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A B S T R A C T

Extreme value analysis (EVA) uses data to estimate long-term extreme environmental conditions for variables
such as significant wave height and period, for the design of marine structures. Together with models for the
short-term evolution of the ocean environment and for wave–structure interaction, EVA provides a basis for
full probabilistic design analysis. Alternatively, environmental contours provide an approximate approach to
estimating structural integrity, without requiring structural knowledge. These contour methods also exploit
statistical models, including EVA, but avoid the need for structural modelling by making what are believed
to be conservative assumptions about the shape of the structural failure boundary in the environment space.
These assumptions, however, may not always be appropriate, or may lead to unnecessary wasted resources
from over design. We demonstrate a methodology for efficient fully probabilistic analysis of structural failure.
From this, we estimate the joint conditional probability density of the environment (CDE), given the occurrence
of an extreme structural response. We use CDE as a diagnostic to highlight the deficiencies of environmental
contour methods for design; none of the IFORM environmental contours considered characterise CDE well for
three example structures.
1. Introduction

1.1. Background

Ocean engineers use different approaches to quantify extreme con-
ditions for design and reassessment of offshore and coastal structures.
The natural full probabilistic approach (henceforth, the ‘‘forward’’ ap-
proach) is to construct a sequence of statistical models to characterise
the extreme multivariate ocean environment, as well as the interaction
between that environment and the structure (e.g., Towe et al. 2021).
This approach considers the response of the structure to be a stochastic
function of the environment, summarised by underlying sea state statis-
tics such as significant wave height and period, contrary to previous
work (e.g., Coles and Tawn 1994) where a deterministic relationship is
assumed. The forward approach thus seeks a multivariate distribution
𝐹𝐗 for environmental variables 𝐗, as well as a distribution 𝐹𝑅𝐿|𝐗 which
characterises the maximum stochastic response 𝑅𝐿 induced on the
structure by the environment 𝐗 over the period of a sea state of dura-
tion 𝐿 (e.g., 3) hours. A key property of this method is that uncertainty
from the estimation of each distribution can be naturally quantified and
propagated through the sequence of models. Structural risk assessment
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centres on the estimation of the probability of structural failure using
the distribution 𝐹𝑅𝑆

for the maximum response 𝑅𝑆 in a random storm,
or alternatively the distribution 𝐹𝑅𝐴

for the maximum response 𝑅𝐴 per
annum, evaluated by marginalisation of the distribution 𝐹𝑅𝐿|𝐗 over
the environment space. In addition, 𝐹𝑅𝐿|𝐗 may be used to find the
probability of the event of structural failure 𝐿 within a sea state (of
duration 𝐿) with environmental conditions 𝐗.

A combination of better models for the extreme ocean environment,
techniques to reduce the computational complexity of the forward
approach, and improved computational resources, have made forward
estimation of structural failure probability more routinely achievable.
These include the development of practically-useful statistical mod-
els for non-stationary, or covariate effected, margins (e.g., Chavez-
Demoulin and Davison 2005, Randell et al. 2016, Youngman 2019) as
well as the conditional multivariate extremes model developed by Hef-
fernan and Tawn (2004), conditional simulation of extreme time series
(of waves and wave kinematics) proposed by Taylor et al. (1997), and
efficient importance sampling from distributions (e.g., Gelman et al.
2013). In this work we demonstrate an efficient forward approach to
estimate the tail of the distributions 𝐹𝑅𝐿|𝐗 and 𝐹𝑅𝑆
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return periods 𝑃 of the order of 103 years. Specifically, we estimate
the distribution of extreme base shear, approximated using the loading
equation of Morison et al. (1950) on simple structures, following the
procedure of Tromans and Vanderschuren (1995). The environmental
and structural models utilised here are sufficiently complex to illustrate
key methodological steps, whilst being simple enough to avoid unnec-
essary complexity. We will also estimate the joint conditional density
of environmental variables (henceforth referred to as CDE𝑃 ) given the
occurrence of an extreme 𝑃 -year Morison load on example structures.
CDE𝑃 is introduced as a diagnostic tool emerging from fully probabilistic
analysis, highlighting regions of environmental space associated with
extreme structural responses. We use CDE𝑃 to assess the relevance of
other approaches which aim to identify regions of the environment
space important to design.

Historically, forward estimation of the probability of failure has
proved computationally intractable or prohibitively expensive. Instead,
metocean design has tended to focus on a dominant variable (such as
significant wave height) at a location, placing less emphasis on other as-
sociated environmental variables (e.g., Feld et al. 2015); the metocean
engineer’s challenge is then to estimate marginal return values of the
dominant variable, and perhaps follow an engineering recipe to specify
design values for associated variables. The development of methods
of structural reliability, associated with Madsen et al. (1986), made
it clearer that good models for the joint distribution of environmental
variables were necessary. For this reason, approaches to structural relia-
bility which make use of more than one environmental variable became
popular, such as environmental design contours derived from paramet-
ric hierarchical models of the environmental variables 𝐗 (e.g., Haver
1987). A recent review of statistical methodologies for metocean design
is provided by Vanem et al. (2022).

In one respect, contour methods are advantageous over the forward
approach in that they characterise the environment only and so just re-
quire estimation of the joint environmental distribution 𝐹𝐗. Therefore,
combined with appropriate assumptions for the nature of the ocean–
structure interaction, environmental contours can be used in principle
to assess any structure in that environment. The decoupling of envi-
ronment and structure is achieved by making what are thought to be
conservative assumptions about the environment–structure interaction,
leading to what are believed to be conservative estimates of structural
reliability. Many different methods exist to estimate environmental
design contours (e.g., Ross et al. 2020, Haselsteiner et al. 2021, Mackay
and Haselsteiner 2021, Hafver et al. 2022, Mackay and de Haute-
clocque 2023). These methods, whilst each attempting to construct
the 𝑃 -year level contour, can produce quite different estimates to
one another. In addition, the environmental contour produced by a
particular contour estimation method will vary with the estimate of 𝐹𝐗
sed to obtain it. In this work, we consider the IFORM environmental
ontour method (e.g., Haver and Winterstein 2009), recommended by
oth NORSOK N-003 (2017) and DNVGL-RP-C205 (2017) standards.
e focus on IFORM due to its popularity in the ocean engineering

ommunity. We will assess the relative performance of different hi-
rarchical models for 𝐹𝐗 and their respective IFORM environmental

contours, by quantifying their capacity to enclose CDE𝑃 for a given
structure. We will show that, regardless of the hierarchical model form
for 𝐹𝐗, environmental contours do not provide reliable coverage of
CDE𝑃 across a set of simple structure examples. Therefore, evaluation
of response along these IFORM contour boundaries will not provide
reliable realisations of the desired 𝑃 -year response.

1.2. Objectives and layout

The objective of the article is to promote the use of fully proba-
bilistic design in favour of environmental contour-based methods. To
achieve this, we provide the following analysis. (a) We demonstrate
that fully probabilistic design (using the ‘‘forward approach’’) can

be achieved in a computationally efficient manner and, motivated

2 
by this demonstration, recommend more routine adoption of fully
probabilistic design. (b) Using the forward approach, we estimate the
conditional density of the environment (CDE) across different exam-
ple structures. We view CDE as a design diagnostic which identifies
regions of the space of environmental variables contributing to extreme
structural responses. We observe that this region changes from struc-
ture to structure. (c) We highlight the deficiencies of environmental
contour methods for design, by assessing their ability to characterise
the CDE. Specifically, we show that (c-i) a specified approach to en-
vironmental contour estimation is not suitable to characterise CDEs
corresponding to different structures (because the environmental con-
tour is structure-independent), and (c-ii) for reasonably-sized samples,
the characteristics of the estimated environmental contour are sensitive
to the modelling choices underpinning contour estimation, and that
making these choices well is challenging. Our findings from (c) further
motivate rejection of contour-based design in favour of the fully prob-
abilistic alternative. Further, if contour-based methods are to be used,
they should be calibrated for the specific structural archetype under
consideration. To establish this calibration, the full forward model
would nevertheless need first to be evaluated for the archetype.

The layout of the article is as follows. In Section 2, we seek to
motivate our analysis using a sample of data for storm peak significant
wave height and second spectral moment wave period from a loca-
tion in the central North Sea. Section 3 describes the methodologies
combined to achieve the efficient forward approach for estimation of
the distributions 𝐹𝑅𝑆

and 𝐹𝑅𝐴
. The approach used to estimate environ-

mental design contours, and the various parametric forms considered
for the hierarchical estimation of 𝐹𝐗 are given in Section 4. In Sec-
tion 5, we present estimates of CDE𝑃 for three variants of a simple
stick structure, and use these to quantify the performance of different
IFORM environmental contours, demonstrating that none of the IFORM
contours estimates perform well for all example structures. In Section 6,
we discuss the implications of our results, and make recommendations
for structural design practice. We provide an online Supplementary
Material (SM) with a fuller description of aspects of the procedures
above.

2. Motivating metocean dataset

We motivate the analysis using hindcast data for sea state significant
wave height and second spectral moment wave period for a location in
the central North Sea. The data consist of 124671 observations for the
period January 1979 to September 2013, calculated for consecutive 3-
hour sea states. Intervals corresponding to storm events are isolated
from the hindcast data, using the approach of Ewans and Jonathan
(2008), resulting in a total of 2462 values for storm peak significant
wave height (𝐻𝑆 ) and corresponding wave period (𝑇2), for an average
of 73 storm events per annum. Fig. 1(a) shows the storm peak data
(𝐻𝑆 , 𝑇2). Despite the fact that we expect these variables not to be
identically distributed due to environmental covariates (e.g., direction
and season), for the purposes of the current work we assume these to
be independently and identically distributed. We choose to use storm
peak wave steepness 𝑆2 in favour of wave period 𝑇2 in the analysis
below. Values of 𝑆2 are calculated via 𝑆2 = 2𝜋𝐻𝑆∕(𝑔𝑇 2

2 ), where 𝑔 is
the acceleration due to gravity. Fig. 1(b) shows the resulting storm
peak data 𝐗 = (𝐻𝑆 , 𝑆2). Note throughout the paper, that we restrict
the notation 𝐻𝑆 , 𝑆2 and 𝑇2 to refer to storm peak quantities, and
further that all numerical values are quoted in SI units. Additionally, all
physical properties are taken to be real-valued unless stated otherwise.

The choice of (𝐻𝑆 , 𝑆2) over (𝐻𝑆 , 𝑇2) is motivated by the fact that
extreme value models are generally developed for the joint upper tail of
variables. Extreme environmental loads are typically generated by large
values of 𝐻𝑆 , large values of 𝑆2 but non-extreme values of 𝑇2; that is,
joint extremes of (𝐻𝑆 , 𝑆2) in the upper tail induce the most extreme
environments and structural responses. Therefore, it is appealing to
structure the analysis in terms of (𝐻 ,𝑆 ) (e.g., Myrhaug 2018).
𝑆 2
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Fig. 1. Data of storm peak sea state variables from a location in the central North Sea. Storm peaks are extracted from hindcast data of consecutive 3-hour sea states, using the
method of Ewans and Jonathan (2008), in terms of significant wave height 𝐻𝑆 [m], second spectral moment wave period 𝑇2 [s] and wave steepness 𝑆2.
3. Environment and response modelling

3.1. Outline of the forward approach and CDE𝑃

3.1.1. Storm peak characteristics and intra-storm evolution
We illustrate the methodologies combined to form the forward

approach for direct estimation of the distribution of extreme structural
response (specifically, base shear), in order to estimate the conditional
distribution of the environment CDE𝑃 . For generality, and alignment
with the work of others (e.g., Towe et al. 2021), initially we present
a form of the forward approach which incorporates full intra-storm
evolution and the effects of covariates. We subsequently restrict the
model, and focus our analysis on storm peak variables as introduced
in Section 2, so as to emphasise the key methodological steps only.

