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Abstract
We formulate Gaussian and circular random-matrix models representing a
coupled system consisting of an absorbing and an amplifying resonator, which
are mutually related by a generalized time-reversal symmetry. Motivated by
optical realizations of such systems we consider a PT or a PT T ′ time-reversal
symmetry, which impose different constraints on magneto-optical effects, and
then focus on five common settings. For each of these, we determine the
eigenvalue distribution in the complex plane in the short-wavelength limit,
which reveals that the fraction of real eigenvalues among all eigenvalues in the
spectrum vanishes if all classical scales are kept fixed. Numerically, we find that
the transition from real to complex eigenvalues in the various ensembles display
a different dependence on the coupling strength between the two resonators.
These differences can be linked to the level spacing statistics in the Hermitian
limit of the considered models.

This article is part of a special issue of Journal of Physics A: Mathematical and
Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

PACS numbers: 03.65.−w, 05.45.Mt, 11.30.Er, 42.25.Dd

(Some figures may appear in colour only in the online journal)

1. Introduction

The investigation of non-Hermitian PT -symmetric Hamiltonians is motivated by the fact
that they possess eigenvalues which are either real or occur in complex-conjugate pairs [1].
Considerable attention has been paid to the delineation of systems with a completely real
spectrum, with many works focussing on exactly solvable one-dimensional situations (for
reviews see [2, 3]). With the recent advent of optical implementations [4, 5] it has been
realized that the appearance of complex eigenvalues drives a number of interesting switching
effects [4–12], including the possible onset of lasing [13–16], which moves the most unstable
states (with energies or frequencies that have a large positive imaginary part) into the centre
of attention. At the same time, these implementations motivate the study of multi-dimensional
systems in which many modes become mixed by multiple scattering. Here, we investigate
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the formation and distribution of the complex spectrum in such situations on the basis of
a statistical approach rooted in random-matrix theory [17, 18], which samples systems that
respect a certain set of symmetries and share a number of well-defined characteristic energy
and time scales, but differ in the microscopic details of the dynamics.

We extend earlier exploratory works of this approach [19, 20] to consider random-matrix
ensembles which differ by the assumed absence or presence of elastic or dissipative magneto-
optical effects. This leads to a choice between two generalized time-reversal symmetries,
termed PT and PT T ′ symmetry and physically motivated in [21]. These ensembles apply
to a coupled-resonator geometry (with an absorbing resonator possessing M internal modes
coupled to a matching amplifying resonator via an interface of N channels with transparency T ,
and amplification or absorption rate set to a common value μ). The optical setting motivates
to consider five particular scenarios (OO, UO, UO′, OA and OA′). These can be studied
either based on an effective Hamiltonian or in terms on an effective time-evolution operator
(a quantum map), as is described in section 2.

In section 3 we determine for each scenario the distribution of eigenvalues in the complex
plane in the short-wavelength limit M → ∞ at fixed α = M/N, T and μ. We find that in
this limit, the fraction of real eigenvalues among all eigenvalues vanishes at any finite fixed
amplification and absorption rate, with the details of the eigenvalue distribution in the complex
plane depending on the symmetry class. This supports the conclusion of earlier work on some
of these ensembles [19] that the transition to the complex spectrum occurs at a characteristic
absorption rate μPT which is classically small when compared to the inverse dwell time
ET = 1/tdwell = NT�/2π in each part of the resonator, but large when compared to the mean
level spacing �.

In order to investigate the details of this transition we then present results of extensive
numerical investigations (section 4 and 5). These reveal that the various ensembles display
a different dependence of the transition on the coupling strength T , as well as on M and N.
This division is associated with specific mechanisms of eigenvalue coalescence, which we
relate to differences in the level spacing statistics in the Hermitian limit by extending the
perturbative considerations of [19].

Section 6 contains our conclusions.
Throughout this work we denote eigenvalues as E, but set � ≡ 1; all considerations thus

directly apply to the eigenfrequencies in optical analogues of non-Hermitian quantum systems.

2. Random-matrix ensembles

Following [19–21], we consider a coupled-resonator geometry where one part of the system
(L) is absorbing and the other part (R) is amplifying, with the absorption and amplification
rate set to a matching value μ. In each part random multiple scattering at a rate 1/τ results
in a mixing of M = 1/�τ internal modes, where � is the mean level spacing, and the two
parts are coupled together at an interface which supports N open channels of transparency Tn,
n = 1, 2, . . . , N. In order to capture the consequences of multiple scattering we utilize effective
Hamiltonians and quantum maps, which model these systems as illustrated in figure 1.

