For over 20 years Lancaster University has been at the forefront of the UK research effort in statistics and operational research, and is internationally leading in these areas. It has established an enviable track record of theoretical innovation arising from real world challenges. STOR-i builds on this by linking with leading UK industries, encouraging an integrated approach to STOR research between academia and industry.
Research
STOR research at Lancaster
The Statistics and Operational Research (STOR) group is at the forefront of research in Europe and beyond. We have internationally recognized expertise that ranges widely across forecasting, optimization, simulation, statistical modelling and inference, with a particularly strong focus on computationally intensive approaches. This group have ranked in the top five universities in the UK in every review of RAE/REF since 1992. Other indicators of Lancaster’s leadership of the STOR discipline include:
- Current research grant income is over £10M from a range of funders including several national research councils;
- Leading national and international research programmes, e.g. £5M EPSRC Prosperity;
- Partnership with BT(Eckley); £2.8M StatScale programme (Eckley, Fearnhead); £2.3M OR-MASTER programme (Zografos, Glazebrook);
- Major awards from the Royal Statistical Society (Diggle, Eckley, Fearnhead, Tawn, Wadsworth), the Institute for Operations Research and the Management Sciences (Glazebrook, Nelson, Zografos) and the Operational Research Society (Pidd, Zografos), Adams Prize (Fearnhead) and Edgeworth-Pareto (Ehrgott);
- Leading scientific programmes at the Isaac Newton Institute, e.g. Statistical Scalability (Eckley and Fearnhead); Scalable Inference; statistical, algorithmic, computational aspects (Fearnhead);
- Two of the five academic STOR members on the mathematical sciences sub-panel for REF2014 and REF2021 are LU staff (2014: Fearnhead, Glazebrook, 2021: Fearnhead, Letchford).
Research Philosophy
At the core of STOR-i’s research philosophy is an integrated approach with a continual research cycle, encompassing methodology and application within statistics, OR and industry.
Existing STOR research at Lancaster University focuses on methodological innovation motivated by, and fed back into, substantive applications arising from collaborations with the natural, biomedical and social sciences, as well as industry. STOR-i builds on this approach, putting an increased emphasis on genuine collaborative research at the interface of statistics, OR and industry. Research output will embrace key methodological advances as well as answers to specific scientific and industrial questions.
How does industry play a part in the STOR-i research philosophy?
STOR-i focuses on fully integrated collaboration with industry ensuring that the true structure of the problem is incorporated into STOR methodological development and analysis. The majority of our industrial partners have substantial teams of in-house analysts and have a common interest and awareness of the need for high quality methodological research. Collaboration with STOR-i involves the development of advanced STOR methods, leading to significant impact in both academic and industrial circles.
Research Management Skills
Students have the opportunity to develop research management skills by producing written proposals to a research fund. This is specifically to encourage research adventure and international collaboration, and through managing the award if successful. In addition successful students will plan and undertake the supervision of a STOR-i research intern to support this work.
Publications
A list of all the publications produced or in press from our current students and recent alumni.
accordion
Bold, M. and Goerigk, M. (In Press). Recoverable Robust Single Machine Scheduling with Polyhedral Uncertainty. Journal of Scheduling. Pre-print: https://arxiv.org/pdf/2011.06284
Clarkson, J., Lin, K. Y. (In Press). Computing Optimal Strategies for a Search Game in Discrete Locations. INFORMS Journal on Computing.
Greenstreet, P., Jaki, T., Bedding, A. and Mozgunov, P., (2023). A preplanned multi-stage platform trial for discovering multiple superior treatments with control of FWER and power. https://arxiv.org/abs/2308.12798
Murphy, C., Tawn, J.A., Varty, Z. (In Press). Automated threshold selection and associated inference uncertainty for univariate extremes. Journal of Technometrics.
Notice, D., Kheiri, A., Pavlidis, N.G.: (In Press). The algorithm selection problem for solving Sudoku with metaheuristics, in 2023 IEEE Congress on Evolutionary Computation.
Richards, J., Huser, R., Bevacqua, E., Zscheischler, J. (In Press). Insights into the drivers and spatio-temporal trends of extreme Mediterranean wildfires with statistical deep-learning. Artificial Intelligence for the Earth Systems.
André, L., Wadsworth, J., and O’Hagan, A. (2024). Joint modelling of the body and tail of bivariate data. Computational Statistics Data Analysis, 189:107841. https://doi.org/10.1016/j.csda.2023.107841
Davison, M., Zografos, K., & Kheiri, A. (2024). Modelling and Solving the University Course Timetabling Problem with Hybrid Teaching Considerations. Journal of Scheduling. Available at: https://link.springer.com/article/10.1007/s10951-024-00817-w
Austin, E., Eckley, I.A. and Bardwell, L. (2024). Detection of Emergent Anomalous Structure in Functional Data, Technometrics 66(4), pp.614-624. Available at https://doi.org/10.1080/00401706.2024.2342315.
Davison, M., Kheiri, A., and Zografos, K.G. (2024). Matheuristic for Approximating a Frontier for a Many-objective University Timetabling Problem. Proceedings of The 14th International Conference on the Practice and Theorgy or Automated Timetabling, PATAT 2024. Available at: https://patatconference2024.dtu.dk/-/media/websites/patatconference2024/patat/patat-2024-proceedings.pdf
Dilillo, G., Ward, K., Eckley, I.A. et al (2024). Gamma-Ray Burst Detection with Poisson-FOCuS and Other Trigger Algorithms. The Astrophysical Journal 963(2), Article 137. Available at https://doi.org/10.3847/1538-4357/ad15ff.