We assume access to metocean data for storm peak variables 𝐗sp

(e.g., 𝐻𝑆 and 𝑆2 from Section 2). Since the characteristics of storm
peak events generally vary with respect to covariates (e.g., Randell
et al. 2015) we also assume access to storm peak covariates 𝜣sp,
which encode this information. The response of an offshore structure
to environmental loading occurs continuously, and in particular for the
full duration of the storm event, consisting of a series of sea states
(of duration 𝐿 hours) indexed by 𝑠 ∈ 𝑇 = {1, 2,… , 𝑇 }, for unknown
storm length 𝑇 . To estimate the distribution of the maximum structural
response 𝑅𝑆 in a storm, we need to consider (a) the variability of
the duration 𝑇 of a random storm, (b) the full evolution of sea state
variables {𝐗𝑠}𝑠∈𝑇 over a given storm (themselves not identically dis-
tributed given the sea state covariates {𝜣𝑠}𝑠∈𝑇 ) and (c) the resulting
maximum response 𝑅𝑆 |{(𝐗𝑠,𝜣𝑠)}𝑠∈𝑆𝑇

induced over sea states within
the storm.

As sea states are dependent over time, 𝑅𝐿,𝑠 and 𝑅𝐿,𝑠′ , for any
𝑠, 𝑠′ ∈ 𝑇 where 𝑠 ≠ 𝑠′, will also be dependent, where 𝑅𝐿,𝑠 is
the maximum response in a sea state of length 𝐿 at time index 𝑠.
However, this dependence is purely due to the sea state characteristics
{(𝐗𝑠,𝜣𝑠)}𝑠∈𝑇 evolving over time. This is because a load 𝑅𝐿,𝑠 from the
model of Morison et al. (1950) is produced by an individual random
wave event, and the statistical properties of wave events within a sea
state at time index 𝑠 are determined by the characteristics (𝐗𝑠,𝜣𝑠), yet
the interval of time over which consecutive waves are correlated is
considerably shorter than the length 𝐿 of a sea state. Therefore, the
conditional dependence between the variables 𝑅𝐿,𝑠 and 𝑅𝐿,𝑠′ , given
(𝐗𝑠,𝜣𝑠) and (𝐗𝑠′ ,𝜣𝑠′ ), is negligible. We exploit this reasoning to facili-
tate step (c), where we assume that the random variables {𝑅 } are
𝐿,𝑠 𝑠∈𝑇
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conditionally independent given sea states {(𝐗𝑠,𝜣𝑠)}𝑠∈𝑇 , which leads
to the following simplification, for response 𝑟 > 0

𝐹𝑅𝑆 |{(𝐗𝑠 ,𝜣𝑠)}𝑠∈𝑆𝑇
(𝑟|{(𝐱𝑠,𝜽𝑠)}𝑠∈𝑆𝜏

) =
∏

𝑠∈𝑇

𝐹𝑅𝐿|(𝐗𝑠 ,𝜣𝑠)(𝑟|𝐱𝑠,𝜽𝑠), (1)

where we omit the subscript 𝑠 in writing 𝐹𝑅𝐿|(𝐗𝑠 ,𝜣𝑠) since the depen-
dence of 𝑅𝐿 on 𝑠 is contained through the values of (𝐗𝑠,𝜣𝑠).

3.1.2. Distribution of maximum response per storm and per annum
The forward approach estimates the cumulative distribution func-

tion 𝐹𝑅𝑆
of the maximum structural response 𝑅𝑆 in a storm, and

subsequently the distribution of maximum response 𝑅𝐴 per annum.
Estimation of 𝐹𝑅𝑆

requires (a) modelling of multivariate storm peak
variables 𝐗sp given storm peak covariates 𝜣sp, (b) characterisation
of the conditional time-varying within-storm evolution of sea state
characteristics {(𝐗𝑠,𝜣𝑠)}𝑠∈𝑇 given storm peak characteristics 𝐗sp,𝜣sp,
and (c) the estimation of the maximum response 𝑅𝐿,𝑠 given sea state
characteristics (𝐗𝑠,𝜣𝑠) for an 𝐿-hour sea state. We must also consider
the variability in the duration 𝑇 of a storm event. See Towe et al.
(2021) for previous discussions of similar models. Given knowledge
of the above, and exploiting assumption (1) made in Section 3.1, the
distribution of 𝑅𝑆 can be written as

𝐹𝑅𝑆
(𝑟) = ∫𝜽sp ∫𝐱sp ∫({(𝐱𝑠 ,𝜽𝑠)}𝑠∈𝜏 ,𝜏)

∏

𝑠∈𝜏

𝐹𝑅𝐿|(𝐗𝑠 ,𝜣𝑠)(𝑟|𝐱𝑠,𝜽𝑠)

× 𝑓({(𝐗𝑠 ,𝜣𝑠)}𝑠∈𝑇 ,𝑇 )|𝐗sp ,𝜣sp
(

{

(𝐱𝑠,𝜽𝑠)
}

𝑠∈𝜏
, 𝜏 ∣ 𝐱sp,𝜽sp

)

× 𝑓𝐗sp
|𝜣sp (𝐱sp

|𝜽sp) × 𝑓Θsp (𝜽sp) d({(𝐱𝑠,𝜽𝑠)}𝑠∈𝜏 , 𝜏) d𝐱sp d𝜽sp, (2)

for 𝑟 > 0, where 𝑓𝜣sp is the joint probability density of storm peak
covariates, 𝑓𝐗sp

|𝜣sp is the joint probability density of storm peak vari-
ables given storm peak covariates, and 𝑓({(𝐗𝑠 ,𝜣𝑠)}𝑠∈𝑇 ,𝑇 )|𝐗sp ,𝜣sp is the
joint probability density for the full time-series evolution of within-
storm sea state characteristics (and storm duration) given storm peak
characteristics.

If we assume that the number of occurrences of storm events in a
year is Poisson-distributed with expectation 𝜆 per annum, we can use
𝐹𝑅𝑆

to estimate the corresponding cumulative distribution function 𝐹𝑅𝐴
of the maximum response 𝑅𝐴 in a year, i.e.,

𝐹𝑅𝐴
(𝑟) =

∞
∑

𝑚=0
[𝐹𝑅𝑆

(𝑟)]𝑚 𝜆𝑚𝑒−𝜆

𝑚!
= exp

[

−𝜆
(

1 − 𝐹𝑅𝑆
(𝑟)

)]

,

for 𝑟 > 0. From this expression, we may define return values for
maximum response corresponding to a return period of 𝑃 years as
𝑟 = 𝐹−1(1 − 1∕𝑃 ).
𝑃 𝑅𝐴
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3.1.3. Reduced forward approach
The objective of the current work is to compare estimates for

CDE𝑃 made using the forward approach, summarised by (2), with
nvironmental contours at the 𝑃 -year level. This comparison is useful
ven in the absence of covariate effects, and whilst neglecting intra-
torm evolution. Therefore, to minimise computational complexity, we
ow assume that the effects of covariates 𝜣sp and 𝜣𝑠 can be ignored,
nd that the maximum response in a storm always occurs in the storm
eak sea state, so that intra-storm evolution can also be ignored. As a
esult, integral (2) for 𝐹𝑅𝑆

reduces to

𝑅𝑆
(𝑟) = ∫𝐱sp

𝐹𝑅𝐿|𝐗sp (𝑟|𝐱sp)𝑓𝐗sp (𝐱sp)d𝐱sp,

or 𝑟 > 0, where 𝐹𝑅𝐿|𝐗sp is the cumulative distribution function of the
aximum response over an 𝐿-hour sea state given storm peak variables
sp. For brevity, we henceforth omit the storm peak superscript and
rite

𝑅𝑆
(𝑟) = ∫𝐱

𝐹𝑅𝐿|𝐗(𝑟|𝐱)𝑓𝐗(𝐱)d𝐱, (3)

or 𝑟 > 0, where 𝑓𝐗 is now the joint density of storm peak variables
= (𝑋1,… , 𝑋𝑝), and 𝐹𝑅𝐿|𝐗 is the distribution of maximum response

ver an 𝐿-hour storm peak sea state with variables 𝐗. This brings
s back to the setting of Section 2, where we introduced observa-
ions of storm peak sea state data 𝐗 with 𝑝 = 2. The key steps in
valuating the reduced forward approach in (3) therefore become the
stimation of 𝑓𝐗 and 𝐹𝑅𝐿|𝐗. The first of these inferences is achieved
sing the conditional extremes model of Heffernan and Tawn (2004),
s described in Section 3.2. The second inference involves conditional
imulation of environmental time-series following Taylor et al. (1997),
nd importance sampling from the tail of 𝐹𝑅𝐿|𝐗 following Towe et al.
2021), as described in Section 3.3.

.1.4. Probability of structural failure
When designing offshore structures, it is often desirable to deter-

ine the probability of the event of structural failure 𝐿 for a given
-hour sea state with variables 𝐗 = 𝐱. Given an estimate for the
istribution of 𝑅𝐿|(𝐗 = 𝐱), we can evaluate this probability using the
xpression

Pr
(

𝐿|𝐗 = 𝐱
)

= ∫𝑟𝐿
Pr

(

𝐿|𝑅𝐿 = 𝑟𝐿
)

𝑓𝑅𝐿|𝐗(𝑟𝐿|𝐱)d𝑟𝐿,

here the failure probability Pr
(

𝐿|𝑅𝐿 = 𝑟𝐿
)

depends on the nature of
he structure, as illustrated in Fig. 6 in Section 5.

.1.5. Conditional density of the environment
The conditional density of the environment 𝑓𝐗|𝑅𝐿

(⋅|𝑟𝑃 ) describes
he joint density of the environmental variables 𝐗, conditional on the
ppearance of a 𝑃 -year maximum response 𝑟𝑃 within a sea state of
ength 𝐿 hours. Given estimates for 𝑓𝐗, 𝐹𝑅𝐿|𝐗, 𝐹𝑅𝐿

and 𝑟𝑃 , CDE𝑃 can
herefore be evaluated using Bayes’ rule

𝐗|𝑅𝐿
(𝐱|𝑟𝑃 ) =

𝑓𝑅𝐿|𝐗(𝑟𝑃 |𝐱)𝑓𝐗(𝐱)
𝑓𝑅𝐿

(𝑟𝑃 )
,

for 𝐱 ∈ R𝑝, where 𝑓𝑅𝐿|𝐗 and 𝑓𝑅𝐿
are the densities corresponding to

he distributions 𝐹𝑅𝐿|𝐗 and 𝐹𝑅𝐿
respectively. Examples of CDE𝑃 for the

entral North Sea application are given in Section 5.3.

