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Many problems arising in OR/MS can be
formulated as mixed-integer linear programs
(MILPs): see the article titled Formulating
Good MILP Models in this encyclopedia.
If one wishes to solve a class of MILPs to
proven optimality, or near optimality, it
is often useful to have a class of cutting
planes available. Cutting planes are linear
inequalities that are satisfied by all feasible
solutions to the MILP, but may be violated
by solutions to its continuous relaxation (see
Branch and Cut).

This article is concerned with one particu-
lar class of cutting planes—the cover inequal-
ities—along with some variants of them.
Cover inequalities were originally defined in
the context of the 0–1 Knapsack problem
(0–1 KP), but can be applied to any 0–1 lin-
ear program (0–1 LP). Moreover, the idea
underlying the cover inequalities has been
extended to yield cutting planes for other
knapsack-type problems and other kinds of
MILPs.

The article is structured as follows. In
the section titled ‘‘Theory,’’ we recall the
theory underlying the inequalities. In the
section titled ‘‘Algorithmic Aspects,’’ we dis-
cuss some algorithmic questions that must be
addressed if one wishes to actually use cover
inequalities in a cutting-plane algorithm. In
the section titled ‘‘Applications,’’ we list some
of the problems to which cover inequalities
have been applied. Finally, at the end of
the article, we give some pointers for further
reading.
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THEORY

Knapsack Polytopes

As mentioned above, the cover inequalities
were first presented in the context of the 0–1
KP. The 0–1 KP takes the following form:

max
{
pTx : wTx ≤ c, x ∈ {0, 1}n

}
.

Here, p ∈ Z
n
+ is the vector of profits, w ∈ Z

n
+

is the vector of weights and c ∈ Z+ is the
knapsack capacity.

The convex hull of feasible solutions to a
0–1 KP, that is, the set

conv
{
x ∈ {0, 1}n : wTx ≤ c

}
,

is called a knapsack polytope. We will let
KP (w, c) denote this polytope. In theory,
the strongest possible cutting planes, for a
given w and c, are those that define facets of
KP(w, c) (see Basic Polyhedral Theory).

Cover and Extended Cover Inequalities

Now, let N denote {1, . . . , n}. A set C ⊂ N is
called a cover if it satisfies

∑
j∈C wj > c. Since

it is impossible to set all of the variables in C
to 1 simultaneously while maintaining feasi-
bility, the linear inequality

∑
j∈C xj ≤ |C| − 1

is valid for KP (w, c). This is the cover inequal-
ity (CI).

The CIs were introduced independently by
Balas [1], Hammer et al. [2], and Wolsey [3].
These authors observed that the strongest
CIs are obtained when the cover C is mini-
mal, in the sense that no proper subset of C
is also a cover.

A simple way to strengthen the CIs was
given by Balas [1]. Compute w∗ : = maxj∈C wj
and define the extension of C as E(C) : =
C ∪ {j ∈ N \ C : wj ≥ w∗}. The extended cover
inequality (ECI)

∑
j∈E(C) xj ≤ |C| − 1 is then

easily seen to be valid for KP(w, c).
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Example. Suppose that n = 8 and that
the knapsack constraint takes the form 4x1
+ 6x2 + 6x3 + 6x4 + 6x5 + 7x6 + 8x7 + 15x8 ≤
22. The set {1, 2, 6, 7} forms a cover, since
4 + 6 + 7 + 8 = 25 > 22. Moreover, it is a
minimal cover. The corresponding CI takes
the form x1 + x2 + x6 + x7 ≤ 3. Moreover, we
have w∗ = 8 and E(C) = {1, 2, 6, 7, 8}, and
therefore, the corresponding ECI takes the
form x1 + x2 + x6 + x7 + x8 ≤ 3.

Although the ECIs dominate the CIs, they
are still not guaranteed to define facets of
KP(w, c), as explained in the next section.

Lifted Cover Inequalities

Balas [1] and Wolsey [3] showed that, given
any minimal cover C, there exists at least one
facet-defining lifted cover inequality (LCI) of
the form

∑
j∈C

xj +
∑

j∈N\C

αjxj ≤ |C| − 1, (1)

where αj ≥ 0 for all j ∈ N\C. Moreover, each
such LCI dominates the ECI.