Fisch, A., Grose, D., Eckley, I.A., Fearnhead, P. and Bardwell, L. (2024). Anomaly: Detection of Anomalous Structure in Time Series Data. Journal of Statistical Software 110 (1), pp.1-24. Available at https://doi.org/10.18637/jss.v110.i01
Greenstreet, P., Jaki, T., Bedding, A., Harbron, C., & Mozgunov, P. (2024). A multi‐arm multi‐stage platform design that allows preplanned addition of arms while still controlling the family‐wise error. Statistics in Medicine, 43(19), 3613-3632. Available at: https://onlinelibrary.wiley.com/doi/full/10.1002/sim.10135
Murphy-Barltrop, C.J.R., Mackay, E. & Jonathan, P. (2024). Inference for bivariate extremes via a semi-parametric angular-radial model. Extremes. Available at: https://doi.org/10.1007/s10687-024-00492-2
Murphy-Barltrop, C.J.R., Wadsworth, J.L. & Eastoe, E.F. (2024). Improving estimation for asymptotically independent bivariate extremes via global estimators for the angular dependence function. Extremes. Available at: https://doi.org/10.1007/s10687-024-00490-4
Murphy-Barltrop, C. J. R., & Wadsworth, J. L. (2024). Modelling non-stationarity in asymptotically independent extremes. Computational Statistics & Data Analysis, 199, 108025. Available at: https://doi.org/10.1016/j.csda.2024.108025
Speers, M., Randell, D., Tawn, J.A., and Jonathan, P. (2024). Estimating metocean environments associated with extreme structural response to demonstrate the dangers of environmental contour methods. Ocean Engineering, Volume 311, Part 1. Available at: https://doi.org/10.1016/j.oceaneng.2024.118754
Yang, Z., Eckley, I. A., & Fearnhead, P. (2024). A communication-efficient, online changepoint detection method for monitoring distributed sensor networks. Statistics and Computing, 34(3), 1-16.
Aicher, C., Putcha, S., Nemeth, C., Fearnhead, P., Fox, E.B. (2023). Stochastic Gradient MCMC for Nonlinear State Space Models. Bayesian Analysis (Advance Publication) 1 - 23, 2023. https://doi.org/10.1214/23-BA1395
Black, B., Ainslie, R., Dokka, T., and Kirkbride, C. (2023). Distributionally robust resource planning under binomial demand intakes. European Journal of Operational Research 306(1):227-242. https://doi.org/10.1016/j.ejor.2022.08.019
Clarkson, J., Lin, K. Y., Glazebrook, K. D. (2023). A Classical Search Game in Discrete Locations. Mathematics of Operations Research, 48(2):687-707
Clarkson, J., Voelkel, M. A., Sachs, A.-L., & Thonemann, U. W. (2023). The periodic review model with independent age-dependent lifetimes. Production and Operations Management, 32, 813– 828. https://doi.org/10.1111/poms.13900
Daniells, L., Mozgunov, P., Bedding, A., Jaki, T. (2023). A comparison of Bayesian information borrowing methods in basket trials and a novel proposal of modified exchangeability-nonexchangeability method. Statistics in Medicine. 42(24): 4392–4417. https://doi.org/10.1002/sim.9867
D’Arcy, E., Murphy-Barltrop, C.J.R., Shooter, R., and Simpson, E. (2023). A marginal modelling approach for predicting wildfire extremes across the contiguous United States. Extremes 26, 381–398. https://doi.org/10.1007/s10687-023-00469-7
D'Arcy, E., Tawn, J.A., Joly, A., Sifnoti, D.E. (2023). Accounting for seasonality in extreme sea-level estimation. Ann. Appl. Stat. 17(4): 3500 - 3525. https://doi.org/10.1214/23-AOAS1773
Gillam, J., Killick, R., Taylor, S.A., Heal, J., Norwood, B. (2023). Identifying Irregular Activity Sequences: an Application to Passive Household Monitoring. Royal Statistical Society: Series C.
Graham, E., Harbron, C. and Jaki, T. (2023). Updating the probability of study success for combination therapies using related combination study data. Statistical Methods in Medical Research 32(4):712-731. doi:10.1177/09622802231151218
Grainger, J.P., Sykulski, A.M., Ewans, K., Hansen, H.F., and Jonathan, P. (2023). A multivariate pseudo-likelihood approach to estimating directional ocean wave models. Journal of the Royal Statistical Society Series C: Applied Statistics. https://doi.org/10.1093/jrsssc/qlad006
Grant, J.A. and Leslie, D.S. (2023). Learning to Rank under Multinomial Logit Choice. Journal of Machine Learning Research 24 (260):1-49.
Jackson, H., Anzures-Cabrera, J., Simuni, T., Postuma, R.B., Marek, K. and Pagano, G. (2023). Identifying prodromal symptoms at high specificity for Parkinson’s disease. Front. Aging Neurosci. 15:1232387. https://doi.org/10.3389/fnagi.2023.1232387
Morgan, L.E., Nelson, B.L., Titman, A.C., and Worthington, D.J. (2023). A spline function method for modelling and generating a nonhomogeneous Poisson process. Journal of Simulation, 1-12
Murphy-Barltrop, C., Wadsworth, J. & Eastoe, E. (2023). New estimation methods for extremal bivariate return curves. Environmetrics.
Parmar, D., Morgan, L.E., Titman, A.C., Williams, R.A. and Sanchez, S.M. (2023). Input Uncertainty Quantification for Quantiles. 2022 Winter Simulation Conference (WSC). IEEE, pp. 97-108. ISBN 9781665476621
Putcha, S., Nemeth, C. & Fearnhead, P. (2023). Preferential Subsampling for Stochastic Gradient Langevin Dynamics. Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, in Proceedings of Machine Learning Research 206:8837-8856. Available from https://proceedings.mlr.press/v206/putcha23a.html
Rennie, N., Cleophas, C., Sykulski, A.M. and Dost, F. (2023). Outlier detection in network revenue management. OR Spectrum. Available at: https://doi.org/10.1007/s00291-023-00714-2
Rennie, N., Cleophas, C., Sykulski, A.M. and Dost, F. (2023). Analysing and visualising bike sharing demand with outliers. Discover Data. Volume 1, Issue 1. March 2023. Available at: https://doi.org/10.1007/s44248-023-00001-z
Rhodes-Leader, L., Worthington, D., Griffiths, I., and Samartzis, P. (2023). Simulation For Evaluating Long-term Maintenance Plans For Complex Systems. In C. Currie, & L. Rhodes-Leader (Eds.), Proceedings of the 11th Operational Research Society Simulation Workshop (SW23) (pp. 272-282). Operational Research Society. https://doi.org/10.36819/SW23.032
Richards, J., Tawn, J. A., Brown, S. (2023). Joint estimation of extreme spatially aggregated precipitation at different scales through mixture modelling. Spatial Statistics, 53:100725. https://doi.org/10.1016/j.spasta.2022.100725.