.2. Joint modelling of storm peak conditions

.2.1. Outline of the conditional extremes model
The upper extremes of the marginal and joint distributions of the

nvironmental variables 𝐗 = (𝑋1,… , 𝑋𝑝), corresponding to the storm
peak sea state, are described using the conditional extremes model
of Heffernan and Tawn (2004). For our illustrative example, in Sec-
tion 2, 𝑝 = 2 but we present the methodology here and for environ-
mental contours for dimension 𝑝, to cover more general cases. This
 d
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asymptotically justified flexible framework allows for the characterisa-
tion of joint tail behaviour from a sample of independently identically
distributed observations of 𝐗, without the need for making a subjective
choice for a particular form of extremal dependence model (copula)
between variables. This method has been applied extensively to the
modelling of oceanographic data (e.g., Jonathan et al. 2014b, Towe
et al. 2019, Shooter et al. 2021, Tendijck et al. 2023a).

The conditional extremes method uses univariate extreme value
techniques to characterise the distribution of each variable individu-
ally, with the joint structure specified for variables on standard (typ-
ically Laplace) marginal scales (e.g., Keef et al. 2013). Estimation of
the conditional extremes model is thus performed in two stages: (a)
marginal extreme value modelling of each variable 𝑋𝑗 (𝑗 = 1,… , 𝑝) in
turn, followed by the marginal transformation 𝑋𝑗 ↦ 𝑌𝑗 of each variable
to standard Laplace scale 𝑌𝑗 and (b) estimation of the conditional
extremes model for the set of Laplace-scale variables 𝐘 = (𝑌1,… , 𝑌𝑝).
ubsequently, we estimate 𝑓𝐗 within an extreme joint tail region using
he fitted conditional extremes model. The above steps are discussed
elow.

.2.2. Marginal modelling and marginal transformation to Laplace scale
We adopt the approach of Davison and Smith (1990) for marginal

odelling of storm peak variable 𝑋𝑗 for 𝑗 = 1,… , 𝑝. We fit a generalised
areto distribution (GPD) to exceedances of high threshold 𝑢𝑗 , and
odel threshold non-exceedances empirically. Our marginal model 𝐹𝑋𝑗

or the cumulative distribution function of 𝑋𝑗 can thus be written

𝑋𝑗
(𝑥) =

{

𝐹𝑋𝑗
(𝑥) 𝑥 ≤ 𝑢𝑗

𝐹𝑋𝑗
(𝑢𝑗 ) + {1 − 𝐹𝑋𝑗

(𝑢𝑗 )}𝐹GPD,𝑗 (𝑥; 𝑢𝑗 , 𝜎𝑗 , 𝜉𝑗 ) 𝑥 > 𝑢𝑗 ,
(4)

where 𝐹𝑋𝑗
is the empirical distribution of 𝑋𝑗 and

GPD,𝑗 (𝑥; 𝑢𝑗 , 𝜎𝑗 , 𝜉𝑗 ) = 1 −
(

1 +
𝜉𝑗 (𝑥 − 𝑢𝑗 )

𝜎𝑗

)−1∕𝜉𝑗

+
,

for 𝑥 > 𝑢𝑗 , with scale and shape parameters 𝜎𝑗 > 0 and 𝜉𝑗 ∈ R
and where 𝑦+ = max(𝑦, 0) for 𝑦 ∈ R. The values of 𝑢𝑗 (𝑗 = 1,… , 𝑝)
re selected using the univariate extreme threshold selection meth-
ds summarised by Coles (2001), see SM. Parameters 𝜎𝑗 and 𝜉𝑗 are

jointly estimated using standard maximum likelihood techniques. The
probability integral transform

𝑌𝑗 =

⎧

⎪

⎨

⎪

⎩

log
{

2𝐹𝑋𝑗

(

𝑋𝑗
)

}

for 𝑋𝑗 < 𝐹−1
𝑋𝑗

(0.5)

− log
{

2
[

1 − 𝐹𝑋𝑗

(

𝑋𝑗
)

]}

for 𝑋𝑗 > 𝐹−1
𝑋𝑗

(0.5),

is then applied to each variable in turn, obtaining the standard Laplace-
scaled equivalents 𝐘 of 𝐗, such that, for 𝑗 = 1,… , 𝑝, the distribution of
𝑌𝑗 is

𝐹𝑌𝑗 (𝑦) =

{

1
2 exp (𝑦) 𝑦 ≤ 0
1 − 1

2 exp (−𝑦) 𝑦 > 0.

3.2.3. Joint dependence modelling
Having transformed environmental variables 𝐗 to standard Laplace-

scale equivalents 𝐘, we now apply the model of Heffernan and Tawn
(2004) to estimate the joint distribution 𝐹𝐘 in the upper tail region. It
is shown by Heffernan and Tawn (2004) and Keef et al. (2013) that,
for 𝑗 = 1,… , 𝑝, there exist unique values of parameters 𝜶

|𝑗 ∈ [−1, 1]𝑝−1,
|𝑗 ∈ ( −∞, 1]𝑝−1, satisfying the constraints of Keef et al. (2013), and
|𝑗 ∈ R𝑝−1, 𝑦 > 0, such that

lim
𝑣𝑗→∞

Pr
⎛

⎜

⎜

⎝

𝐘−𝑗 − 𝜶|𝑗𝑌𝑗

𝑌
𝜷
|𝑗

𝑗

< 𝐳
|𝑗 , 𝑌𝑗 − 𝑣𝑗 > 𝑦|𝑌𝑗 > 𝑣𝑗

⎞

⎟

⎟

⎠

= 𝑒−𝑦𝐺
|𝑗 (𝐳|𝑗 ), (5)

here the (𝑝−1)-vector 𝐘−𝑗 denotes the 𝑝-vector 𝐘 with 𝑗th element
𝑗 removed, 𝐺

|𝑗 is a (𝑝−1)-dimensional distribution function with non-
egenerate marginals, and componentwise operations are assumed.



M. Speers et al.

i
(
s
s
(
s
p
d
g

𝐹

f
o

3
g

l
k
w
e

o
e
s
s
o
i
s
f
h
𝑧
p
𝐸
𝐸

𝐸

a

𝑈

f
f
b
c
g
b
𝐴
d
t
𝛿




Ocean Engineering 311 (2024) 118754 
Property (5) can be leveraged by assuming a non-linear regression of
𝐘−𝑗 onto 𝑌𝑗 holds for all values of 𝐘 within the region {𝐘 ∈ R𝑝 ∶ 𝑌𝑗 >
𝑣𝑗}, for some suitably large finite threshold 𝑣𝑗 > 0. For conditioning
variable 𝑌𝑗 (𝑗 = 1,… , 𝑝), the form of this regression is

(𝐘−𝑗 |{𝑌𝑗 = 𝑦}) = 𝜶
|𝑗𝑦 + 𝑦𝜷|𝑗𝐙

|𝑗 , 𝑦 > 𝑣𝑗 , (6)

where 𝐙
|𝑗 ∼ 𝐺

|𝑗 is a (𝑝−1)-dimensional residual random variable that
is independent of 𝑌𝑗 given 𝑌𝑗 > 𝑣𝑗 . We estimate parameter vectors
𝜶
|𝑗 and 𝜷

|𝑗 using standard maximum likelihood techniques, assuming
for model fitting only that 𝐺

|𝑗 corresponds to independent Gaussian
distributions with unknown means and variances. The distribution 𝐺

|𝑗
is modelled via the kernel density estimate of the observed values of
the (𝑝−1)-dimensional residual

𝐙
|𝑗 =

𝐘−𝑗 − 𝜶|𝑗𝑌𝑗

𝑌
𝜷
|𝑗

𝑗

, for 𝑌𝑗 > 𝑣𝑗 ,

as in Winter and Tawn (2017).

3.2.4. Simulation under the conditional model and estimation of the envi-
ronment joint density

Inferences in R𝑝 using the fitted conditional extremes model are
typically made by careful combination of Laplace-scale simulations in
each of the upper tail regions {𝐘 ∈ R𝑝 ∶ 𝑌𝑗 > 𝑣𝑗}, for 𝑗 = 1,… , 𝑝,
together with empirical estimation in the remaining region {𝐘 ∈ R𝑝 ∶
𝑌𝑗 ≤ 𝑣𝑗 ∀𝑗}, as described in Heffernan and Tawn (2004), to give a
set of size 𝑁sim realisations from the estimate of the joint density 𝑓𝐘.
The 𝑝 fitted marginal models (4) can then be used componentwise to
transform this sample of 𝐘 with Laplace-scale marginals to a sample of
𝐗 on the original physical scale.

We can use the simulated sample to estimate the probability of
𝐗 being in sub-regions of R𝑝. Specifically, if 𝐷 is the set of feasible
𝐗 values such that Pr (𝐗 ∈ R𝑝 ⧵𝐷) = 0, then we consider a partition
(𝐷1,… , 𝐷𝑀 ) of 𝐷. Then, if 𝑁sim,𝑖 is the number of realisations in set
𝐷𝑖, we can estimate Pr

(

𝐗 ∈ 𝐷𝑖
)

, for any 𝑖 = 1,… ,𝑀 , as Pr(𝐗 ∈ 𝐷𝑖) =
𝑁sim,𝑖∕𝑁sim. To obtain an estimate 𝑓𝐗(𝐱) for any 𝐱 ∈ 𝐷 we exploit
the property that, if 𝐱 ∈ 𝐷𝑖 and |𝐷𝑖| is sufficiently small that 𝑓𝐗 is
reasonably constant for all 𝐱 ∈ 𝐷𝑖, then

Pr(𝐗 ∈ 𝐷𝑖) = ∫𝐱′∈𝐷𝑖

𝑓𝐗(𝐱′)d𝐱′ ≈ |𝐷𝑖|𝑓𝐗(𝐱),

yielding the estimate 𝑓𝐗(𝐱) = 𝑁sim, i∕(𝑁sim|𝐷𝑖|) for all 𝐱 ∈ 𝐷𝑖. We can
achieve the required conditions for the approximation to be reliable
by taking 𝑀 to be sufficiently large and selecting all 𝐷𝑖 such that
|𝐷𝑖| ∝ 𝑀−1.

3.3. Estimation of maximum response in a storm peak sea state given storm
peak variables

3.3.1. Outline of estimation of 𝐹𝑅𝐿|𝐗
To derive properties of 𝑅𝐿 we first need to model the behaviour

of the maximum response 𝑅𝐼 to an individual wave in sea state 𝐗.
However, to estimate the distribution 𝐹𝑅𝐼 |𝐗 of the maximum response
due to the action of an individual wave in sea state 𝐗, we first evaluate
the distribution 𝐹𝑅𝐼 |(𝐗,𝐶) of the maximum response 𝑅𝐼 to an individual
wave in the sea state 𝐗 with crest elevation 𝐶. This is achieved by
simulation of wave fields under sea state conditions 𝐗 with known crest
elevation 𝐶, followed by propagation of the resulting stochastic wave
fields through to the structural response model; see Section 3.3.2 for
details. Then, integrating out 𝐶, we have

𝐹𝑅𝐼 |𝐗(𝑟|𝐱) = ∫R+
𝐹𝑅𝐼 |𝐗,𝐶 (𝑟|𝐱, 𝑐)𝑓𝐶|𝐗(𝑐|𝐱)d𝑐, (7)

for 𝑟 > 0, where 𝑓𝐶|𝐗 is the density of crest elevation in the sea state
𝐗, where we assume that crests are Rayleigh-distributed, with density

𝑓𝐶|𝐗(𝑐|𝐱) =
16𝑐 exp

(

−8 𝑐2
)

, (8)

ℎ(𝐱)2 ℎ(𝐱)2

5 
for 𝑐 > 0, with sea state 𝐗 = 𝐱 with significant wave height ℎ(𝐱) = 𝑥1.
Computationally efficient estimation of 𝐹𝑅𝐼 |𝐗 following (7) is achieved
using importance sampling; see Section 3.3.3. Finally, we obtain 𝐹𝑅𝐿|𝐗
from 𝐹𝑅𝐼 |𝐗 by assuming that (a) there are a fixed number of waves
per 𝐿-hour sea state 𝐱, given by 𝑄𝐿(𝐱) = 602𝐿∕𝑡2(𝐱) where 𝑡2(𝐱)
s the second spectral moment wave period for the sea state, and
b) individual-wave maximum responses (i.e., the 𝑅𝐼 ) in a given sea
tate are independent of each other. Assumption (a) approximates the
tochastic number of waves per sea state with an ‘average’ value, and
b) holds since individual base shears calculated in Section 3.3.2 are ob-
erved for fractions of a second, significantly less than the typical wave
eriod; therefore, there is no correlation between responses induced by
ifferent waves for a known sea state. Combining these assumptions
ives

𝑅𝐿|𝐗(𝑟|𝐱) = {𝐹𝑅𝐼 |𝐗(𝑟|𝐱)}
𝑄𝐿(𝐱), (9)

or 𝑟 > 0, following the definition for the distribution of the maximum
f independent random variables.