2.1. Effective Hamiltonians and symmetry classes

The general structure of an effective Hamiltonian for this situation can been derived in a
systematic scattering approach [19, 21]. This yields

H =
(

HL − iXL �

� HR + iXR

)
, (1)

2



J. Phys. A: Math. Theor. 45 (2012) 444006 C Birchall and H Schomerus

F
L
e–µ F

R
e+µ

CH
L
– i µ

)b()a(

H
R
+ i µΓ

Figure 1. Illustration of (a) the effective Hamiltonian (1) and (b) the quantum map (6) used to
model an absorbing resonator (L) which is symmetrically coupled (via an interface characterized
by � or C) to an amplifying resonator (R). Various symmetry classes arise depending on the
constraints imposed on the internal Hamiltonians HL and HR. The depicted situation applies to
uniform amplification or absorption with rate μ; further symmetry classes arise when μ is replaced
by matrices XL and XR.

where the M × M-dimensional Hermitian matrices HL and HR (XL and XR) represent the
internal Hermitian (anti-Hermitian) dynamics in each part of the system, while the coupling
matrix is of the specific form

� = �M

π
diag(γ1, . . . , γN︸ ︷︷ ︸

N entries

, 0, . . . , 0︸ ︷︷ ︸
M − N entries

), γn =
√

Tn

1 + √
1 − Tn

. (2)

The specific form of (1) displays a structure which goes beyond the mere symmetry
requirements usually applied in mathematical classifications of non-Hermitian matrices (for
comprehensive overviews see [22–24]). In particular, the matrix � needs to be positive definite
and bounded in order to model physical coupling between two resonators. This structure
resembles analogous models in mesoscopic superconductivity, where the two subspaces
represent particles and holes, and the coupling is provided by Andreev reflection [25–27].

We now impose two different versions of generalized time-reversal symmetry. Traditional
PT symmetry involves the parity operatorP = σx⊗1M , where the Pauli matrix σx interchanges
the subspaces R and L, as well as the time reversal operation T = K, where K is the complex
conjugation in a given basis, assumed to coincide with the basis of (1). Invariance under the
joint PT operation then demands

H = PH∗P ⇒ HL = H∗
R = HT

R , XL = X∗
R = XT

R . (3)

In aPT -symmetric basis, the secular polynomial s(E ) = det (H−E12M ) has real coefficients,
which constraints each eigenvalue to be real or being partnered by its complex conjugate.

In Hermitian situations, the complex conjugation T is equivalent to taking the transpose
of the matrix (thus passing from the right eigenvalue problem to the left eigenvalue problem).
In non-Hermitian situations, this transposition amounts to an independent operation, denoted
as T ′ [19, 21]. For a PT T ′-symmetric situation, we now obtain the constraints

H = PH†P ⇒ HL = HR, XL = XR, (4)

which is of interest as this yields the same spectral constraints as PT symmetry.
For each of these two cases, a number of ensembles can now be formulated depending

on the presence or absence of additional symmetries for H ≡ HL and X ≡ XL. In particular,
we consider the cases that they may be further constrained to be real and thus symmetric
(labelled O for orthogonal), complex (labelled U for unitary), or purely imaginary and thus
antisymmetric (labelled A). In combination, we then arrive at nine symmetry classes with
PT -symmetry, denoted as SHSX, Si = O, U, A, as well as eight additional classes SHS′

X with
PT T ′-symmetry (OO and OO′ coincide as in this case T ′ is an independent symmetry).

A detailed discussion of the physical requirements corresponding to the various
symmetries in optical settings is given in [21]. Motivated by this context, we focus on

3
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five situations, OO, UO, UO′, OA and OA′. The most important scenario is that of OO
symmetry, with H = HT = H∗, X = XT = X∗, which includes ordinary optical systems with
gain and loss modelled by a complex refractive index. The cases of UO and UO′ symmetry
(X = XT = X∗ but H not further constrained) model systems with elastic magneto-optical
effects, with different symmetry constraints imposed on the effective magnetic field. We will
also consider the OA and OA′ cases, as it is known that absorption can be provided by
magneto-optical devices [28] (in practice, however the design of a matching magneto-optical
amplification may prove challenging).

2.2. Random-matrix ensembles

The described symmetry classes are converted into statistical ensembles under convenient
sampling of the M × M-dimensional Hermitian matrices H and X . Specifically, depending on
whether SH = O or U we choose H from the standard Gaussian orthogonal or unitary ensemble
(GOE or GUE) of random matrix theory [17, 18], respectively. The variance |Hlm|2 = σ = 1/M
of the matrix elements is set such that the probability distribution of eigenvalues E becomes
stationary in the large-M limit, corresponding to a Wigner semicircle law with radius 2,

ρ̄(E ) = π−1
√

1 − E2/4. (5)

For SX = O symmetry of the anti-Hermitian part, we model uniform absorption and
amplification by setting X = μ1M . For the case SX = A, we model iX = −A via a
real antisymmetric matrix with random Gaussian elements, and quantify the degree of non-
hermiticity by μ2 = M−1tr AAT .