Ryan, S. and Killick, R. (2023). Detecting changes in the covariance structure of high dimensional data using random matrix theory. Technometrics.
Sherlock, C., Urbas, S. & Ludkin, M. (2023). The Apogee to Apogee Path Sampler. Journal of Computational and Graphical Statistics. DOI: 10.1080/10618600.2023.2190784
Spearing, J.H.M., Tawn, J, Irons, D. & Paulden, T. (2023). Modelling intransitivity in pairwise comparisons with application to baseball data. Journal of Computational and Graphical Statistics. https://www.tandfonline.com/doi/full/10.1080/10618600.2023.2177299
Thorburn, H., Sachs, A., Fairbrother, J., and Boylan, J.E. (2023). A time-expanded network design model for staff allocation in mail centres. Journal of the Operational Research Society. DOI: 10.1080/01605682.2023.2287613
Turnbull, K., Nemeth, C., Nunes, M., & Mccormick, T. (2023). Sequential estimation of temporally evolving latent space network models. Computational Statistics & Data Analysis, 179, [107627]. https://doi.org/10.1016/j.csda.2022.107627
Tendijck, S., Tawn, J., & Jonathan, P. (2023). Extremal characteristics of conditional models. Extremes 26:139-156. https://doi.org/10.1007/s10687-022-00453-7
Tendijck, S., Jonathan, P., Randell, D., & Tawn, J. (2023). Temporal evolution of the extreme excursions of multivariate kth order Markov processes with application to oceanographic data. Environmetrics 35(3). https://doi.org/10.1002/env.2834
Ward, K., Dilillo, G., Eckley, I. and Fearnhead, P. (2023). Poisson-FOCuS: An Efficient Online Method for Detecting Count Bursts with Application to Gamma Ray Burst Detection. Journal of the American Statistical Association, 1-13. Available at https://doi.org/10.1080/01621459.2023.2235059
Bold, M., Goerigk, M. (2022). Investigating the recoverable robust single machine scheduling problem under interval uncertainty, in Discrete Applied Mathematics. https://www.sciencedirect.com/science/article/pii/S0166218X22000427
Bold, M., Goerigk, M. (2022). A faster exact method for solving the robust multi-mode resource-constrained project scheduling problem, in Operations Research Letters. https://www.sciencedirect.com/science/article/pii/S0167637722001006
Boyacı, B., Dang, T. H., Letchford, A. N., Improving a constructive heuristic for the general routing problem, Networks. (2022), 1– 14. Available online at: https://doi.org/10.1002/net.22119
Boyacı, B., Dang, T. H., Letchford, A. N., Fast upper and lower bounds for a large-scale real-world arc routing problem, Networks. (2022), 1– 18. Available online at: https://doi.org/10.1002/net.22120
D’Arcy, E., Tawn, J.A., Sifnioti, D.E. (2022). Accounting for Climate Change in Extreme Sea Level Estimation. Water, 14(19): 2956. https://doi.org/10.3390/w14192956
Davison, M., Kheiri, A. & Zografos, K.G. (2022). Optimising Scheduling of Hybrid Learning using Mixed Integer Programming. In De Causmaecker, P., Özcan, E. & Vanden Berghe, G. (eds), Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 Volume III (2022), pp279-286. PATAT 2022, Leuven, Belgium, 30/08/22. http://www.patatconference.org/patat2022/proceedings/PATAT_2022_paper_33.pdf
Fisch, A., Bardwell, L. and Eckley, I.A. (2022). Real time anomaly detection and categorisation. Statistics and Computing, 32(4), pp.1-15.
Fisch, A.T., Eckley, I.A. and Fearnhead, P. (2022). A linear time method for the detection of collective and point anomalies. Statistical Analysis and Data Mining: The ASA Data Science Journal.
Fisch, A.T., Eckley, I.A. and Fearnhead, P. (2022). Subset multivariate collective and point anomaly detection. Journal of Computational and Graphical Statistics, 31(2), pp.574-585.
Gillam, J., Killick, R., Heal, J., Norwood, B. (2022). Modelling and Forecasting of at Home Activity in Older Adults using Passive Sensor Technology Statistics in Medicine. 41(23)4629-4646
Jackson, H., & Jaki, T. (2022). An alternative to traditional sample size determination for small patient populations. Statistics in Biopharmaceutical Research, 1-27. https://www.tandfonline.com/doi/full/10.1080/19466315.2022.2107565
McGonigle, E., Killick, R., Nunes, M.A. (2022). Modelling Time-Varying First and Second-Order Structure of Time Series via Wavelets and Differencing. Electronic Journal of Statistics 16(2):4398-4448
McGonigle, E., Killick, R., Nunes, M.A. (2022). Trend locally stationary wavelet processes. Journal of Time Series Analysis 43(6):895-917
Morgan, L. E., Rhodes-Leader, L.A., Barton, R.R. (2022). Reducing and Calibrating for Input Model Bias in Computer Simulation. INFORMS Journal on Computing 34(4):2368-2382.