.3.2. Simulation of maximum response to the action of an individual wave,
iven sea state variables and crest elevation

We estimate the distribution of 𝑅𝐼 |(𝐗, 𝐶) in two stages: (a) simu-
ation of realisations of wave fields under sea state conditions 𝐗 with
nown crest elevation 𝐶, followed by (b) propagation of the resulting
ave fields through a suitable structural response model. The details of
ach stage are outlined below.

The model of Taylor et al. (1997) allows for conditional simulation
f a wave field given the occurrence of a turning point of surface
levation in time, with specified crest elevation 𝐶 = 𝑐 > 0 at the
tructure location at time 𝑡 = 0, for a given sea state 𝐗 = 𝐱 with wave
pectrum 𝑆(⋅; 𝐱), using linear wave theory. The JONSWAP spectrum
f Hasselmann et al. (1973) is chosen as the form of 𝑆(⋅; 𝐱) due to
ts applicability to the North Sea wave conditions (Holthuijsen, 2010),
ee SM for further details. Taylor et al. (1997) provides expressions
or linear crest elevation 𝐸(𝑡; 𝐱, 𝑐), horizontal velocity 𝑈 (𝑡; 𝑧, 𝐱, 𝑐), and
orizontal acceleration 𝑈̇ (𝑡; 𝑧, 𝐱, 𝑐), at time 𝑡 ∈ R and vertical position
∈ R, relative to the mean water level, each conditioned on the wave
rocess (a) attaining a turning point of 𝐸 at time 𝑡 = 0, with (b)
(𝑡 = 0; 𝐱, 𝑐) = 𝑐, both at the location of the structure. The forms of
(𝑡; 𝐱, 𝑐) and 𝑈 (𝑡; 𝑧, 𝐱, 𝑐) are

(𝑡; 𝐱, 𝑐) =
𝑁
∑

𝑛=1

{

(𝐴𝑛 +𝜎2𝑛 ) cos
(

𝜔𝑛𝑡
)

+ (𝐵𝑛 +𝜎2𝑛𝜔𝑛) sin
(

𝜔𝑛𝑡
)}

, (10)

nd

(𝑡; 𝑧, 𝐱, 𝑐) =
𝑁
∑

𝑛=1
𝜔𝑛

cosh
(

𝑘𝑛(𝑑 + 𝑧)
)

sinh(𝑘𝑛𝑑)
{

(𝐴𝑛 +𝜎2𝑛 ) cos(𝜔𝑛𝑡)

+ (𝐵𝑛 +𝜎2𝑛𝜔𝑛) sin(𝜔𝑛𝑡)
}

,

(11)

or 𝑧 < 𝐸(𝑡; 𝐱, 𝑐) and zero otherwise, for a regular grid of angular
requencies 𝜔1,… , 𝜔𝑁 > 0 with spacing 𝛿𝜔 > 0 and 𝑁 ∈ N specified
elow, where 𝐴𝑛, 𝐵𝑛 ∈ R (𝑛 = 1,… , 𝑁) and , ∈ R are random
oefficients, 𝑑 is water depth and 𝑘𝑛 (𝑛 = 1,… , 𝑁) are wave numbers
iven implicitly by 𝜔2

𝑛 = 𝑔𝑘𝑛 tanh(𝑘𝑛𝑑). The equation for 𝑈̇ (𝑡; 𝑧, 𝐱, 𝑐) can
e found by differentiation of 𝑈 (𝑡; 𝑧, 𝐱, 𝑐) with respect to 𝑡. Coefficients
𝑛, 𝐵𝑛 (𝑛 = 1,… , 𝑁) are a series of independently and identically
istributed 𝑁(0, 𝜎2𝑛 ) random variables with variance 𝜎2𝑛 = 𝑆(𝜔𝑛; 𝐱)𝛿𝜔,
he integrated spectral density in the frequency band (𝜔𝑛 − 𝛿𝜔∕2, 𝜔𝑛 +
𝜔∕2) of the discretised wave spectrum. The random coefficients  and

are defined as

= 1
∑

𝑛 𝜎2𝑛

(

𝑐 −
𝑁
∑

𝑛=1
𝐴𝑛

)

and  = 1
∑

𝑛 𝜔2
𝑛𝜎2𝑛

(

−
𝑁
∑

𝑛=1
𝜔𝑛𝐵𝑛

)

.

Next, we estimate the total base shear response of the structure to the
simulated conditional wave field. We assume the wave–structure inter-

action to be quantified by the equation of Morison et al. (1950), which
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estimates drag and inertial loads applied by the ocean environment on
a stick structure. These loads are calculated from the wave velocity
and acceleration fields respectively. Under the assumptions of linear
wave theory, these fields can be derived entirely from knowledge of the
wave spectrum. For the applications described in this work, we assume
that the values of sea state (𝐻𝑆 , 𝑆2) are sufficient to define the wave
spectrum; hence, for a given structure, the 2-dimensional storm peak
representation 𝐗 = (𝑋1, 𝑋2) = (𝐻𝑆 , 𝑆2) from Section 2 is sufficient to
describe the extreme ocean environment and its associated structural
response.

Under our simplifying assumptions, waves are assumed to be unidi-
rectional, propagating in a single direction towards the vertical cylin-
drical structure with nominal small diameter. Waves are assumed to
pass through the structure, whilst also exerting force, without being
obstructed, and the effects of current and wind are ignored. This wave
field model provides a basis to approximate the induced load on a
jacket structure. The Morison loading equation estimates the base shear
𝑀(𝑡; 𝑧, 𝐱, 𝑐) induced on a cylinder by the wave at time 𝑡 and vertical
position 𝑧, and is given by

𝑀(𝑡; 𝑧, 𝐱, 𝑐) = 𝜌𝑐𝑚(𝑧)𝑉 𝑈̇ (𝑡; 𝑧, 𝐱, 𝑐)+ 1
2
𝜌𝑐𝑑 (𝑧)𝐴𝑈 (𝑡; 𝑧, 𝐱, 𝑐)|𝑈 (𝑡; 𝑧, 𝐱, 𝑐)|, (12)

where 𝑐𝑚(𝑧), 𝑐𝑑 (𝑧) > 0 are inertia and drag coefficients, 𝜌 = 1024 (recall
that SI units are used throughout) is the density of water, 𝑉 is the
volume of the body and 𝐴 is the area of the structure perpendicular to
the wave propagation. We assume a cylindrical structure with diameter
1 and height of 150 situated within water of depth 𝑑 = 100. Since
the probability of a crest elevation greater than 50 is near zero for
all relevant sea states, this structure scenario amounts to a cylinder of
infinite height. In order to approximate models of different structure
types, 𝑐𝑚(𝑧) and 𝑐𝑑 (𝑧) can be made to vary with 𝑧, as discussed in
ection 5. To evaluate the total base shear 𝐵𝑆 (𝑡; 𝐱, 𝑐) on the structure
t time 𝑡, we integrate 𝑀(𝑡; 𝑧, 𝐱, 𝑐) to give

𝑆 (𝑡; 𝐱, 𝑐) = ∫

𝐸(𝑡;𝐱,𝑐)

−𝑑
𝑀(𝑡; 𝑧, 𝐱, 𝑐)d𝑧, (13)

the total Morison load induced up the water column at the structure
location.

The response 𝑅𝐼 |(𝐗 = 𝐱, 𝐶 = 𝑐) may be obtained by considering
he portion of the time series {𝐵𝑆 (𝑡; 𝐱, 𝑐)}𝑡∈R that corresponds to the
entral wave conditioned to attain 𝐸(𝑡 = 0; 𝐱, 𝑐) = 𝑐; that is, the period
f time 𝑡 ∈ 0 ⊂ R, with 0 ∈ 0, for which the wave surrounding the
onditioning crest of elevation 𝑐 at time 𝑡 = 0 acts on the structure. We

define

𝑅𝐼 |(𝐗 = 𝐱, 𝐶 = 𝑐) = max
𝑡∈0

𝐵𝑆 (𝑡; 𝐱, 𝑐). (14)

We obtain realisations of 𝑅𝐼 |(𝐗 = 𝐱, 𝐶 = 𝑐) from a time series of the
base shear response (13) evaluated using Morison loads (12), in turn
calculated from wave fields simulated according to expressions (10)
and (11). The interval of time over which wave fields are simulated
corresponds to a period of 120 seconds, sufficiently large to ensure
reliable performance of the FFT algorithm (Cooley and Tukey, 1965),
meaning here 0 ⊂ [−60, 60]. Realisations of conditional crest elevation
and wave kinematics are simulated for a regular grid {(𝑡𝑖, 𝑧𝑗 )}

𝑛𝑡 ,𝑛𝑧
𝑖=1,𝑗=1 of

values 𝑡 ∈ [−60, 60] and 𝑧 ∈ [−100, 150]. We set 𝑁 = 𝑛𝑡 in expressions
(10) and (11), which is necessary to evaluate the wave field equations
using the FFT algorithm; see SM for details. The values of 𝑛𝑡 = 480
and 𝑛𝑧 = 50 are chosen, sufficient to ensure reasonable response
approximation. The simulated kinematics are then propagated through
the Morison equation, providing a realisation of {𝑀(𝑡𝑖; 𝑧𝑗 , 𝐱, 𝑐)}

𝑛𝑡 ,𝑛𝑧
𝑖=1,𝑗=1.