Throughout, we will model the coupling between the two parts of the system via
N ≡ αM channels of identical transparency T . Together with the chosen energy scaling
(5), which gives �0 ≡ M/ρ(E = 0) = M/π , the coupling matrix (2) then takes the
form � = diag(γ , . . . , γ , 0, . . . , 0) = γ diag(1N, 0M−N ), with N finite diagonal entries
γ = √

T (1 + √
1 − T )−1.

We denote these ensembles as GSHSXE or GSHSXE′, and specifically consider the cases
GOOE, GUOE, GUOE′, GAOE and GAOE′, which correspond to the optical settings described
in the previous subsection.

2.3. Effective quantum maps

An alternative approach in random-matrix theory bases the considerations on circular
ensembles of effective time-evolution operators [17, 18]. For the coupled-resonator geometry,
the general structure of these operators has been identified in [20, 21]. They take the form of
a quantum map

F =
√

C

(
e−μτ FL 0

0 eμτ FR

) √
C,

√
C =

(
Re γ̃ P + Q −i Im γ̃ P
−i Im γ̃ P Re γ̃ P + Q

)
, (6)

which delivers quasienergies En via the eigenvalue problem

Fψn = λnψn, λn = exp(−iEnτ ). (7)

The properties of the interface are now encoded in the parameter γ̃ =
√√

R + i
√

T , the
rank-N projector P = diag(1N, 0M−N ), and the complementary projector Q = 1M − P. The
internal dynamics are described by the M × M-dimensional unitary matrices FL and FR, which
satisfy FL = FT

R for PT symmetry, and FL = FR for PT T ′ symmetry. Finite μ breaks the
unitarity of the quantum map. (In the specified form, (6) holds for SX = O symmetry with
uniform amplification and absorption, but by the replacement μ → X can be adapted to other
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symmetries.) Appropriate random-matrix ensembles follow by choosing F = FL from the
standard circular orthogonal or unitary ensembles (COE or CUE), respectively [17, 18]. We
denote these circular ensembles with PT and PT T ′ symmetry as CSHSXE and CSHSXE′,
respectively.

2.4. Overview of characteristic parameters and scales

In summary, each RMT ensemble is specified by the symmetry SHSX, as well the following
four dimensionless parameters: the number of modes M = 1/�τ in each of the two parts of the
system, the relative size α = N/M of the interface, the transparency T of the interface (encoded
in γ or γ̃ ), and the degree of non-hermiticity μ/ET, where ET ≡ NT/2π� is the Thouless
parameter mentioned in the introduction. In the Hamiltonian variants of RMT, � = π/M and
ET = Tα/2, while in the quantum map version with τ ≡ 1, � = 2π/M and ET = Tα.

3. Eigenvalue distribution in the large M limit

In order to get insight into the distribution of eigenvalues in the complex plane, and the
conditions under which they may accumulate on the real axis, we first consider the limit of
a large number of internal modes M → ∞, at fixed α = N/M, μ/ET and T . For an optical
system, this limit is realized by decreasing the wavelength (increasing the frequency) in a given
resonator geometry while keeping the absorption and amplification rate μ at a wavelength-
independent value. In random-matrix theory, this limit can be approached via systematic
diagrammatic expansions, where the leading order captures the averaged eigenvalues density
neglecting fluctuations on the scale of the level spacing [25, 29–31]. We now adapt this
approach to the symmetries in question.

3.1. Generalized Pastur equation

The effective Hamiltonian H generally possesses complex eigenvalues, and the complex-
analysis nature of the method employed below suggests to denote these as z. The distribution
of eigenvalues in the complex plane can then be written as

ρ(z, z∗) = 1

2M

1

π

∂trG11

∂z∗ , (8)

where G11 denotes the 2M × 2M-dimensional top-left block of the 4M × 4M-dimensional
matrix Green function

G =
(

z − H iλ
iλ z∗ − H†

)−1

. (9)

The limit λ → 0 is implied to be taken at the end of the calculation.
In order to work out the random-matrix average we expand the matrix Green function as

a geometric series

G = U−1
∞∑

n=0

(−H0U−1)n, H0 = diag(H, H, H, H), (10)

U =

⎛
⎜⎜⎝

z + iμ −� iλ 0
−� z − iμ 0 iλ
iλ 0 z∗ − iμ −�

0 iλ −� z∗ + iμ

⎞
⎟⎟⎠

−1

, (11)
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where the momentarily stipulated form of H0 holds for the GOOE and GUOE′ ensembles (the
other ensembles are discussed thereafter).