https://doi.org/10.1287/ijoc.2022.1183
Mosley, L., Eckley, I.A. and Gibberd, A. (2022). Sparse temporal disaggregation. Journal of the Royal Statistical Society: Series A (Statistics in Society). http://doi.org/10.1111/rssa.12952
Reynolds, E., Maher, S.J. (2022). A data-driven, variable-speed model for the train timetable rescheduling problem. Computers & Operations Research, 142. https://doi.org/10.1016/j.cor.2022.105719
Rhodes-Leader, L. A., Nelson, B. L., Onggo, B. S. , & Worthington, D. J. (2022). A multi-fidelity modelling approach for airline disruption management using simulation. Journal of the Operational Research Society, 73:10, 2228-2241, DOI: 10.1080/01605682.2021.1971574
Richards, J., Tawn, J. A. (2022). On the tail behaviour of aggregated random variables. Journal of Multivariate Analysis, 192, 105065. doi.org/10.1016/j.jmva.2022.105065
Richards, J., Tawn, J. A., Brown, S. (2022). Modelling extremes of spatial aggregates using conditional methods. Ann. Appl. Stat. 16 (4) 2693 - 2713. doi.org/10.1214/22-AOAS1609
Bold, M., Goerigk, M. (2021). A compact reformulation of the two-stage robust resource-constrained project scheduling problem, in Computer and Operations Research. https://www.sciencedirect.com/science/article/pii/S0305054821000241
Boyaci, B., Dang, T., Letchford, A. (2021). Vehicle routing on road networks: how good is Euclidean approximation? In: Computers and Operations Research, 129. Available online at: https://www.sciencedirect.com/science/article/pii/S0305054820303142?via%3Dihub
Boyaci, B., Dang, T., Letchford, A. (2021). On matchings, T-joins and arc routing problems. In: Networks. Available online at: https://onlinelibrary.wiley.com/doi/10.1002/net.22033
Fisch, A.T., Eckley, I.A. and Fearnhead, P. (2021). Innovative and additive outlier robust Kalman filtering with a robust particle filter. IEEE Transactions on Signal Processing, 70, pp.47-56.
Grainger, J.P., Sykulski, A.M.; Jonathan, P. and Ewans, K. (2021). Estimating the parameters of ocean wave spectra. In: Ocean Engineering, 229. https://doi.org/10.1016/j.oceaneng.2021.108934
Grant, J.A. and Szechtman, R. (2021). Filtered Poisson Process Bandit on a Continuum. European Journal of Operational Research. 295(2):575-586. https://doi.org/10.1016/j.ejor.2021.03.033
Jackson, H., Anzures-Cabrera, J., Taylor, K.I., and Pagano, G. (2021). Hoehn and Yahr stage and striatal Dat-SPECT uptake are predictors of Parkinson's disease motor progression. In: Frontiers in Neuroscience. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2021.765765/full
Jackson, H., Bowen, S. and Jaki, T. (2021). Using biomarkers to allocate patients in a response-adaptive clinical trial. In: Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2021.2004420
Kalyanam, K., Clarkson, J. (2021) Sequential Attack Salvo Size is Monotonic Non-decreasing in both Time and Inventory Level. Naval Research Logistics, 68(4): 485-495
McGonigle, E., Killick, R., Nunes, M.A. (2021). Detecting changes in mean in the presence of time-varying autocovariance. Stat 10:e351
O'Malley, M., Sykulski, A.M., Laso-Jadart, R., and Madoui, M.-A. (2021). Estimating the travel time and the most likely path from Lagrangian drifters. Journal of Ocenais and Atmospheric Technology. Available at: https://journals.ametsoc.org/view/journals/atot/aop/JTECH-D-20-0134.1/JTECH-D-20-0134.1.xml
Oscroft, S., Sykulski, A.M., and Early, J.J. (2021). Separating Mesoscal and Submesoscale Flows from Clustered Drifter Trajectories. Fluids, 6, 14. Available online at: https://doi.org/10.3390/fluids6010014
Parmar, D., Morgan, L.E., Titman, A.C., Sanchez, S.M. and Regnier, E.D. (2021). Comparing Data Collection Strategies via Input Uncertainty When Simulating Testing Policies Using Viral Load Profiles. 2021 Winter Simulation Conference (WSC).
Parmar, D., Morgan, L.E., Titman, A.C., Williams, R.A. and Sanchez, S.M. (2021). A Two Stage Algorithm for Guiding Data Collection Towards Minimising Input Uncertainty. 2021 Operational Research Society Simulation Workshop (SW21).
Rennie, N., Cleophas, C., Sykulski, A.M. and Dost, F. (2021). Identifying and responding to outlier demand in revenue management. European Journal of Operational Research. Volume 293, Issue 3, 16 September 2021, Pages 1015-1030. Available at: https://doi.org/10.1016/j.ejor.2021.01.002
Richards, J., & Wadsworth, J. L. (2021). Spatial deformation for nonstationary extremal dependence. Environmetrics, 32(5), e2671. Available online at: https://doi.org/10.1002/env.2671
Shooter, R., Tawn, J., Ross, E., and Jonathan, P. (2021). Basin-wide spatial conditional conditional extremes for severe ocean storms. Extremes, 24, 241-265. Available online: https://doi.org/10.1007/s10687-020-00389-w
Simpson, E. S., Wadsworth, J. L. and Tawn, J. A. (2021). A geometric investigation into the tail dependence of vine copulas. Journal of Multivariate Analysis, 184:104736. Available at: https://doi.org/10.1016/j.jmva.2021.104736
Spearing, J.H.M. (2021). Swimming meets statistics. Significance. 18(2), pp.8-9. Available online at: https://rss.onlinelibrary.wiley.com/doi/10.1111/1740-9713.01501
Tendijck, S., Eastoe, E., Tawn, J., Randell, D., & Jonathan, P. (2021). Modelling the extremes of bivariate mixture distributions with application to oceanographic data. Journal of the American statistical Association. DOI: 10.1080/01621459.2021.1996379
Tickle, S.O., Eckley, I.A. and Fearnhead, P. (2021), A computationally efficient, high-dimensional multiple changepoint procedure with application to global terrorism incidence. J R Stat Soc Series A, 184: 1303-1325. https://doi.org/10.1111/rssa.12695
Wilson, R.E., Eckley, I.A., Nunes, M.A. et al. A wavelet-based approach for imputation in nonstationary multivariate time series. Stat Comput 31, 18 (2021). https://doi.org/10.1007/s11222-021-09998-2
Barlow, A. Sherlock, C. and Tawn, J. A. (2020). Inference for extreme values under threshold-based stopping rules. In: Journal of the Royal Statistical Society: Series C (Applied Statistics), 68(4): 765-789.