Numerical evaluation of integral (13) with respect to 𝑧 yields a realisa-
tion of the time series {𝐵𝑆 (𝑡𝑖; 𝐱, 𝑐)}

𝑛𝑡
𝑖=1. A realisation of the maximum

individual wave response 𝑅𝐼 |(𝐗 = 𝐱, 𝐶 = 𝑐) is then obtained by
pplying (14), using the set 𝑡 ∈ {𝑡𝑖}

𝑛𝑡
𝑖=1 ∩ 0 as an approximation to

0. Given conditioning crests {𝑐𝑖}𝑘𝑖=1, the above procedure can be used
to map 𝑐𝑖 ↦ 𝑟𝑖, for 𝑖 = 1,… , 𝑘, obtaining a set of maximum responses
{𝑟 }𝑘 , for a given sea state 𝐱.
𝑖 𝑖=1 e

6 
3.3.3. Importance sampling of simulated maximum responses
The procedure discussed in Section 3.3.2 is used to obtain reali-

sations {𝑟𝑖}𝑘𝑖=1 of 𝑅𝐼 |(𝐗, 𝐶), for a set of 𝑘 conditioning crests {𝑐𝑖}𝑘𝑖=1
and specified values of storm peak variables 𝐗. These are then used in
integral (7) to estimate the distribution 𝐹𝑅𝐼 |𝐗 of the maximum response
to an individual wave in sea state 𝐗, assuming a Rayleigh distribution
(8) for 𝐶|𝐗. However, evaluation of integral (7) via Monte Carlo
methods sampling from the Rayleigh density is inefficient in targeting
the tail of the response distribution 𝐹𝑅𝐼 |𝐗. Given our interest in the
extreme structural response on the structure, we therefore employ the
importance sampling approach described by Towe et al. (2021), writing
integral (7) as

𝐹𝑅𝐼 |𝐗(𝑟|𝐱) = ∫𝑟
𝐹𝑅𝐼 |𝐗,𝐶 (𝑟|𝐱, 𝑐)

𝑓𝐶|𝐗(𝑐|𝐱)

𝑔(𝜖)𝐶|𝐗(𝑐|𝐱)
𝑔(𝜖)𝐶|𝐗(𝑐|𝐱)d𝑐, (15)

or 𝑟 > 0, where 𝑔(𝜖)𝐶|(𝐗=𝐱) is the density of the Uniform[0, 𝜖ℎ(𝐱)] distri-
ution, for significant wave height ℎ(𝐱) and some 𝜖 > 0. For a fixed
umber of conditional wave simulations, sampling of the conditioning
rest 𝑐 from 𝑔(𝜖)𝐶|𝐗 ensures greater coverage of the feasible range of large
rest elevations and of the induced maximum response than is achieved
hen sampling 𝑐 from 𝑓𝐶|𝐗. Therefore, the upper tail of the distribution
𝑅𝐼 |𝐗 is more efficiently estimated using the sampling distribution
(𝜖)
𝐶|𝐗. The value of 𝜖 in (15) is selected so that 𝑔(𝜖)𝐶|𝐗 provides adequate
overage of the domain of 𝑓𝐶|𝐗, i.e., the exceedance probability

Pr{𝐶 > 𝜖ℎ(𝐱)|𝐗 = 𝐱} = ∫𝑐>𝜖ℎ(𝐱)
𝑓𝐶|𝐗(𝑐|𝐱)d𝑐 = exp

(

−8𝜖2
)

, (16)

s sufficiently close to zero. We set 𝜖 = 2, which gives a value of
robability (16) in the order of 10−14.

Integral (15) is then estimated as follows. The 𝑘 conditional crests
𝑐𝑖}𝑘𝑖=1 are sampled from the uniform proposal density 𝑔(𝜖)𝐶|𝐗. Corre-
ponding realisations {𝑟𝑖}𝑘𝑖=1 of single-wave maximum responses are ob-
ained using the procedure described in Section 3.3.2. The distribution
𝑅𝐼 |𝐗 is then estimated as

̂𝑅𝐼 |𝐗(𝑟|𝐱) =
∑𝑘

𝑖=1 1{𝑟𝑖≤𝑟}𝜄
(𝜖)(𝑐𝑖|𝐱)

∑𝑘
𝑖=1 𝜄(𝜖)(𝑐𝑖|𝐱)

, (17)

for 𝑟 > 0, where 𝜄(𝜖)(𝑐|𝐱) = 𝑓𝐶|𝐗(𝑐|𝐱)∕𝑔
(𝜖)
𝐶|𝐗(𝑐|𝐱) is the importance

ampling ratio and 1{𝑟𝑖≤𝑟} = 1 if 𝑟𝑖 ≤ 𝑟, zero otherwise, for 𝑖 =
,… , 𝑘. Estimate (17) is an empirical cumulative distribution function
f the simulated responses, weighted to remove bias introduced from
ampling crests from 𝑔(𝜖)𝐶|𝐗 rather than 𝑓𝐶|𝐗. We use estimate (17) to
valuate the distribution of maximum response per 𝐿-hour sea state
sing relation (9). Given an estimate for 𝑓𝐗 obtained as in Section 3.2,
e may then calculate the marginal maximum response distribution
sing integral (3).

. Environmental contours

.1. Overview of environmental contours

Environmental contours provide a method of determining extremal
onditions which are in some way related to an extreme structural
esponse. These contours often make assumptions about the interaction
etween environment and response, usually regarding the shape of
ome failure boundary in the environment space such that environ-
ental conditions beyond the boundary will result in structural failure.

or instance, IFORM (e.g., Winterstein et al. 1993) contours assume a
onvex form for this boundary, whereas ISORM (e.g., Chai and Leira
018) assumes it to be concave. These assumptions may or may not
e valid depending on the specific features of the structure type in
uestion. Here, we outline the methodology of the IFORM contour
Section 4.2) and the fitting approach we employ to estimate it for our

xample dataset (Section 4.3).
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Fig. 2. Storm peak density for 𝐻𝑆 [m] and 𝑆2 in 𝐴𝜈 on log scale, estimated from the fitted conditional extremes model. Observations of storm peak 𝐗 = (𝐻𝑆 , 𝑆2) are shown as
black dots.
4.2. IFORM design contours

Section 3.1.4 details how, given an estimate for the distribution of
𝑅𝐿|𝐗 from Section 3, in principle we can evaluate the probability of
structural failure Pr

(

𝐿|𝐗 = 𝐱
)

for a sea state (of duration 𝐿) with
variables 𝐗 = 𝐱. IFORM offers an approach to structural design
which avoids direct calculation of Pr

(

𝐿|𝐗 = 𝐱
)

, by attempting to
make conservative assumptions. For an ocean environment represented
by a set of random variables 𝐗 transformed to independent standard
Gaussian random variables 𝐔, IFORM assumes that Pr

(

𝐿|𝐔 = 𝐮
)

is
deterministic for all 𝐮, taking values {0, 1}, contrary to the failure
probability discussed in Section 3.1.4 which takes any value in [0, 1].
Writing the region of environmental space corresponding to failure 𝐿
as  , IFORM assumes that the boundary 𝜕 of  is linear, and lies
tangential to a contour of constant transformed environmental density
𝑓𝐔, making the assumed location of 𝜕 dependent on the joint Gaussian
distribution 𝑓𝐔. The assumption of a failure boundary of this type is
typically conservative, in that estimates for Pr(𝐔 ∈  ) using it have
positive bias.

The transformation of 𝐗 ↦ 𝐔 is achieved via the method of Rosen-
blatt (1952), which proceeds as follows. For storm peak variables 𝐗 =
(𝑋1,… , 𝑋𝑝), suppose we can estimate the nested conditional distri-
butions 𝐹𝑋1

, 𝐹𝑋2|𝑋1
, 𝐹𝑋3|(𝑋1 ,𝑋2),… , 𝐹𝑋𝑝|(𝑋1 ,…,𝑋𝑝−1). Estimation of these

distributions is non-trivial as it involves estimating a sequence of condi-
tional dependence models with results dependent on the sequencing of
the 𝑝 environmental variables; see Section 4.3 for an example approach.
The Rosenblatt transformation maps a realisation 𝐱 = (𝑥1,… , 𝑥𝑝) of
𝐗 to the realisation 𝐮 = (𝑢1,… , 𝑢𝑝) of 𝐔 via 𝑢1 = 𝛷−1{𝐹𝑋1

(𝑥1)} and
𝑢𝑗 = 𝛷−1

{

𝐹𝑋𝑗 |(𝑋1 ,…,𝑋𝑗−1)(𝑥𝑗 |𝑥1,… , 𝑥𝑗−1)
}

, for 𝑗 = 2,… , 𝑝, where 𝛷 is
the standard Gaussian cumulative distribution function.

In 𝐔-space, contours of constant probability joint density correspond
to boundaries of hyperspheres centred at the origin. In particular, the
𝑃 -year IFORM contour in 𝐔-space is the boundary of a hypersphere
with radius

𝛽𝐼 = 𝛷−1
(

1 − 1
𝑁an𝑃

)

, (18)

where 𝑁an is the average number of independent storm peak obser-
vations per annum. That is, the probability of a point lying outside
the set enclosed by the 𝑃 -year IFORM contour is 1∕(𝑁 𝑃 ). Consider
an

7 
failure region 𝛽𝐼 with boundary 𝛿𝛽𝐼 tangential to the hypersphere
centred at the origin with radius 𝛽𝐼 . For any angle 𝝍 , in spherical polar
coordinates for a point on the hypersphere, we have

Pr
(

𝐔 ∈ 𝛽𝐼

)

= Pr

( 𝑝
∑

𝑖=1
𝑤𝑖(𝝍)𝑈𝑖 > 𝛽𝐼

)

,

where ∑𝑝
𝑖=1 𝑤

2
𝑖 (𝝍) = 1, due to the linearity of 𝛿𝛽𝐼 and it being tangen-

tial to the hypersphere at radius 𝛽𝐼 . So, as 𝑊 =
∑𝑝

𝑖=1 𝑤𝑖(𝝍)𝑈𝑖 ∼ 𝑁(0, 1)
given the independence of (𝑈1,… , 𝑈𝑝), it follows that Pr

(

𝐔 ∈ 𝛽𝐼

)

=
Pr

(

𝑊 > 𝛽𝐼
)

, which directly gives expression (18) for 𝛽𝐼 .
Once the environmental contour has been estimated in 𝐔-space, it

can be represented in the original 𝐗-space via the inverse Rosenblatt
transformation 𝑥1 = 𝐹−1

𝑋1
{𝛷(𝑢1)} and 𝑥𝑗 = 𝐹−1

𝑋𝑗 |(𝑋1 ,…,𝑋𝑗−1)
{𝛷(𝑢𝑗 )|𝑥1,… ,

𝑥𝑗−1}, for 𝑗 = 2,… , 𝑝. Unlike the hypersphere-shaped contours in the 𝐔-
space, these contours are not guaranteed to be convex (see Section 5.2).
The procedure for construction of a 𝑃 -year IFORM contour in terms of
environmental variable 𝐗 = (𝑋1,… , 𝑋𝑝) is summarised in Algorithm 1.
Algorithm 1 IFORM contour calculation for 𝐗 = (𝑋1,… , 𝑋𝑝).

Input Return period 𝑃 ; Average number of independent
storm peaks per annum 𝑁an; Estimates of distributions
𝐹𝑋1

, 𝐹𝑋2|𝑋1
, 𝐹𝑋3|(𝑋1 ,𝑋2),… , 𝐹𝑋𝑝|(𝑋1 ,…,𝑋𝑝−1).

Output 𝑃 -year IFORM contour.
1: Define 𝛽𝐼 = 𝛷−1

(

1 − 1
𝑁an𝑃

)

where 𝛷 is the standard normal cdf.
2: Obtain a set of 𝑘 equally spaced points {(𝑢1(𝑗),… , 𝑢𝑝(𝑗))}𝑘𝑗=1 on the

hypersphere given by 𝑢21+…+𝑢2𝑝 = 𝛽2𝐼 , using a regular grid of values
of 𝝍 in spherical polar coordinates.