The average can now be carried out by contractions of the Gaussian random variables in
H, which can be represented diagrammatically. The leading order (the planar limit) is given
by rainbow diagrams in which the contraction lines do not cross,

Ḡ = U−1 + U−1 H0ḠH0 Ḡ, (12)

which sum up to

Ḡ = U−1 + U−1[G ⊗ 1M]Ḡ ⇒ Ḡ = (U−1 − G ⊗ 1M )−1, (13)

where G = 1
M trM Ḡ is a reduced 4 × 4 matrix Green function.

The matrix U−1 − G ⊗ 1M on the right-hand side of (13) separates into N blocks of the
form (uγ − G) and M − N blocks of the form (u0 − G), where

uγ =

⎛
⎜⎜⎝

z + iμ −γ iλ 0
−γ z − iμ 0 iλ
iλ 0 z∗ − iμ −γ

0 iλ −γ z∗ + iμ

⎞
⎟⎟⎠ . (14)

We thus can invert each block separately, and take the partial trace on both sides. This leads
to the generalized Pastur equation

G = α(uγ − G)−1 + (1 − α)(u0 − G)−1 (15)

for the GOOE and GUOE′ ensembles.
For the GUOE ensemble, (11) holds with H0 = diag(H, H∗, H, H∗) =

diag(H, HT , H, HT ). The transpositions reduce the number of rainbow diagrams in the
Gaussian average, which leads to the modified equation

G = α(uγ − P1GP1 − P2GP2)
−1 + (1 − α)(u0 − P1GP1 − P2GP2)

−1, (16)

where P1 = diag (1, 0, 1, 0) and P2 = diag (0, 1, 0, 1).
For the GOAE ensemble, the random matrix A has to be incorporated into H0 =

diag(H + A, H + A, H − A, H − A), while U is replaced by Ũ = U |μ=0. Instead, μ appears
via the contractions of A. This leads to the condition

G = α(ũγ − G + RGR)−1 + (1 − α)(ũ0 − G + RGR)−1, (17)

where R = μ diag(1, 1,−1,−1) and ũγ = uγ |μ=0.
Finally, in the GOAE′ ensemble we have H0 = diag(H + A, H − A, H − A, H + A), and

G = α(ũγ − G + R′GR′)−1 + (1 − α)(ũ0 − G + R′GR′)−1, (18)

where R′ = μ diag(1,−1,−1, 1).

3.2. Solution of the generalized Pastur equation

The condition (15) can be rephrased as

(uγ − G)G(u0 − G) = u(1−α)γ − G, (19)

thus, a third-degree matrix polynomial, and the versions (16)–(18) can be rewritten
analogously. If we write G in terms of its 16 components and eliminate these successively, we
end up with a polynomial of a very large degree, which prohibits an exact analytical solution.
Therefore, we pursue a semi-analytical approach which starts with the exact solution G0 in
the uncoupled case α = 0, where G0(u0 − G0) = 14 (independently of γ ). This is solved by
G0 = u0/2+(u2

0/4−14)
1/2, where the square root of the matrix K = u2

0/4−14 = V diag knV −1

6
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Figure 2. Eigenvalue distributions in the complex plane for the GOOE ensemble (representing
an optical system without magneto-optical effects and uniform amplification or absorption), for
N/M = α = 0.2, T = 1 and (a) μ = 0.1 = ET as well as (b) μ = 0.2 = 2ET. The scatter plots in
the top panels are obtained by numerical diagonalization of 20 matrices H taken from the GOOE
with M = 400 and N = 80. The results in the lower panels are obtained from the generalized
Pastur equation (15), as described in the text. These results also apply to the GUOE′.

is defined by diagonalization, K1/2 = V diag (±√
kn)V −1, which here can be carried out

explicitly as K decouples into two independent 2 × 2-dimensional blocks. The correct branch
is determined by the limit G0(z = z∗ = 0; λ = 0) = −iσx ⊗ 12.

To describe the following steps let us denote the desired solution of (15) as G(z, z∗;α, λ).
Now, we proceed as follows. (i) We determine G(z0, z∗

0; 0, λ) = G0(z0, z∗
0; λ) for a fixed value

of z0 (e.g., z0 = 0) and a finite value of λ (concretely chosen to equal the eventual value of α, as
we expect the support of the spectrum to be of that order). (ii) For values α increasing in small
increments from zero to the desired final value, we solve (15) numerically for G(z, z∗;α, λ),
where the initial condition is taken as the solution from the previous step. (iii) Analogously,
we next decrease the value of λ to a small value (here taken as 0.001; keeping λ small but
finite regularizes branch cuts). The same procedure can be applied to solve (16)–(18).

