Green’s functions: diagonal in energy
anomalous Green’s functions: offdiagonal in energy

® matrix structure explains counting factors e*™x

® analytic evaluation ??

® useful formula Tr In = In det




Toymodel: disregard Andreev reflection for |E| > A

Replace Green’s functions by

gBA) 1 fR(A) 50 E2 > A2
g 0 fRA) 1 E?2 < A2

—matrix of finite dimension
Assuming eV = 2A /n, problem is reduced to (e.g. for n = 5)

i [Q-(0) 1
1 0 e XT3
VT o
det |1 — — eiX7s 0 1
? 1 0 e X7
! \ exTs  Qy

(Q+ describe quasiparticle emission (injection).

— Determinant can be found analytically.

/




Result: binomial statistics of multiple charge transfers

S(x) = eVTtO In [1+ P, ("X —1)]

The probabilities are

Limits: T =1 —P,, =1

eV/2=A/(n—1)

T2
(T—2)?
T3
(3T —4)2
T4
(T2—8T+48)2
T5
(5T2—20T+16)2
T6
(T—2)%(T2—16 T+16)2
T7
(7TT3—56T24+112T—64)2
TS

(T4+—32T34160T2—-256 T+128)2

T K1 —P, ~T"/4"1



Question: nt” order process = k quasiparticle + I Cooper pairs?

E.g. 5" order

det

1 —

VT
2

Possible interpretation:

[ Q-(X)
1

0
eixi-S

e_zX‘?S
0
1

® () _(x) describe emission of 1 quasiparticle

® off-diagonal terms eT*x™s describe 1 Cooperpair

1

0

e_zX‘?S

Q+

/




Unitary transformations

1
1 0

det 1—? 1 1
0 1
! \ 1 Q+)

New interpretation: @ _(5x) describe emission of 5 quasiparticle

Question gquasiparticle vs. Cooperpairs makes no sense.
Counting charges makes no distinction!



Result of full expression: [J.C. Cuevas and W. Belzig, PRL 03]

S0y = 2_20 /OeV dEIn [1 + Y Pu(E,V) ("X — 1)

Multinomial distribution of multiple charge transfers

At zero temperature analytical expressions for P,(E,V) (n > 0)
Cumulants:
moments of the effective charge (n*) = >">° . n*P,(E,V)

2¢t eV
h Jo
9 2t eV
c, = =2 0/ dE(n?) — (n)?
h Jo

T 3 2 3
Cs = . /0 dE(n°) — 3(n){(n*) + 2(n)




Tunneling regime T' = 0.01 p — /ev dEP,(E,V)/eV
n — n 9
0

E | ' ' ' |
A g B
o eV 0.01- 1
n n—1
n-th order process
dominates le-0 P,
® probabilty P, =T"
le-0
1le-0
I
0 2.5

statistics I1s Poissonian P,, < 1



OpencontactT =1

threshold for n-th order
eV > A/n

max of P,, for

A
eV =
n—1

several processes com-
pete

eV
/ dEP,(E,V)/eV
0

P, =
|
0.8-
0.6
0.4 10
0.2+ /
% 0.5 1 15 2

eV/A

full characterization of transport process!




Example: skewness (third cumulant)

1NN _ T ® T < 1skewness
161 different T - C3/C1 = int(1 + 2A/eV)?
I ] ® negative skewness for =~ 1
I ] ® strongly enhanced skewness
i T foreV < A
Hg_— ]
O | ]
~n | |
QO | ]
411 0.95 -
O_ 1.0
i \/ A R




Full Counting Statistics = probability of transfered charge
Extended Keldysh-Green’s function approach to FCS
Statistics of simple two-terminal conductors

® o 0o @

Noise in an Andreev interferometer
# macroscopic quantum interference
# two-particle interference effect in noise

e

Giant charges in multiple Andreev reflections
o multinomial statistics of MAR processes

Thanks to

$» Yu. V. Nazarov (Delft)

B. Reulet, A. Kozhevnikov, D. Prober (Yale)
J. C. Cuevas (Madrid)

P. Samuelsson (Lund)

C. Bruder (Basel)

® o 0o @



Book (conference on quantum noise, contains many articles on full counting statistics):
® Quantum Noise in Mesoscopic Physics, edited by Yu. V. Nazarov (Kluwer, Dordrecht, 2003)

Many articles are available as preprints, e.g. part of this talk [cond-mat/0210125]
Shot noise (review article):

® Ya.M. Blanter and M. Biittiker, Phys. Rep. 336, 1 (2000)

Some works on Green’s function approach to full counting statistics:

® Yu. V. Nazarov, Ann. Phys. (Leipzig) 8, SI-193 (1999)

® . Belzig and Yu. V. Nazarov, Phys. Rev. Lett. 87, 067006 (2001).

® . Belzig and Yu. V. Nazarov, Phys. Rev. Lett. 87, 197006 (2001) [cond-mat/0012112]
® J. Borlin, W. Belzig, and C. Bruder, Phys. Rev. Lett. 88, 197001 (2002)

® Reulet, Kozhevnikov, Prober, Belzig, and Nazarov, Phys. Rev. Lett. 90, 066601 (2003).
® . Belzig and P. Samuelsson Europhys. Lett. 64, 253 (2003).

® J. C. Cuevas and W. Belzig, Phys. Rev. Lett. 91, 187001 (2003).

® P Samuelsson, W. Belzig, and Yu. V. Nazarov, Phys. Rev. Lett 92, 196807 (2004).
Keldysh-Green'’s functions (review article):

® J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).

Quasiclassical SN-Transport:

® . Belzig, FK. Wilhelm, G. Schoén, C. Bruder, and A.D. Zaikin, Superlattices Microst. 25, 1251 (1999)
Circuit theory:

® Yu. V. Nazarov, Superlattices Microst. 25, 1221 (1999)
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