3: for 𝑗 in 1,… , 𝑘 do
4: Compute 𝑥1(𝑗) = 𝐹−1

𝑋1
{𝛷(𝑢1(𝑗))}.

5: Compute 𝑥2(𝑗) = 𝐹−1
𝑋2|𝑋1

{𝛷(𝑢2(𝑗))|𝑥1(𝑗)}.
6: ⋮
7: Compute 𝑥𝑝(𝑗) = 𝐹−1

𝑋𝑝|(𝑋1 ,…,𝑋𝑝−1)
{𝛷(𝑢𝑝(𝑗))|(𝑥1(𝑗),… , 𝑥𝑝−1(𝑗))}.

return {(𝑥1(𝑗),… , 𝑥𝑝(𝑗))}𝑘𝑗=1 points along the 𝑝-dimensional IFORM
contour.

4.3. Joint parametric models for storm peak variables

Construction of the IFORM contour for environmental variables
𝐗 = (𝑋 ,𝑋 ) = (𝐻 ,𝑆 ) via Algorithm 1 requires estimates for the
1 2 𝑆 2
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marginal distribution 𝐹𝐻𝑆
and conditional distribution 𝐹𝑆2|𝐻𝑆

(while
𝑆2

and 𝐹𝐻𝑆 |𝑆2
could equally be used, we use the former to reflect past

pproaches). Mirroring the hierarchical approach of Winterstein et al.
1993), we select the GPD tail model (4) for marginal 𝐻𝑆 , and evaluate

a range of parametric forms for the distribution of 𝑆2|𝐻𝑆 , selecting the
most appropriate based on an assessment of predictive performance.
We estimate the model 𝑆2|𝐻𝑆 as follows.

We allow for two sources of flexibility: (a) the conditional distribu-
ional form for 𝑆2|𝐻𝑆 , and (b) the nature of the parametric form for

how the parameters of the distribution vary as a function of 𝐻𝑆 . The
distributions we consider in modelling step (a) are the Lognormal(𝜇𝐿,
𝜎𝐿), as in Winterstein et al. (1993), Gamma(𝛼, 𝛽), Weibull(𝜆, 𝑘) and
the Generalised Extreme Value distribution GEV(𝜇𝐺, 𝜎𝐺, 𝜉); see SM.
We also consider conditional distributions fitted to the transformed
negative steepness 𝑆−

2 = min(𝑆2) − 𝑆2, enabling the right-hand tail
f the distribution to be fitted to small 𝑆2; see SM for a summary of
ll model combinations. In step (b), we impose linear, quadratic and
xponential forms for the 𝑆2 distribution parameters as functions of 𝐻𝑆 .
o assess the performance of candidate models for 𝑆2|𝐻𝑆 and 𝑆−

2 |𝐻𝑆 ,
e use a cross validation approach in which we evaluate the predictive

ikelihood of the models, focusing on the performance in the tail region
for large 𝐻𝑆 ). This proceeds as follows.

The sample {𝐱𝑖}
𝑁all
𝑖=1 (see Section 2) is partitioned into a ‘body’ where

𝑆 ≤ 𝑣 and a ‘tail’ where 𝐻𝑆 > 𝑣 for 𝑣 > 0, denoted {𝐱𝐵𝑖 }
𝑁𝐵
𝑖=1 and {𝐱𝑇𝑖 }

𝑁𝑇
𝑖=1

espectively, with 𝑁𝐵 + 𝑁𝑇 = 𝑁all. The tail portion {𝐱𝑇𝑖 }
𝑁𝑇
𝑖=1 is itself

artitioned into 𝐾 subsets {𝑗}𝐾𝑗=1 each of sizes ⌊𝑁𝑇 ∕𝐾⌋ or ⌈𝑁𝑇 ∕𝐾⌉.
𝐾-fold cross validation is performed using training set {𝐱𝑖}𝑁𝑖=1 ⧵ 𝑗

nd test set 𝑗 at fold 𝑗 ∈ {1,… , 𝐾}. That is, we always utilise the
entirety of the body of the data within the training set alongside all
but a single fold of the tail. Excluding a subset of the tail from the
training data in this way is appropriate for estimation of the conditional
distribution for 𝑆2|𝐻𝑆 , but leads to biased estimation of the marginal
distribution of 𝐻𝑆 , so it is important to note estimation of the marginal
model (4) (see Section 3.2.2) is carried out using the entire dataset. The
predictive likelihood is then only calculated on extreme data points,
and so measures the fit of each model to the extremes of the data.

We repeat the above process for 𝐾 = 5, 10 over values of 𝑣 =
0, 0.8, 0.9 to determine the sensitivity of model performance to the
choice of extreme threshold. Setting 𝑣 = 0 recovers a standard cross
validation approach for assessing fit to all of data, which we also
include to ensure the best performing models fit the body of the data
well. In addition, we also evaluate the model fit using AIC. The AIC
and cross validation scores are each standardised by dividing by the
number of observations for which we evaluate the optimised likelihood
(negated when considering AIC, which is standardised over both terms).
This standardisation results in a set of loosely comparable scores for
each model across different threshold choices, and these scores for each
model are averaged over values of both 𝐾 and 𝑣 to obtain a single score,
referred to as the aggregate score (AS); see SM for details. The model
with the largest AS is deemed to be the best predictive model for the
data.

5. Results

5.1. Estimating the joint density of storm peaks

We employ the forward methodology of Sections 3.2 and 3.3 to
estimate the environmental density 𝑓𝐗 and response distribution 𝐹𝑅𝐿|𝐗
or our motivating dataset of 𝐗 = (𝐻𝑆 , 𝑆2) introduced in Section 2. In

turn, these are used to evaluate the distributions 𝐹𝑅𝑆
and 𝐹𝑅𝐴

(as in
ections 3.1.2 and 3.1.3) and subsequently CDE𝑃 (as in Section 3.1.5).
he CDE𝑃 is then compared with various IFORM contour estimates
sing the methods of Section 4. The purpose of the comparison of CDE𝑃

and IFORM contours is to demonstrate that none of the hierarchical
environmental model forms underpinning the IFORM contour provide

adequate description of CDE𝑃 for all example structures considered.

8 
That is, the IFORM contours estimated in general do not identify the
correct region of environmental space responsible for extreme struc-
tural response. Therefore, evaluation of response along these IFORM
contour boundaries will not provide reliable realisations of the desired
𝑃 -year response.

We model the joint environment 𝐗 using the method of Heffernan
and Tawn (2004) discussed in Section 3.2, fitted to data in the region
𝐴𝜈 = {𝐗 ∈ R2 ∶ 𝐻𝑆 > 𝜈} for conditioning threshold 𝜈. We take

= 𝐹−1
𝐻𝑆

(0.95). Inspection of plots for the variability of conditional
extremes model parameters with respect to threshold indicated this
choice of threshold to be within the interval for which these parameters
are invariant. Using this fitted model, the density 𝑓𝐗 is estimated in 𝐴𝜈
as described in Section 3.2.4. The density in the complement R2 ⧵ 𝐴𝜈
s modelled empirically. Since our interest lies in environments with
arge 𝐻𝑆 and associated structural responses, we are not concerned
ith (a) smooth estimation of this lower portion of the density and (b)

he density in the region corresponding to large 𝑆2 but small 𝐻𝑆 .
In the 2-dimensional case 𝐗 = (𝐻𝑆 , 𝑆2), the parameters of model

(6) reduce to 𝛼 ∈ [−1, 1] and 𝛽 ∈ (−∞, 1] when conditioning on
𝐻𝑆 . We find corresponding estimates 𝛼̂ = 0.378 and 𝛽 = 0.533, as
well as an estimate 𝜉 = −0.02 for the 𝐻𝑆 marginal shape parameter
𝜉 in (4), the latter indicating a near exponential upper tail for 𝐻𝑆 .
The effect of 𝛼̂ is seen in Fig. 2, as a positive trend in the resulting
density estimate. This density also appears to agree with the shape of
the data in the extreme region 𝜈 . Fig. 2 also shows the presence
of rays in the estimated density, caused by sampling from the kernel
density of observed residual values (see Winter and Tawn 2017 or
discussion in Section 3.2.3). The strength of these rays is determined
by the value of the kernel smoothing parameter. Higher values provide
stronger smoothing and therefore less prominent rays, however, too
large a value will result in over-smoothing and thus less precise density
estimates. When in doubt, we favour under-smoothing.

5.2. Selection of model form for the conditional distribution

For IFORM, we consider four distributional forms for each of 𝑆2|𝐻𝑆
and 𝑆−

2 |𝐻𝑆 (summarised in Section 4.3) each with two distribution
parameters modelled as functions of 𝐻𝑆 . We do not model the GEV
shape 𝜉 as a function of 𝐻𝑆 as its estimation using maximum likelihood
is difficult for finite samples; instead, we assume it to be an unknown
constant. The variation of each of these eight distribution parameters
with 𝐻𝑆 is represented by one of three parametric forms (linear,
quadratic and exponential), giving a total of 72 combined candidate
models for 𝑆2|𝐻𝑆 and 𝑆−

2 |𝐻𝑆 . These models are ranked using the AS,
introduced in Section 4.3, yielding results given in full in the SM.
Table 1 summarises these results, showing the optimal model for each
of 𝑆2|𝐻𝑠 and 𝑆−

2 |𝐻𝑆 , with unique 𝑎, 𝑏, 𝑐 ∈ R for each distributional
parameter, constrained such that their respective domains are not
violated. Standard errors are found as the sample standard deviation of
the AS, evaluated over thirty replicates of each cross validation setting.

The models in Table 1 are used with Algorithm 1 to construct
the IFORM contours in Fig. 3. Each contour corresponds to a return
period of 𝑃 = 1000 years. Contours are labelled 1

𝑃 to 8
𝑃 and ordered

according to their AS, with the best fitting models having the lowest
labelling. All of the contour estimates provide plausible descriptions of
the shape of the sample, but from an engineering design perspective,
we note clear differences in the shape and position of the contours for
larger 𝐻𝑆 . Even so, the three highest ranking models generate contours
which agree to a reasonable degree in all regions. These three contours
also appear visually to be the best descriptions of shape of the data. In
comparison, the other contours do not agree in the region of large 𝐻𝑆 ,
and fail to capture the shape of the main body of the data. We therefore
select the highest three ranking contours as the best representations of

IFORM to compare to CDE𝑃 in Section 5.3.
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Table 1
AS (with standard error) for the optimal forms of each distribution considered for 𝑆2|𝐻𝑆 and 𝑆−

2 |𝐻𝑆 . Large values of AS indicate good
performance. The three best performing models’ scores are indicated in bold. Complete results are given in the SM.
Label Distribution (with optimal functional form of parameters) AS

1
𝑃 𝑆−

2 |{𝐻𝑆 = ℎ} ∼ GEV(𝜇𝐺 , 𝜎𝐺 , 𝜉) 𝜇𝐺 = 𝑎 + 𝑏 exp(𝑐ℎ) 𝜎𝐺 = 𝑎 + 𝑏 exp(𝑐ℎ) 3.999 (0.002)
2
𝑃 𝑆2|{𝐻𝑆 = ℎ} ∼ Weibull(𝑘, 𝜆) 𝑘 = 𝑎 + 𝑏𝑐 𝜆 = 𝑎(ℎ + 𝑏)2 + 𝑐 3.983 (0.003)