In practice, we find that a reliable numerical approximation of the desired solution
G(z0, z∗

0;α, 0) is obtained in a few (about 10) steps. We can next keep α and λ fixed but
vary z in small steps to sample the complex z plane. Furthermore, by considering z∗ as a
formally independent variable we can also obtain the numerical derivatives required for the
calculation of the eigenvalue probability density

ρ̄(z, z∗) = 1

2π

∂

∂z∗ (G11 + G22). (20)

The lower panels in figure 2 illustrate the resulting eigenvalue distribution for the case of
the GOOE and GUOE′ ensembles, governed by (15), as density plots for α = 0.2 and T = 1
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Figure 3. (a), (b) Same as figure 2, but for the GUOE ensemble. (c), (d) Analogous results for the
GOAE and GOAE′ ensembles, respectively, with μ = 2ET.

(γ = 1), for two different values of μ. The top panels show the eigenvalues of 20 random
GOOE matrices with M = 400, N = 80. Figure 3 shows the corresponding results for the
GUOE ensemble, as well as results for the GOAE and GOAE′ ensembles for a single value
of μ, obtained from (16), (17) and (18), respectively. In all cases there is excellent agreement,
which includes details such as the branches of the eigenvalue support extending along the
real axis in the range |Re E| > 2, observed for the GOOE and GOAE′ ensembles. (We also
confirmed quantitative agreement by comparing histograms at fixed Re E.)

The one feature which is not captured by the diagrammatic expansion is the visible
accumulation of eigenvalues in the whole range |Re E| < 2 along the real axis. However, we
find numerically that with the present scaling of parameters (μ/ET fixed independently of M),
the fraction of these eigenvalues amongst all eigenvalues steadily decreases ∝ M−1/2 as M
increases, indicating that the real component of the spectrum indeed becomes negligible in the
limit M → ∞. This is consistent with the earlier prediction for the GOOE and the GOUE [19]
that the transition to a complex spectrum happens for a characteristic value μPT which is much
less than ET if M is large. These features render the transition out of the reach of the described
diagrammatic approach. In the following sections, we will first study the transition in detail
based on direct numerical sampling and diagonalization of the random-matrix ensembles, and
then extend the perturbative treatment of [19] to quantify the dependence of μPT on T , M
and N.

4. Transition from a real to a complex spectrum

The transition from real to complex-conjugate pairs of eigenvalues can be quantified by
considering the fraction fc of eigenvalues which are complex; fc = 0 indicates a fully
real spectrum, while fc = 1 if the spectrum is fully complex. We determine this fraction
numerically as a function of the non-hermiticity parameter μ, while keeping T , M and N
fixed. In the Gaussian ensembles, the energy levels are taken only from the central region
Re E ≈ 0 of the spectrum, where �0 ≈ π/M is approximately constant. This eliminates the
spectral edge effects observed in some of the eigenvalue distributions in the previous sections,

8
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Figure 4. Average fraction fc of complex eigenvalues as a function of the absorption rate μ,
scaled to μO = √

N�/2π . Panel (a) shows results for the GOOE around Re E = 0, while panel
(b) shows results for the COOE, obtained in both cases by numerical sampling of the ensembles
with M = 200 and N = 40. The different curves correspond to different transparencies T of the
interface between the amplifying and absorbing resonators. For T > TO ∼ 1/N, the initial stages
of the transition to a complex spectrum is coupling-independent.

and represents the typical physical conditions met in the short-wavelength limit of realistic
resonators (where the effective level index is large, and the spectrum is not bounded from
above). Furthermore, for SX = O (uniform absorption and amplification), we compare the
results to the circular ensembles, as in these the mean level spacing is energy independent.
(For SX = A the quantum maps are less convenient.)

Our eventual goal is to characterize the transition in the different ensembles by the coupling
dependence of the critical scale

μPT = g(T )μ0, (21)

which we identify via fc(μPT) ∼1/2 (without requiring exact equality). The scale μ0 is
chosen such that the function g(T ) does not depend on M and N if M 
 N 
 1 (with
possible exceptions for weak coupling T < TO,A, as specified below). By varying M and N
independently we find that this scale depends on the symmetry SX = O or A, and can be
suitably written as

μ0 =
{√

N�/2π ≡ μO, (OO, UO and UO′);√
M�/2π ≡ μA, (OA, OA′).