Barnett, H.Y., Geys, H, Jacobs, T, Jaki, T. (2020) Methods for Non-Compartmental Pharmacokinetic Analysis With Observations Below the Limit of Quantification. Statistics in Biopharmaceutical Research. Available online pre-publication DOI: 10.1080/19466315.2019.1701546
Chapman, J. L., and Killick, R. (2020). An assessment of practitioners approaches to forecasting in the presence of changepoints. In: Quality and Reliability Engineering International, Vol 36, Issue 8:2676-2687. https://onlinelibrary.wiley.com/doi/10.1002/qre.2712
Chapman, J-L., Eckley, I.A., Killick, R. (2020). A nonparametric approach to detecting changes in variance in locally stationary time series. Environmetrics 31:e2576
Clarkson, J., Glazebrook, K. D., and Lin, K. Y. (2020) Fast or Slow: Search in Discrete Locations with Two Search Modes. Operations Research, 68(2):552-571
Ford, S., Atkinson, M.P., Glazebrook, K., and Jacko, P. (2020). On the dynamic allocation of assets subject to failure. European Journal of Operational Research 284 (1), https://doi.org/10.1016/j.ejor.2019.12.018
Graham, E., Jaki, T. & Harbron, C., 31/12/2019, A comparison of stochastic programming methods for portfolio level decision-making. In : Journal of Biopharmaceutical Statistics. 25 p.
Grant, J.A., and Leslie, D.S. (2020) “On Thompson Sampling for Smoother-than-Lipschitz Bandits”. In Proceedings of 23rd International Conference on Artificial Intelligence and Statistics. PMLR 108: pp2612-2622.
Grant, J.A., Leslie, D.S., Glazebrook, K., Szechtman, R., and Letchford, A.N. (2020) “Adaptive Policies for Perimeter Surveillance Problems”. European Journal of Operational Research. 283 (1) pp265-278.
Grundy, T., Killick, R. & Mihaylov, G. High-dimensional changepoint detection via a geometrically inspired mapping. Stat Comput 30, 1155–1166 (2020). https://doi.org/10.1007/s11222-020-09940-y
Laidler, G., Morgan, L., Nelson, B. and Pavlidis, N. (2020). Metric Learning for Simulation Analytics. In: Proceedings of the 2020 Winter Simulation Conference. IEEE.
Letchford, A.N. & Souli, G. (2020), Valid inequalities for mixed-integer programs with fixed charges on sets of variables. Operations Research Letters, vol. 48, issue 3, pp. 240-244.
Letchford, A.N. & Souli, G. (2020) Lifting the knapsack cover inequalities for the knapsack polytope. Oper. Res. Lett., 48(5), 607-611.
Lowther, A.P., Fearnhead, P., Nunes, M.A., Jensen, K. Semi-automated simultaneous predictor selection for regression-SARIMA models. Statistics and Computing (2020). https://doi.org/10.1007/s11222-020-09970-6
Ludkin, M. (2020). Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models, Computational Statistics & Data Analysis, Volume 152, 2020, 107051, ISSN 0167-9473, https://www.sciencedirect.com/science/article/pii/S0167947320301420
Montagné, R., Torres Sanchez, D., and Storbugt Olsen, H. (2020). “VRPy: A Python package for solving a range of vehicle routing problems with a column generation approach”. In: Journal of Open Source Software 5.55, p. 2408. doi: 10.21105/joss.02408
Moss, H. B., Leslie, D. S. & Rayson P. (2020). BOSH: Bayesian Optimisation by Sampling Hierarchically. Workshop on Real-World Experimental Design and Active Learning at the International Conference for Machine Learning (ICML: RealML).
Moss, H. B. &Griffiths R. R. (2020). Gaussian Process Molecule Property Prediction with FlowMO. Machine Learning for Molecules Workshop at Advances in Neural Information Processing Systems (NeurIPS: ML4Molecules).
Moss, H. B., Aggarwal, V., Prateek, N., Gonazlez, J. & Barra-Chicote, R. (2020). BOFFIN TTS: Few-shot Speaker Adaptation by Bayesian Optimisation. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Moss, H. B., Leslie, D. S. & Rayson, P. (2020). MUMBO: Multi-task Max-value Bayesian Optimisation. European Conference on Machine Learning (ECML).
Moss, H. B., Beck, D., Gonzalez, J., Leslie, D. S. & Rayson P. (2020). BOSS: Bayesian Optimisation over String Spaces. Advances in Neural Information Processing Systems (NeurIPS).
Simpson, E. S., Wadsworth, J. L. and Tawn, J. A. (2020). Determining the dependence structure of multivariate extremes. Biometrika, 107(3):513-532
Sharkey, P., Tawn, J. A. and Brown, S. J. (2020). Modelling the spatial extent and severity of extreme European windstorms. Journal of the Royal Statistical Society: Series C (Applied Statistics). 69(2):223-250
Spearing, J.H.M., Tawn, J., Irons, D., Paulden, T., and Bennett, G. (2020). Ranking, and other properties, of elite swimmers using extreme value theory. In: Journal of the Royal Statistical Society: Series A (Statistics in Society), https://doi.org/10.1111/rssa.12628
S.O. Tickle, I. A. Eckley, P. Fearnhead & K. Haynes(2020)Parallelization of a Common Changepoint Detection Method, Journal of Computational and Graphical Statistics, 29:1, 149-161, DOI: 10.1080/10618600.2019.1647216
Torres Sanchez, D. (2020). “cspy: A Python package with a collection of algorithms for the (Resource) Constrained Shortest Path problem”. In: Journal of Open Source Software 5.49, p. 1655. doi: 10.21105/joss.01655
Torres Sanchez, D., Boyacı, B., and Zografos, K.G. (2020). “An Optimisation Framework for Airline Fleet Maintenance Scheduling with Tail Assignment Considerations”. In: Transportation Research Part B: Methodological 133, pp. 142–164. doi: 10.1016/j.trb.2019.12.008.
Urbas, S., Sherlock, C., & Metcalfe, P. (2020). Interim recruitment prediction for multi-centre clinical trials. Biostatistics, kxaa036, https://doi.org/10.1093/biostatistics/kxaa036
Bardwell, L., Eckley, I, Fearnhead, P., Smith, S. and Spott, M. (2019). Most recent changepoint detection in panel data. M. Technometrics. 1 (61). 88-98.