3
𝑃 𝑆−

2 |{𝐻𝑆 = ℎ} ∼ Lognormal(𝜇𝐿 , 𝜎𝐿) 𝜇𝐿 = 𝑎 + 𝑏ℎ 𝜎𝐿 = 𝑎 + 𝑏ℎ 3.963 (0.001)
4
𝑃 𝑆−

2 |{𝐻𝑆 = ℎ} ∼ Gamma(𝛼, 𝛽) 𝛼 = 𝑎(ℎ + 𝑏)2 + 𝑐 𝛽 = 𝑎 + 𝑏ℎ 3.963 (0.006)
5
𝑃 𝑆−

2 |{𝐻𝑆 = ℎ} ∼ Weibull(𝑘, 𝜆) 𝑘 = 𝑎 + 𝑏 exp(𝑐ℎ) 𝜆 = 𝑎 + 𝑏 exp(𝑐ℎ) 3.897 (0.002)
6
𝑃 𝑆2|{𝐻𝑆 = ℎ} ∼ Gamma(𝛼, 𝛽) 𝛼 = 𝑎 + 𝑏ℎ 𝛽 = 𝑎 + 𝑏ℎ 3.873 (0.002)

7
𝑃 𝑆2|{𝐻𝑆 = ℎ} ∼ Lognormal(𝜇𝐿 , 𝜎𝐿) 𝜇𝐿 = 𝑎(ℎ + 𝑏)2 + 𝑐 𝜎𝐿 = 𝑎 + 𝑏 exp(𝑐ℎ) 3.824 (0.005)

8
𝑃 𝑆2|{𝐻𝑆 = ℎ} ∼ GEV(𝜇𝐺 , 𝜎𝐺 , 𝜉) 𝜇𝐺 = 𝑎 + 𝑏 exp(𝑐ℎ) 𝜎𝐺 = 𝑎(ℎ + 𝑏)2 + 𝑐 3.533 (0.000)
Fig. 3. IFORM contours in 𝐻𝑆 [m] and 𝑆2 constructed from the models in Table 1, corresponding to an exceedence probability of 𝑝 = 10−3∕73, or a return period of 𝑃 = 1000
years for data with 𝑁an = 73 observations per annum. Contours 1

𝑃 to 8
𝑃 are listed and coloured in order of decreasing performance AS, from red to purple, with contour 𝑖

𝑃
labelled C𝑖 for 𝑖 = 1… , 8.
Table 2
The drag and inertia coefficients of (12) with 𝑐𝑑 (𝑧) = 𝑐𝑚(𝑧) for all 𝑧, for varying 𝑧
associated with stick structures A, B & C.

Value of 𝑐𝑑 (𝑧) = 𝑐𝑚(𝑧)

5 < 𝑧 ≤ 15 −95 < 𝑧 ≤ −85 Elsewhere

Structure A 1 1 1
B 100 1 1
C 1 100 1

5.3. Estimating the conditional density of associated environmental vari-
ables

5.3.1. Estimation of CDE𝑃 for example structure models
We evaluate CDE𝑃 for three examples of the stick structure model

(Section 3.3.2), denoted A, B & C. These structures assume different
values for drag and inertia coefficients 𝑐𝑑 (𝑧) and 𝑐𝑚(𝑧) along their
height 𝑧, as shown in Table 2. Structure A represents the simplest
stick structure, with homogeneous drag and inertia coefficients along
its entire height, i.e., 𝑐𝑑 (𝑧) = 𝑐𝑚(𝑧) = 1 for all 𝑧 ∈ [−100, 150]. We mimic
wave-in-deck loads for structure B, with 𝑐𝑑 (𝑧) = 𝑐𝑚(𝑧) = 100 increased
for a portion of the structure above sea level. A portion of structure C
near the sea bed incurs increased load.

Fig. 4 shows the corresponding estimates for CDE𝑃 for 𝑃 = 1000
years. The shape and position of the conditional density varies between
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structures, due to their differing loading characteristics. For structure
C in particular, the conditional density extends to larger 𝐻𝑆 , and over
a wider interval of 𝑆2; we comment further on this feature in the
discussion of environmental contours in Fig. 6. In summary, Fig. 4
demonstrates that more than one region of the (𝐻𝑆 , 𝑆2) domain con-
tributes to the distribution of 𝑃 -year response, particularly for structure
C.

5.3.2. Comparison between CDE𝑃 and IFORM contours
Provided we have accurate models for the series of 𝑝 nested con-

ditional distributions 𝐹𝑋1
,… , 𝐹𝑋𝑝|(𝑋1 ,…,𝑋𝑝−1), and provided that the as-

sumptions underlying IFORM are valid, the 𝑃 -year IFORM contour
gives design points at which evaluation of a response model will
provide conservative estimates of the 𝑃 -year response, as indicated
by Winterstein et al. (1993). That is, it aims to provide environmen-
tal conditions at least as extreme as those which induce the 𝑃 -year
response for specific structures. It is natural therefore to consider
assessing IFORM contour performance using CDE𝑃 , since the latter pro-
vides asymptotically-justified estimates of the environmental conditions
corresponding to the 𝑃 -year response, obtained from application from
the forward approach of Section 3.

Assuming that CDE𝑃 provides a valid estimate of the environment
density conditional on the 𝑃 -year response, we reason that a well-
estimated IFORM contour  should intersect with CDE , and that
𝑃 𝑃
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Fig. 4. Estimated CDE𝑃 for the three structure models given in Table 2 (left to right A, B & C), for a period of 𝑃 = 1000 years. These are evaluated for the example dataset given
in Section 2, using the methods of Section 3.
Fig. 5. Density of storm peak sea state parameters (𝐻𝑆 , 𝑆2) conditioned on observing the 1000-year marginal response on stick-type structures. Overlaid are the three highest
scoring IFORM fits by AS, with contour 𝑖

𝑃 labelled C𝑖 for 𝑖 = 1… , 3. The colouring of the contours (red, orange, grey) indicates the order of ranking, in terms of decreasing
predictive performance.
the discrepancy between 𝑃 and CDE𝑃 points to inadequacy of the
IFORM methodology, potentially due to a mis-specified parametric
environmental model or invalid IFORM assumptions regarding the
characteristics of the wave–structure interaction for the application at
hand. For instance, see Fig. 5, which shows the estimated CDE𝑃 for
structures A, B and C, for 𝑃 = 1000. Contour 2

𝑃 in the left panel
overlaps with darker points of CDE𝑃 so provides estimates of the 𝑃 -year
response which agree with those obtained from the forward approach,
meaning it performs well in this region of the contour. The centre panel
of Fig. 5 shows 1

𝑃 taking (𝐻𝑆 , 𝑆2) values more extreme than the darker
points of CDE𝑃 , indicating that the contour will provide estimates
for the 𝑃 -year response more extreme than those obtained from the
forward approach, i.e., the conservative outcome intended. Conversely,
the right panel shows 2

𝑃 taking (𝐻𝑆 , 𝑆2) values less extreme than the
darker points of CDE𝑃 , suggesting estimates for the 𝑃 -year response
obtained from points along this contour will be smaller than those
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obtained from the forward approach and hence they fail to give con-
servative estimates, which is contrary to their claimed properties. More
generally, the majority of the presented IFORM contours exhibit over-
conservatism in regions of small 𝑆2, i.e., they lie in regions of the
environment space with more severe 𝐻𝑆 than in the regions with non-
zero CDE𝑃 , and this could lead to substantial over-design if this region
of the environmental space was important.

We observe from the above analysis of Fig. 5 that the overlap be-
tween the region of non-zero CDE𝑃 and the region 𝑃 bounded below
by the IFORM contour 𝑃 relates to the level of conservatism, and
therefore is a good scalar metric for measuring performance of IFORM
contours relative to the more strongly justified forward approach. If
this overlap is zero, then the contour lies in a region less extreme than
the region of non-zero CDE𝑃 , indicating non-conservatism. Conversely,
if the overlap includes all of the non-zero region of CDE𝑃 , the contour
appears to be conservative. To formalise this observation, we define the
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Table 3
Estimates of 𝜁 (𝑃 ,𝑃 ) from (19) for IFORM contours corresponding to the three best
fitting models for 𝐻𝑆 , 𝑆2 from Table 1, for each of structures A, B and C from Table 2

Contour 𝜁 (𝑃 ,𝑃 )

Structure A Structure B Structure C

1
𝑃 0.353 0.475 −0.259

2
𝑃 −0.125 −0.016 −0.539

3
𝑃 0.176 0.200 0.042

following metric, which quantifies the level of this overlap. Consider

𝜁 (𝑃 ,𝑃 ) = 2∫𝐱
1𝑃

(𝐱)𝑓𝐗|𝑅𝐿
(𝐱|𝑟𝑃 )d𝐱 − 1, (19)

for 𝑓𝐗|𝑅𝐿
as in Section 3.1.5, with 1𝑃

(𝐱) = 1 if 𝐱 ∈ 𝑃 and 1𝑃
(𝐱) = 0

otherwise, and where 𝑟𝑃 is the 𝑃 -year response of the structure. The
metric 𝜁 (𝑃 ,𝑃 ) takes values in [−1, 1]. Here, 𝜁 (𝑃 ,𝑃 ) > 0 indicates
conservatism of 𝑃 due to overestimation of the 𝑃 -year response,
𝜁 (𝑃 ,𝑃 ) < 0 indicates underestimation of the 𝑃 -year response and so
non-conservatism, and 𝜁 (𝑃 ,𝑃 ) ≈ 0 indicates accurate estimates for
the 𝑃 -year response and so optimal overall structural design given by
IFORM.

To justify our findings regarding 𝜁 (𝑃 ,𝑃 ) in a general case, we apply
the following heuristic argument. First, we observe from Fig. 4 that
CDE𝑃 exhibits approximate marginal symmetry with respect to both
𝐻𝑆 and 𝑆2 (i.e., little marginal skew). We also assume 𝑃1 ⊂ 𝑃2 for
any 𝑃2 > 𝑃1 ≥ 1, and that a contour 𝑃 varies smoothly with 𝐻𝑆 and
𝑆2 for a given 𝑃 . Then, (a) if 𝜁 (𝑃 ,𝑃 ) ≈ 0, the integral over CDE𝑃
within 𝑃 is approximately equal to the integral over CDE𝑃 within
𝑐

𝑃 . We interpret this as indicating that points on 𝑃 coincide with high
values of CDE𝑃 , as in the cases seen in Fig. 5, hence structural responses
corresponding to points on 𝑃 will be of similar magnitudes to those
from the high density regions of CDE𝑃 . However, (b) if 𝜁 (𝑃 ,𝑃 ) > 0,
𝑃 contains the environmental region where CDE𝑃 is non-zero, hence
points on 𝑃 produce structural responses beyond the 𝑃 -year level,
resulting in conservative design using IFORM contour 𝑃 . Further, (c)
if 𝜁 (𝑃 ,𝑃 ) < 0, the intersection between 𝑃 and the non-zero CDE𝑃
region of the environment space is negligible. Given our assumptions,
this arises only when 𝑃 occupies a region of the environmental space
less extreme than that with non-zero CDE𝑃 . Under these circumstances,
points on 𝑃 will produce structural responses corresponding to return
periods less that 𝑃 , resulting in a lack of conservatism in design.