(22)

This being fixed, we set M = 200 and N = 40 and determine fc(μ) for various values of
T with μ measured in units of the appropriate μ0, as shown in figures 4–7, and focus the
discussion on the ensemble-specific form of the scaling function g(T ) in (21).

In the GOOE and COOE (figure 4), we find that the transition becomes coupling-
independent as soon as T > TO, where

TO ∼ 1/N. (23)

In this regime g(T ) ≈ 1; the slight T -dependence still observed in the plots are finite-size
effects, which disappear if M and N are further increased. (However, in this limit TO becomes
very small, so that the behaviour for T < TO would be difficult to illustrate; the chosen values
of M and N thus constitute a suitable compromise.) In the GUOE and CUOE (figure 5), on the
other hand, the transition displays coupling dependence throughout the whole range of T .
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Figure 5. Same as figure 4, but for the GUOE (a) and CUOE (b). Here a clear dependence on T
persists throughout the entire range of this parameter.
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Figure 6. Same as figure 4, but for the GUOE′ (left panel) and CUOE′ (right panel). Again, a
coupling-independent regime emerges for T > TO ∼ 1/N.

These results for OO and UO symmetry agree with the predictions in [19], which we
systemize in the following section to develop a microscopic picture that also applies to the
remaining ensembles considered here. The numerical results for these cases are as follows.

In the GUOE′ and CUOE′ (figure 6), the transition displays a similar coupling
independence as in the GOOE and COOE, with μPT (and thus g(T )) roughly scaled down by
a factor of about

√
2.

In the GOAE and GOAE′ (figure 7), the scale μA applies. In both ensembles, there
is almost no coupling dependence throughout the whole range of T , with exception of the
weak-coupling regime T � TA in the GOAE′, which is now delineated by

TA ∼ 1/N2. (24)

Interestingly, in this regime g(T ) decreases with increasing T , which amounts to an anomalous
behaviour—the coupling between the resonators enhances the fragility of the real spectrum,
in contrast to the usual situation where increasing the coupling furthers the balance of the
non-Hermitian effects in the system.

Note that in the limit M = N/α → ∞ studied in section 3, μO,A/ET → 0 as well as
TO,A → 0.
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Figure 7. Same as figure 4, but for the GOAE (a) and the GOAE′ (b), and with μ now given in
units of μA = √

M�/2π . The transition is almost coupling independent, with exception of the
weak-coupling regime T < TA ∼ 1/N2 of the GOAE′, where the characteristic scale μPT increases
as T → 0.

5. Relation to level spacing statistics

To explain the observations of the previous section, we now develop a microscopic picture
of the transition from a real to complex spectrum. This is based on two ingredients, the level
statistics in the Hermitian limit μ = 0, and the interaction of the eigenvalues on the real axis
as μ is increased. Focusing on these two ingredients is motivated by the fact that the formation
of complex eigenvalues requires two real eigenvalues to coalesce. The required degree of
nonhermiticity thus depends on the distance of the levels at μ = 0, and the typical size of the
matrix elements which mix the levels. The ensembles studied here display different degrees
of level repulsion and level mixing, which also depend on the coupling strength T , and our
aim is to show that these characteristics are consistent with the coupling dependence of the
complex fraction fc reported in the previous section.

We start with some preliminary observations that justify to separate the problem of level
spacing statistics at μ = 0 from the problem of level mixing at finite μ. First, we note that
at μ = 0, T = 0, the system consists of two uncoupled passive resonators, which both have
an identical real spectrum. In order to inspect how this degeneracy is lifted, we pass over to a
P-symmetric basis, HP = UHU , where U = 2−1/2(σx + σz) diagonalizes σx, which gives

HP =
(

H + � −iμ
−iμ H − �

)
(GOOE and GUOE′) (25)

HP =
(

Re H + � i Im H − iμ
iIm H − iμ Re H − �

)
(GUOE) (26)

HP =
(

H + A + � 0
0 H + A − �

)
(GOAE) (27)

HP =
(

H + � A
A H − �

)
(GOAE′). (28)

In the Hermitian limit μ = 0 (implying also A = 0), all these transformed Hamiltonians
are block diagonal, with exception of (26) for the GUOE. This is the case because in the other

11
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Figure 8. Level spacing distribution of real eigenvalues in the Hermitian limit of the GOOE
(curves) and COOE (points), obtained by numerical sampling of these ensembles with M = 200
and N = 40. These results also apply to the GOAE′ and COAE′.

cases P is an exact symmetry; moreover, for the GOOE, GOAE and GOAE′, T and T ′ hold
separately if μ = 0 or A = 0. These properties lead to different level statistics in the Hermitian
limit, which in all cases but for the GUOE involve the superposition of two non-interacting
level sequences E+ and E−, obtained from H +� and H −�, respectively. The two sequences
are degenerate at T = 0, but are modified by �, which perturbs the two sequences in different
ways, and because of its positive definiteness also induces an approximately rigid shift.