Example (continued). From the given
cover {1, 2, 6, 7}, one can derive the following
four LCIs:

x1 + x2 + x3 + x6 + x7 + 2x8 ≤ 3

x1 + x2 + x4 + x6 + x7 + 2x8 ≤ 3

x1 + x2 + x5 + x6 + x7 + 2x8 ≤ 3

x1 + x2 + 1
2 x3 + 1

2 x4 + 1
2 x5 + x6

+ x7 + 2x8 ≤ 3.

Each of these LCIs clearly dominates the
ECI, and all of them can be shown to define
facets of KP(w, c).

Note that a facet-defining LCI can have frac-
tional coefficients.

Van Roy and Wolsey [4] noted that one
can derive more general LCIs of the form:

∑
j∈C\D

xj +
∑

j∈N\C

αjxj +
∑
j∈D

βjxj ≤ |C \ D|

+
∑
j∈D

βj − 1, (2)

where C is a cover and D ⊂ C. We will call
the inequalities (2) ‘‘general’’ LCIs, and we
will follow Gu et al. [5] in referring to the
inequalities (1) as ‘‘simple’’ LCIs.

Example (continued). Assume as before
that the knapsack constraint takes the
form 4x1 + 6x2 + 6x3 + 6x4 + 6x5 + 7x6 + 8x7
+ 15x8 ≤ 22. The inequality x1 + x2 + x3 +
x4 + x5 + x6 + 2x7 + 3x8 ≤ 4 can be shown to
define a facet of KP(w, c). It can be derived
as a general LCI by setting C = {1, 2, 8} and
D = {8}.

We remark that the general LCIs with |D| = 1
dominate the so-called ‘‘(1, k)-configuration’’
inequalities of Padberg [6].

ALGORITHMIC ASPECTS

Computing Lifting Coefficients

A natural question is how to actually compute
the coefficients αj and βj. The process of com-
puting these coefficients is called lifting. One
normally distinguishes between sequential
lifting, in which the coefficients are computed
one at a time, and simultaneous lifting, in
which they are computed ‘‘all at once,’’ so to
speak. (See Lifting Techniques for Mixed
Integer Programming for more details on
lifting.)

We will follow Gu et al. [5] in referring to
the computation of the αj and βj as up-lifting
and down-lifting, respectively.

The case that has received most attention
is sequential up-lifting, which leads to simple
LCIs with integral coefficients. Balas [1] and
Wolsey [3] both pointed out that different
lifting sequences can yield different simple
LCIs. (This is how we generate the three
simple LCIs with integral coefficients in the
example in the section titled ‘‘Lifted Cover
Inequalities.’’) They also showed that, for a
given lifting sequence, the up-lifting coeffi-
cients can be computed by solving a series of
auxiliary 0–1 KPs.

Since solving 0–1 KPs is rather time-
consuming, researchers looked for faster
and simpler methods. Balas and Zemel [7]
showed how to compute, in O(n + |C| log |C|)
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time, tight lower and upper bounds on the
up-lifting coefficients, which are independent
of the lifting sequence. The upper bounds
were later improved by Gu et al. [8]. Crowder
et al. [9] proposed to compute approximate
up-lifting coefficients, by solving the contin-
uous relaxation of the auxiliary 0–1 KPs,
and rounding the answers down to integers.
Finally, Zemel [10] pointed out that one
can compute exact up-lifting coefficients for
all variables in O(n|C|) time, by dynamic
programming.

The example given in the section titled
‘‘Lifted Cover Inequalities’’ shows that there
exist simple LCIs with fractional coefficients,
which cannot be obtained with sequential
up-lifting. To derive such simple LCIs, one
must perform simultaneous up-lifting. Unfor-
tunately, this is not easy. Indeed, Hartvigsen
and Zemel [11] showed that even recogniz-
ing simultaneously-lifted simple LCIs is NP-
hard. On the other hand, there exist a couple
of simple and fast procedures for approximate
simultaneous up-lifting [8,12].