Estimates for 𝜁 (𝑃 ,𝑃 ) in Table 3 support this interpretation, relative
to our estimates in Fig. 5. For structure A, only contour 2

𝑃 appears to
pass through the highest density region of CDE𝑃 . The other contours lie
beyond the highest density region of CDE𝑃 , corresponding to 𝜁 (𝑃 ,𝑃 ) >
0. Observations for structure B are similar, since CDE𝑃 does not vary
considerably between structures A and B. For structure C, relative to
A and B, the highest density regions in CDE𝑃 occur at higher 𝐻𝑆 but
lower 𝑆2. Hence, despite no change in the locations of contour 𝑗

𝑃
(𝑗 = 1, 2, 3), now only contour 3

𝑃 is conservative. Contours 1
𝑃 and 2

𝑃
are clearly non-conservative, as confirmed in Table 3.

Fig. 6 shows the estimated log probability of exceeding the 𝑃 -
year response 3-hour sea state, given by log{1 − 𝐹𝑅𝐿|𝐗(𝑟𝑝|𝐱)} where
𝐹𝑅𝐿|𝐗 is estimated as in Section 3, for 𝑃 = 1000 and for all 𝐗 =
(𝐻𝑆 , 𝑆2) within a subset [0, 25] × [0, 0.08] of the environment space R2.
IFORM contours using the highest ranking environmental model are
overlaid. The panels show that the probability of exceeding 𝑃 -year
response for given environmental conditions varies with structure type,
resulting in differing locations of a ‘frontier’ where this probability
becomes non-zero (i.e., where the log probability exceeds roughly -30),
corresponding to the shaded regions on the plots. For structure A, the
frontier lies along constant 𝐻𝑆 , indicating that 𝐻𝑆 alone effects the
base shear induced on the structure. For structures B and C, we see
convex and concave curvature of the frontier respectively, indicating
that these structures are more susceptible to high- and low-steepness
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conditions respectively. These differences in the underlying wave–
structure interaction are reflected in the positions of CDE𝑃 in Figs. 4
and 5, but not in the locations of the IFORM contours which remain the
same across all structures. This change in frontier location is therefore
the cause of different contour performances across structures, seen
in Table 3 and Fig. 5. For instance, contours 1

𝑃 and 2
𝑃 give non-

conservative estimates for the 𝑃 -year response on structure C because
they fail to account for the concave curvature of the frontier see in
the third panel of Fig. 6, and so not react to the increased severity of
response seen at lower values of 𝑆2. In summary, none of the three
contours 1

𝑃 , 2
𝑃 , 3

𝑃 provides the same level of conservatism for all
three example structures. Indeed some contours, although fitting the
sample data well, are non-conservative for design.

6. Discussion

Offshore structures are subjected to extremes of environmental
conditions (in the current context, significant wave height 𝐻𝑆 and wave
steepness 𝑆2), making structural risk assessment a critical step in the
design process. Ideal methods combine models for environmental ex-
tremes with direct estimation of the environment–structure interaction
from fluid loading. We demonstrate an efficient approach to estimating
the distribution of extreme base shear on three stick structures, in a
central North Sea environment. Environmental modelling is carried
out using a combination of asymptotically justified models for univari-
ate (Davison and Smith, 1990) and conditional extremes (Heffernan
and Tawn, 2004). Simulation of short term conditional wave fields then
exploits the conditional method of Taylor et al. (1997) with efficient
sampling (Towe et al., 2023) to estimate the distribution of Morison
base shear (see Morison et al. 1950).

Using the full probabilistic analysis, we estimate the conditional
density of the environment variables (CDE𝑃 ) given occurrence of the
𝑃 -year response. We adopt CDE𝑃 as a diagnostic tool with which
to evaluate the usefulness of any approach which claims to identify
regions of the environmental space associated with extreme structural
response.

Due to the perceived computational complexity of the forward ap-
proach, metocean engineers often use environmental contour methods
as computationally simpler alternatives to approximate a full proba-
bilistic analysis. These characterise the joint environment only, and
then rely on assumptions about the nature of the environment–structure
interaction to be useful for design (see Ross et al. 2020, Haselsteiner
et al. 2021 for a recent review). The usual argument in favour of
adopting an environmental contour approach is that the contour can
be estimated without knowledge of the structure; this is correct. How-
ever, once the contour is applied to assess the reliability of an actual
structure, an assumption is made that the contour boundary is informa-
tive for environmental conditions likely to generate extreme structural
responses. In this work, we demonstrate that this assumption is not
correct in general.

Results comparing CDE𝑃 with IFORM contour estimates highlight
two deficiencies of the IFORM method, and hence of design contours in
general. First, although design contours are intended to be conservative
by construction, they are unable to reflect the type of structure under
consideration and so may perform well for one structure but not for
another. Second, identification of a good environmental model under-
pinning the contour is challenging, and there is considerable variability
in the location of the contour due to the choice of environmental
model; current practice tends to ignore this source of uncertainty. More
generally, IFORM represents just one of a number of possible variants of
environmental design contours (see Ross et al. 2020, Haselsteiner et al.
2021, Mackay and Haselsteiner 2021, Mackay and de Hauteclocque
2023); it is often not clear which contour is most appropriate in a given
application. (CDE𝑃 allows us to identify the most appropriate contour
approach for a given application, but at the cost of undertaking the full
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Fig. 6. Estimated log probability of exceeding the 𝑃 -year response for 𝑃 = 1000 within a 3-hour sea state as a function of 𝐻𝑆 and 𝑆2, for structures A, B and C (left to right),
obtained using the forward method of Section 3. Overlaid are IFORM contours for the three best-fitting environmental models, with contour 𝑖

𝑃 labelled C𝑖 for 𝑖 = 1… , 3. The
original sample of storm peak (𝐻𝑆 , 𝑆2) is shown as grey dots.
probabilistic analysis; in this instance, we would always choose the full
probabilistic analysis in favour of the contour approach.)

Within the forward model, we adopt the conditional extremes model
of Heffernan and Tawn (2004) to estimate the joint distribution of
extremes only of environmental variables. Using the forward model,
we estimate the conditional density of the environment (CDE𝑃 ), given
an extreme response corresponding to a given return period 𝑃 . We
then use CDE𝑃 to compare with different environmental contours cor-
responding to the same return period. We use the IFORM procedure
to estimate the environmental contour, which requires a statistical
model for the full joint distribution of the environmental variables. We
explore a range of hierarchical models for this purpose, reflecting the
model forms typically used in the ocean engineering literature; these
typically do not include the conditional extremes model. In particular,
we establish that fitting of hierarchical models for 𝐻𝑆 and 𝑆2|𝐻𝑆
is a large source of uncertainty in environmental contour estimation
(see also e.g. de Hauteclocque et al. 2022). We acknowledge that in
future work it would also be interesting to explore the conditional
extremes model for contour estimation further (following the work
of e.g. Jonathan et al. 2010, 2012, 2014a, Ross et al. 2020 or Towe
et al. 2024). In fact, Jonathan et al. (2010) already provides a direct
comparison of environmental contours estimated using the 𝐻𝑆 , 𝑇𝑃 |𝐻𝑆
hierarchical model with that estimated using the conditional extremes
model, where 𝑇𝑃 is the spectral peak period. See also Tendijck et al.
(2023b) for a discussion on extremal characteristics of hierarchical
models.

We employ techniques for selecting the extreme thresholds in the
models of Davison and Smith (1990) and Heffernan and Tawn (2004)
that can lead to subjective choices for each. Recent work by Murphy
et al. (2023) provides an automated approach to threshold selection
that eliminates this subjectivity in the univariate case. Additional meth-
ods for handling the choice of conditioning threshold for the model
of Heffernan and Tawn (2004) exist, such as testing for the indepen-
dence between exceedance and residual values (discussed by Jonathan
et al. 2012) or bootstrap sampling to quantify the uncertainty in param-
eter estimates due to threshold choice (see e.g., Jonathan et al. 2010).
Future analysis could therefore be improved by developing methods to
automate the choice of conditional model threshold which incorporate
the aforementioned techniques, to be used alongside the univariate
method of Murphy et al. (2023).
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In this work, simple stick structures are considered, with a response
dependent on only two environmental variables (𝐻𝑆 and 𝑆2). We
believe that this framework provides sufficiently realistic wave surface
and kinematic models for our structure types. Despite this, future
analysis might benefit from the inclusion of more complex structure
models and wave–structure interactions. In reality, there are factors
such as wind and current, alongside additional directional and seasonal
covariate effects, not accommodated in this work. Structure models
which include effects such as local loading and wave breaking could
also be utilised, alongside improved models for the environment itself.
For example, linear wave theory may be extended by transforming
linear wave characteristics to their respective non-linear equivalents
following the approach outlined in Swan (2020) and Gibson (2020).
Use of more complex structure and environment models, however,
incurs higher computational cost, and so an approach for efficient
estimation of CDE𝑃 that avoids the need for numerical simulation from
fluid loading models may be desirable. Moreover, adoption of methods
of full probabilistic structural design must be undertaken with care,
to ensure rational evidence-based evolution of design procedures. For
example, Norge (2022) identifies that a number of the features of
the methodology of the LOADS joint industry project (Swan, 2020;
Gibson, 2020) are either not compatible with the NORSOK standard, or
not yet sufficiently well stress-tested for adoption within the standard.
From this perspective, contours retain the advantages of being less
computationally costly to employ, whilst also only requiring knowledge
of the joint environment.

One approximate approach to reduce the bias in extreme response
and associated risk statistics estimated from an environmental con-
tour is to calibrate contour characteristics for a specific structural
archetype. The necessary calibration would be estimated by applying
the full forward probabilistic analysis for the structural archetype,
then adjusting contour characteristics and/or associated calculations
to reduce the observed bias in extreme response, or any other statistic
of interest, estimated using the contour; indeed, the CDE might prove
a useful basis for contour calibration. It might be possible to apply
different calibration corrections to the contour in different parts of the
environmental space in a systematic manner, with reduced need for
user judgement, so that the contour better mimics CDE. The appro-
priate calibration could then be used with an environmental contour
applied to that specific archetype. Note that this adjustment of contour
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characteristics to accommodate structural characteristics, is quite dif-
ferent to contour adjustment for short-term environmental variability
(recommended by some standards; e.g., NORSOK N-003 2017), and
to adjustment of contour estimates made from serially-correlated data
(e.g., de Hauteclocque et al. 2022).

During the review process, one referee queried (a) the usefulness of
CDE𝑃 as a diagnostic for environmental contours, and (b) whether the
arguments given in the current work are an adequate reflection of the
dangers (or otherwise) of environmental contour methods for design.
We believe that the novelty of CDE𝑃 as a diagnostic for environmental
contours stems from its ability to capture the specific regions of the
environment space responsible for extreme structural response, in a
clear and systematic fashion with little need for user judgement. In con-
trast, current evaluation (and calibration) of environmental contours
focuses only on comparison of responses calculated at user-selected
points on the contour frontier with the relevant percentiles of the
marginal short-term response distribution (e.g., Ross et al. 2020). The
additional information provided by CDE𝑃 , in our opinion, provides
improved qualitative understanding together with a basis for systematic
quantification of the drawbacks of (IFORM) environmental contours
when applied to different structural archetypes. The current analysis
illustrates the benefits of full probabilistic structural analysis relative to
approximate analysis using environmental contours. Wherever possible,
we recommend the application of full probabilistic structural design,
or alternatively of contour methods carefully calibrated for specific
structural archetypes using full probabilistic analysis, potentially using
the conditional density of the environment as a basis for calibration.
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