In the non-Hermitian case (finite μ or A) the P symmetry remains exact in the GOAE,
while T ′ symmetry remains exact in the GOOE and T symmetry remains exact in the GOAE
and in the GOAE′. These differences are reflected in the matrix elements that mix the level
sequences. For this, we recall that in almost-degenerate perturbation theory, the effective
Hamiltonian of two adjacent levels Ei and Ej is

H2 =
(

Ei + Vii Vi j

Vji E j + Vj j

)
, (29)

where V is a generic perturbation. The perturbation theory is straightforward at small T , but
as T increases levels display exact or avoided crossings. One can then still base estimates by
stipulating a typical spacing � of two adjacent levels at finite T , and restricting the perturbative
analysis to the wavefunction overlap [19].

As a backdrop for the ensemble-dependent discussion of the details, we show in
figures 8 and 9 numerically evaluated level-spacing statistics P(s) at μ = 0, where s is
the distance between adjacent levels. In the Gaussian ensembles, we focus again on the bulk
of the spectrum (close Re E ≈ 0); for SX = O these results are also compared with results
from the circular ensembles (as before M = 200 and N = 40).

In figure 8, P(s) is shown for the GOOE and COOE. The data applies to the full spectrum
of H, thus, the superposition of the sequences E+ and E− of HP at μ = 0 (with mean level
spacing s̄ = �/2), which is appropriate as these sequences become mixed by finite μ. At
small coupling T < TO ∼1/N, the statistics is dominated by the closeness of levels which
degenerate at T = 0. Based on (29), one then finds μPT ∼N

√
T�/2π , thus g(T ) ∼√

NT � 1.
For T > TO, levels in the two sequences cross (giving P(0) ≈ 1/�), and the spacing statistics
quickly converges to a coupling-independent form. At finite μ, adjacent levels of the different
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Figure 9. Same as figure 8, but for the GUOE and CUOE (a), the GUOE′ and CUOE′ (b), and a
single block H + �, corresponding to the levels that are mixed by finite A in the GOAE (c).

sequences E+
n and E−

m with |E+
n − E−

m | ∼� are mixed by a matrix element of squared size
|μ〈ψ+

n |ψ−
m 〉|2 ∼μ2/N [19], which becomes comparable to �2 at μPT ∼√

N�/2π = μO, up
to factors of order unity because of the influence of the level fluctuations. This qualitatively
explains the approximate coupling-independence of fc(μ), observed for this ensemble in the
previous section (figure 4). One can interpolate between the weak-coupling and finite-coupling
regimes by setting g(T ) ≈ (1 + 1/NT )−1/2.

Figure 9(a) shows the analogous result for the GUOE and CUOE. Here, finite �

also induces a mixing of the originally degenerate sequences E+ and E−, which results
in a coupling-dependent level repulsion (with P(0) = 0). This corresponds well to the
persistent coupling dependence of fc(μ), observed in figure 5. Based on (29), one now
finds μPT ∼√

NT�/2π [19], thus g(T ) ∼√
T , which holds across the whole range of T ,

up to modifications of order unity, which we now can associate to the influence of the level
statistics.

In the GUOE′ and CUOE′ (figure 9(b)), on the other hand, levels are again not mixed by
finite T . Thus, a coupling-independent level statistics again emerges for T > TO, with is similar
to the result for the GOOE/COOE (figure 8), with P(0) = 1/�. The modal value is shifted
to slightly larger s, in accordance with the larger degree of level repulsion in the standard
GUE/CUE [17]. This behaviour corresponds well to the approximate coupling-independence
of fc(μ) in figure 6. We find in the perturbative treatment that g(T ) is the same as in the
GOOE, up to a possible factor of order unity due to the small differences in the level spacing
statistics.

In the GOAE, the superimposed level sequences display the same statistics as in the
GOOE. However, A does not mix these sequences; instead, eigenvalue coalescence must
happen within a given sequence. Therefore, we consider the spacing within a fixed sequence,
which is shown in figure 9(c) (here the mean levels spacing is s̄ = �). The result is almost
indistinguishable from the standard Wigner distribution of the GOE (with P(s) ∝ s for small
s) [17, 18], as the main effect of � is a rigid shift; small deviations appear only for T ≈ 1. This
agrees well the corresponding behaviour of fc(μ) in figure 7(a). Perturbatively, the mixing
is given by overlaps amn = 〈ψ+

n |A|ψ+
m 〉 of size a2

mn = μ2/M, which must be of order �2 for
eigenvalues to coalesce. Thus, we can write μPT ≈ √

M�/2π = μA (up to a factor of order
unity), which is independent of N.