Chapman, J. L., Eckley, I. A., Killick, R., (2019). A nonparametric approach to detecting changes in variance in locally stationary time series. Environmetrics. 12 p., e2576
Edwards, J. A. and Leslie, D. S. (2018). Selecting Multiple Web Adverts - a Contextual Multi-armed Bandit with State Uncertainty. Journal of the Operational Research Society.
Fairbrother, J., Turner, A. & Wallace, S.W. (2019). Problem-driven scenario generation: an analytical approach for stochastic programs with tail risk measure. Math. Program. https://doi.org/10.1007/s10107-019-01451-7
Grant, J.A., Boukouvalas, A., Griffiths, R., Leslie, D.S., Vakili, S., and Munoz de Cote, E. (2019). Adaptive Sensor Placement for Continuous Spaces. In Proceedings of 36th International Conference on Machine Learning. PMLR 97: pages 2385--2393.
Jackson, H., Jaki, T. (2019) The Case for Response Adaptive Trial Design for Rare Diseases. Journal for Clinical Studies. 11 (3), 36-37.
Letchford, A.N. & Souli, G. (2019) New valid inequalities for the fixed-charge and single-node flow polytopes. Operations Research Letters, 47(5), 353-357.
Letchford, A.N. & Souli, G. (2019) On lifted cover inequalities: a new lifting procedure with unusual properties. Operations Research Letters, vol. 47, issue 2, pp. 83-87.
Morgan, L., Nelson, B.L., Titman, A.C. and Worthington, D.J. (2019). Detecting Bias due to Input Modelling in Computer Simulation. European Journal of Operational Research. 3 (279). 869-881.
Moss H. B., Andrew M., Leslie D. S., Rayson P. FIESTA: Fast IdEntification of State-of-The-Art Models Using Adaptive Bandit Algorithms, The 2019 Association for Computational Linguistics (ACL).
Page, S. and Grünewälder, S. (2019). Ivanov-Regularised Least-Squares Estimators over Large RKHSs and Their Interpolation Spaces. Journal of Machine Learning Research. v.20. p.1-49.
Peng, H., Pavlidis, N. G. (2019). Subspace Clustering with Active Learning. 2019 IEEE Conference on Big Data. IEEE.
Sharkey, P., & Winter, H. C. (2019). A Bayesian spatial hierarchical model for extreme precipitation in Great Britain. Environmetrics, 30(1), e2529.
Shooter R, Ross E, Tawn J, Jonathan P (2019). On spatial conditional extremes for ocean storm severity. Environmetrics e2562. 6 (30).
Storchi, R., Rodgers, J., Gracey, M., Martial, F. P., Wynne, J., Ryan, S., Twining, C. J., Cootes, T. F., Killick, R., Lucas, R. J. Measuring vision using innate behaviours in mice with intact and impaired retina function. Sci Rep 9, 10396 (2019) doi:10.1038/s41598-019-46836-y
Taylor, Simon & Park, Timothy & Eckley, Idris. (2019). Multivariate Locally Stationary Wavelet Analysis with the mvLSW R Package. Journal of Statistical Software. 90. 10.18637/jss.v090.i11.
Williamson, S. F. and Villar S. S. (2019). A Response-Adaptive Randomization Procedure for Multi-Armed Clinical Trials with Normally Distributed Outcomes. Accepted for publication in Biometrics (Methodology Section). DOI: 10.1111/biom.13119
Wilson, R., Eckley, I.A., Nunes, M.A. and Park, T. (2019). Dynamic detection of anomalous regions within distributed acoustic sensing data streams using locally stationary wavelet time series. Data Min Knowl Disc 33, 748-772. https://doi.org/10.1007/s10618-018-00608-w
Worthington D, Utley M and Suen D, ‘Infinite-server queueing models of demand in health care: A review of applications and ideas for further work’, Journal of the Operational Research Society, accepted April 2019, DOI 10.1080/01605682.2019.1609878
Baker, J., Fearnhead, P., Fox, E.B. and Nemeth, C. (2018). Large-scale stochastic sampling from the probability simplex. Advances in Neural Information Processing Systems 31.
Barlow, A. M., Rohrbeck, C., Sharkey, P., Shooter, R. and Simpson, E. S. (2018). A Bayesian spatio-temporal model for precipitation extremes—STOR team contribution to the EVA2017 challenge. Extremes, 21(3), 431-439.
Barnett, H. Y., Geys, H., Jacobs, T., & Jaki, T. F. (2018). Optimal Designs for Non-Compartmental Analysis of Pharmacokinetic Studies. Statistics in Biopharmaceutical Research. DOI: 10.1080/19466315.2018.1458647
Edwards, J. A. and Leslie, D. S. (2018). Selecting Multiple Web Adverts - a Contextual Multi-armed Bandit with State Uncertainty. Journal of the Operational Research Society. https://doi.org/10.1080/01605682.2018.1546650
Edwards, J. A. & Leslie, D. S. (2018). Diversity as a Response to User Preference Uncertainty, World Scientific, chapter 4, pp. 55-68.
Fairbrother, J., Letchford, A. N., & Briggs, K. (2018). A two-level graph partitioning problem arising in mobile wireless communications. Computational Optimization and Applications, 69(3), 653-676. DOI: 10.1007/s10589-017-9967-9
Fairbrother, J., Turner, A., & Wallace, S. (2018). Scenario generation for single-period portfolio selection problems with tail risk measures: coping with high dimensions and integer variables. INFORMS Journal on Computing, 30(3), 472-491. DOI: 10.1287/ijoc.2017.0790
Fearnhead, P., Maidstone, R., & Letchford, A. (2018). Detecting changes in slope with an L0 penalty. Journal of Computational and Graphical Statistics. DOI: 10.1080/10618600.2018.1512868
Hofmeyr, D., Pavlidis, N., Eckley, I., (2018). Minimum spectral connectivity projection pursuit. Statistics and Computing.
Ludkin, M., Eckley, I. and Neal, P. (2018). Dynamic stochastic block models: Parameter estimation and detection of changes in community structure. Statistics and Computing, 28, 1201-1213.
Moss, H., Leslie, D. S., & Rayson, P. E. (2018). Using J-K-fold Cross Validation to Reduce Variance When Tuning NLP Models. In Proceedings of COLING 2018 (Proceedings of COLING 2018).