The data in figure 8 also applies to the GOAE′, which shows a similar coupling
independence, figure 7(b), as the GOOE and GUOE′. The anomalous behaviour at small
T can be understood from the fact that in this regime eigenvalue coalescence predominantly
occurs between levels E+

n , E−
n of the two sequences that are degenerate at T = A = 0.
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Thus, perturbatively their eigenvectors ψ+
n ≈ ψ−

n are identical, and the first-order coupling
〈ψ−

n |A|ψ+
n 〉 = 0 because A is antisymmetric (and ψ±

n is real). For T > TA, on the other
hand, the coalescence is between originally non-degenerate levels of the two sequences, and
μPT ∼√

M�/2π = μA (up to a factor of order unity, and again independent of N), as in the
GOAE.

6. Conclusions

In summary, motivated by recent optical realizations of non-Hermitian PT -symmetric
quantum systems, we identified a number of symmetry classes which can be realized in
optical resonators and differ by a choice between two generalized time reversal symmetries
(PT or PT T ′), as well as the absence or presence of magneto-optical effects in the Hermitian
and nonHermitian parts of the dynamics. Specifically we considered five scenarios, with
symmetries termed OO, UO, UO′, OA and OA′.

Our analytical results reveal that in the short-wave limit, the fraction of real eigenvalues
among all eigenvalues in the spectrum decays to zero at any classically finite amplification and
absorption rate μ. Based on numerical results, and an extension of the perturbative results in
[19], we find that the amplification and absorption rate μPT ≈ μ0g(T ) at which real eigenvalues
turn complex is indeed characterized by a scale

μ0 =
{√

N�/2π ≡ μO, (OO, UO and UO′);√
M�/2π ≡ μA, (OA, OA′),

(30)

which is classically small but microscopically large. Furthermore, the scenarios differ in
the dependence g(T ) on the coupling strength T between the absorbing and amplifying
components, which can be explained in terms of the level spacing statistics in the Hermitian
limit μ = 0, and distinct mechanisms of how these levels are then mixed when μ is finite.
For UO symmetry, the transition is T -dependent over the whole range of this parameter. In
the OO and UO′ classes, a significant dependence is only observed for T < TO ∼1/N, while
the OA′ symmetry class displays an anomalous dependence of the transition on the coupling
strength in the range T < TA ∼1/N2. In the OA symmetry class, there is negligible coupling
dependence over the whole range of T .

The introduced models possess a structure that respects the constraints imposed by
characteristic energy and time scales, the physical nature of the amplification and absorption,
and the accessible coupling strengths of a realistic (possibly semitransparent) interface. The
classification of these models can be straightforwardly extended to include any symplectic,
chiral, particle-hole like, or additional geometric symmetries, as previously discussed in
Hermitian situations [25–27, 32–34].

In this work we focused on ensemble-specific spectral properties. However, as is generally
the case in random-matrix theory, there are many quantities that are less ensemble-specific and
should display a large degree of universality. The prime example is the spectral statistics of the
complex eigenvalues in the bulk of the spectrum. If one is interested in such statistics, simpler
models can be employed. For example, in scattering theory [31] the effective Hamiltonian has
a semidefinite anti-Hermitian part, but the bulk spectral statistics can be studied via the Ginibre
ensemble with complex entries [35]. Analogously, the spectral constraints of PT or PT T ′

symmetry are also obeyed by the real Ginibre ensemble, which has a much simpler matrix
structure than our ensembles, and for which detailed rigorous results are available [36–38].
That this ensemble is a good model for other non-Hermitian ensembles has been demonstrated,
e.g., for the case of lattice QCD in [39]. Notably, in this ensemble, in the stipulated limit with
fixed classical scales, the fraction of real eigenvalues decays as 1/

√
M [40].
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An important constraint in the applicability range of any random-matrix ensemble is the
requirement that many modes are well mixed by multiple scattering. This is not the case in
(quasi) one dimensional PT -symmetric disordered systems, where states are localized and the
transition happens at much smaller values of μ [41–43]. Furthermore, even in wave-chaotic
settings the multiple scattering can be suppressed by dynamical effects, which can lead to
systematic corrections for the density of eigenvalues, as observed in [20] for the strongly
amplified states in a quantum-chaotic system.
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