Park, T., Eckley, I. A., and Ombao, H. (2018) .Dynamic classification of multivariate time series using the multivariate locally stationary wavelet model. Signal Processing, 152, 118-129.
Peng, H., Pavlidis, N. G., Eckley, I. A., Tsalamanis, I. (2019). Subspace Clustering of Very Sparse High-Dimensional Data. 2018 IEEE Conference on Big Data. IEEE.
Pike-Burke, C., Agrawal, S., Szepesvari, C., Grunewalder, S. (2018). Bandits with Delayed, Aggregated Anonymous Feedback. Proceedings of the International Conference on Machine Learning, 10-15 July 2018, Stockholmsmassan, Stockholm Sweden. Dy, J (ed.). PMLR, p 4105-4123 19 p. (Proceedings of Machine Learning Research; vol. 80).
Rhodes-Leader, L., Onggo, B. S. S., Worthington, D. J. & Nelson, B. L. (2018) “Airline Disruption Recovery Using Symbiotic Simulation and Multi-fidelity Modelling.” Proceedings of the 9th Operational Research Society Simulation Workshop (SW18). Operational Research Society, p. 146-155 10 p.
Rhodes-Leader, L., Onggo, B. S. S., Worthington, D. J. & Nelson, B. L. (2018) Multi-fidelity Simulation Optimisation For Airline Disruption Management. 2018 Winter Simulation Conference 2179–2190. Piscataway, New Jersey: IEEE
Rohrbeck, C., D A Costain, A Frigessi; Bayesian spatial monotonic multiple regression, Biometrika, Volume 105, Issue 3, 1 September 2018, Pages 691–707, https://doi.org/10.1093/biomet/asy019
Rohrbeck, C., Eastoe, E. F., Frigessi, A., and Tawn, J. A.(2018). Extreme Value Modelling of Water-related Insurance Claims. Annals of Applied Statistics, 12(1) 246-282.
Stubington, E., Ehrgott, M., Glyn, S., & Nohadani, O. (2018). Evaluating the Quality of Radiotherapy Treatment Plans for Prostate Cancer. In S. Huber, M. J. Geiger, & A. T. de Almeida (Eds.), Cases based on Multiple Criteria Decision Making/Aiding methods: Building and Solving Decision Models with Computer Implementations Springer, 26 p.
Tawn, J. A., Shooter, R., Towe, R. and Lamb, R. (2018). Modelling Spatial Extreme Events with Environmental Applications. Spatial Statistics.
Baker, Jack & Fearnhead, Paul & Fox, Emily & Nemeth, Christopher. (2017). Control Variates for Stochastic Gradient MCMC. Statistics and Computing. 10.1007/s11222-018-9826-2.
Baker, Jack & Fearnhead, Paul & Fox, Emily & Nemeth, Christopher. (2017). sgmcmc: An R Package for Stochastic Gradient Markov Chain Monte Carlo. Journal of Statistical Software. 91. 10.18637/jss.v091.i03.
Bardwell, L. and Fearnhead, P. (2017). Bayesian detection of abnormal segments in multiple time series. Bayesian Analysis, 12, 193-218.
Barnett, H., Geys, H., Jacobs, T and Jaki, T. (2017). Multiple Comparisons of Model Averaged Derived Parameters with Applications to the Comparison of Sampling Methods in Pharmacokinetic Studies. Statistics in Medicine, 36 (27), 4301-4315.
Edwards, J, Fearnhead, P. and Glazebrook, K. (2017).‘On the Identification and Mitigation of Weaknesses in the Knowledge Gradient Policy for Multi-Armed Bandits’, Probability in the Engineering and Informational Sciences, doi: 10.1017/S0269964816000279.
Fairbrother, J. and Letchford, A.N. (2017). Projection results for the k-partition problem. Discrete Optimization, 26, p. 97-111.
Hofmeyr, D. (2017). Clustering by minimum cut hyperplanes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(8), 1547-1560.
Maidstone, R., Hocking, T., Rigaill, G., Fearnhead, P. (2017). On Optimal Multiple Changepoint Algorithms for Large Data. Statistics and Computing, 27, 519-533.
Morgan, L., Nelson, B.L., Titman, A.C. and Worthington, D.J. (2017). Detecting Bias due to Input Modelling in Computer Simulation. In: WSC' 17 Proceedings of the 2017 Winter Simulation Conference. Piscataway, NJ, USA : IEEE Press p.1974-1985 p.13.
Onggo, B.S.S. and Morgan, L. (2017). The Importance of Input Uncertainty Quantification. In Social Science Simulation.
Pike-Burke, C., Grünewälder, S. (2017)."Optimistic Planning for the Stochastic Knapsack Problem," in Proceedings of 20th International Conference on Artificial Intelligence and Statistics
Sharkey, P. and Tawn, J.A. (2017). A Poisson process reparameterisation for Bayesian inference for extremes. Extremes, 20, 239-263.
Taylor, S.L., Eckley, I.A. and Nunes, M.A. (2017). Multivariate locally stationary 2D wavelet processes with application to colour texture analysis. Statistics and Computing 27 (4), 1129-1143.
Williamson, S. F., Jacko, P., Jaki, T. and Villar S. (2017). A Bayesian adaptive design for clinical trials in rare diseases. Computational Statistics & Data Analysis, 113, 136-153.
Winter, H. C., Tawn, J. A. (2017). kth-order Markov models for assessing heatwave risks. Extremes, 20, 393-415.
Winter, H. C., Tawn, J. A. and Brown, S. J. (2017). Detecting changing behaviour of heatwaves with climate change. Dynamics and Statistics of the Climate System, 1, doi: 10.1093/climsys/dzw006
Crespo Del Granado P., Pang Z. and Wallace S. W. (2016). Synergy of Smart grids and hybrid distributed generation on the value of energy storage, Applied Energy, Vol 170: pp 476-488.
Hofmeyr, D. (2016). On the topology of genetic algorithms. Proc. IJCAI (2016).
Hofmeyr, D., Pavlidis, N., Eckley, I.,(2016). Divisive clustering of high dimensional data streams. Statistics and Computing 26(5), 1101-1120.
Kereszturi, M., Tawn, J. A. (2016). Properties of extremal dependence models built on bivariate max-linearity. Journal of Multivariate Analysis, 155, 52-71.
Morgan, L. E., Nelson, B. L., Worthington, D. and Titman, A. (2016).“Input Uncertainty Quantification for Simulation Models with Piecewise-Constant Non-Stationary Poisson Arrival Processes” The Winter Simulation Conference.
Nemeth, C., Fearnhead, P. and Mihaylova, L. (2016). Particle approximations of the score and observed information matrix for parameter estimation in state space models with linear computational cost. Journal of Computational and Graphical Statistics. 25, 1138-1157.
Nemeth, C.,Sherlock, C. and Fearnhead, P. (2016). Particle Metropolis-adjusted Langevin algorithms. Biometrika. 103, 701-717.
Pavlidis, N., Hofmeyr, D., Tasoulis, S., (2016). Minimum density hyperplanes. Journal of Machine Learning Research, 17(156):1-33.
Randell, D., Turnbull, K., Ewans, K., and Jonathan, P. (2016). Bayesian inference for non-stationary marginal extremes. Environmetrics; 27: 439–450.
Suen, D., Worthington, D. and Allen, M. (2016), Using infinite-server queues to underpin model-based performance indicators: at IMA Health & Social Care Conference 2016 and at European Conference on Queueing Theory 2016.
Winter, H. C. and Tawn, J. A. (2016). Modelling heatwaves in central France: a case study in extremal dependence. Journal of the Royal Statistical Society: Series C, 65(3), 345-365.
Winter, H. C., Tawn, J. A. and Brown, S. J. (2016). Modelling the effect of the El Niño-Southern Oscillation on extreme spatial temperature events over Australia. Annals of Applied Statistics, 10(4), 2075-2101.
Yates, K. and Pavlidis, N. (2016).Minimum density hyperplanes in the feature space. Advances in High Dimensional Big Data" workshop, IEEE international conference on Big Data, Washington.
Crespo Del Granado P., Wallace S. W. and Pang Z. (2015). The impact of wind uncertainty on the strategic valuation of distributed electricity storage, Computational Management Science, Vol 13, 1, pp 5-27, DOI: 10.1007/s10287-015-0235-0.
Haynes, K., Eckley, I. A., and Fearnhead, P., (2015). Computationally efficient changepoint detection for a range of penalties. Journal of Computational and Graphical Statistics, 26 (1), 134-143, 2017.
Haynes, K., Fearnhead, P., and Eckley, I.A. (2015). A computationally efficient nonparametric approach for changepoint detection. Statistics and Computing 27 (5), 1293-1305, 2017.
Hofmeyr, D. And Pavlidis, N. (2015). Maximum Clusterability Divisive Clustering. Proc. IEEE SSCI (CIDM)
Hofmeyr, D. And Pavlidis, N. (2015). Semi-supervised Spectral Connectivity Projection Pursuit. Proc. PRASA RobMech Int. Conf.
Kereszturi, M., Tawn, J. A. and Jonathan, P. (2015). Assessing extremal dependence of North Sea storm severity. Ocean Engineering, 118, 242-259.
Letchford, A.N. and Nasiri, S.D. (2015). The Steiner travelling salesman problem with correlated costs. Eur. J. Oper. Res., 245(1), 62–69.
Briggs, K., & Fairbrother, J. (2014). Enhanced algorithms for TV whitespace power maximization. In Antennas and Propagation (EuCAP), 2014 8th European Conference on IEEE. DOI: 10.1109/EuCAP.2014.6902623
Crespo Del Granado P., Wallace S. W. and Pang Z. (2014). The value of electricity storage in domestic homes: A smart grid perspective. Energy Systems, Vol 5, 2, pp 211-232,DOI: 10.1007/s12667-013-0108.
James, T., Glazebrook, K. D., Lin, K. (2014). Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement. INFORMS Journal of Computing, 28, 2, p. 251-264.
Park, T. Eckley, I. A. and Ombao H. C. (2014). Estimating time-evolving dependence quantities between signals via multivariate locally stationary wavelet processes”, IEEE Transactions on Signal Processing, 62, 5240-5250.
Randell, D., Zanini, E., Vogel, M., Ewans, K., Jonathan, P. (2014).“Omnidirectional Return values for Storm Severity from Directional Extreme Values Models: The Effect of Physical Environment and Sample Size. Proceedings of 33nd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco OMAE2014-23156.
Davies, R., Mihaylova, L., Pavlidis, N. and Eckley, I.A. (2013). The effect of recovery algorithms on compressive sensing background subtraction” In Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2013 Workshop on (pp. 1-6). IEEE.
Letchford, A. N. & Nasiri, S. D. (2013). Compact formulations of the Steiner TSP and related problems. Eur. J. Oper. Res., 228, 83-92.
Letchford, A.N. and Nasiri, S.D. (2013). Pricing Routines for Vehicle Routing with Time Windows on Road Networks. Comput. & Oper. Res., 51, 331-337.
Maidstone, R., Pickering, B. (2013). Comment on "Multiscale Change-Point Inference" by K. Frick, A. Munk and H. Sieling. Journal of the Royal Statistical Society, Series B.
Nemeth, C., Fearnhead, P. and Mihaylova, L. (2013). Sequential Monte Carlo Methods for State and Parameter Estimation in Abruptly Changing Environments. IEEE Transactions on Signal Processing, Vol. 62, No. 5, pp. 1245-1255.
Nemeth, C., Fearnhead, P., Mihaylova, L. and Vorley, D. (2012).“Bearings-Only Tracking with Particle Filtering for Joint Parameter and State Estimation,” 15Th International Conference on Information Fusion, pp. 824-831.
Nemeth, C., Fearnhead, P., Mihaylova, L. and Vorley, D. (2012).“Particle learning for state and parameter estimation,” 9Th IET Data Fusion and Target Tracking Conference (DF&TT 2012), London U.K.
Reeve, D.T., Randall, D., Ewans, K.C. and Jonathan, P. (2012). Uncertainty due to choice of measurement scale in Extreme Value modelling of North Sea Storm Severity. Ocean Engineering, 53, 164-176.