As for general LCIs, Gu et al. [5] claim
that sequential lifting can be performed
in O(n3|C|) time, provided that the lifting
sequence satisfies a certain condition. An
O(nc) lifting algorithm, which imposes
no conditions on the lifting sequence, is
described in our article [13]. A simpler and
faster alternative is to solve the continuous
relaxation of the auxiliary 0–1 LPs, just as
Crowder et al. [9] did for simple LCIs.

Separation Algorithms

In order to use a class of valid inequalities
as cutting planes, one needs a separation
algorithm, that is, a routine for generating
the inequalities when they are violated (see
Branch and Cut). Unfortunately, the sep-
aration problems for CIs, simple LCIs, and
general LCIs have all been shown to be NP-
hard [14–16], and the same seems likely to
be true for ECIs. Nevertheless, some useful
exact and heuristic separation algorithms are
known.

We begin with CIs. Crowder et al. [9]
noted that CI separation is equivalent to the

following knapsack-type problem:

min

⎧⎨
⎩

∑
j∈N

(1 − x∗
j )yj : wTy > c, y ∈ {0, 1}n

⎫⎬
⎭ .

Here, yj is a 0–1 variable, taking the value 1
if and only j is to be inserted into the cover
C. It is not hard to show that this problem
can be solved by dynamic programming in
O(nc) time, which is acceptable if c is not too
large. Crowder et al. [9] suggested solving
it heuristically instead, by inserting items
into C in nondecreasing order of (1 − x∗

j )/wj
until a cover is obtained. This heuristic takes
O(n log n) time.

As for ECIs, Gabrel and Minoux [17]
showed that the separation problem can
be reduced to a sequence of knapsack-type
problems. In our article [13], we presented a
simplified version of their algorithm, which
runs in O(n2c) time, along with a dynamic
programming algorithm that runs in only
O(nc) time. We also presented an effective
heuristic, that runs in O(n2) time. All of
our algorithms can produce more than one
violated ECI per call.

As for simple LCIs, Crowder et al. [9] sug-
gested using their heuristic to obtain a CI,
and then performing up-lifting to strengthen
it. They pointed out that it pays to up-lift the
variables with positive x∗-value first, before
up-lifting the variables with zero x∗-value.

Several articles address the separation
of general LCIs [4,5,13,18]. Van Roy and
Wolsey [4] proposed to include only one item
into D—namely, the item in C with the
largest x∗-value—and leave down-lifting to
the end. Hoffman and Padberg [18] proposed
to set D = {j ∈ C : x∗

j = 1}, and then lift in
the following order: up-lift the variables in
N\C with positive x∗-value, down-lift the
variables in D, then up-lift the variables in
N\C with zero x∗-value. Gu et al. [5] used the
same scheme, but used a different heuristic
to construct C: they simply inserted items
into C in nonincreasing order of x∗-value,
until a cover was obtained. In our article [13],
we used a similar scheme, but generated the
initial covers by running our ECI heuristic.

A comparison of several different separa-
tion algorithms for CIs, ECIs, simple LCIs,
and general LCIs, can be found in Ref. 13.
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APPLICATIONS

Application to Combinatorial Optimization
Problems

Many important combinatorial optimization
problems can be relaxed, in a natural way,
so that they decompose into one or more 0–1
KPs. If one solves such a problem with an
LP-based solution algorithm, such as branch-
and-cut, then one can use CIs, ECIs, or LCIs
as cutting planes.

For the sake of brevity, we mention just
a few problems to which this approach has
been applied:

• the multiple KP [14],
• the multidimensional KP [13,17,19,20],
• the generalized assignment problem

[21,22],
• the capacitated facility location problem

[23,24],
• the fixed-charge transportation problem

[25],
• the capacitated network design problem

[26],
• the prize-collecting traveling salesman

problem [27,28],
• the orienteering problem [29],
• the resource-constrained project sched-

uling problem [30].

Application to General 0–1 Linear Programs

As mentioned in the introduction, valid
inequalities for 0–1 knapsack polytopes
can in fact be used as cutting planes for
general 0–1 LPs. The idea is to consider
each individual constraint of the 0–1 LP
as a knapsack constraint (complementing
variables if necessary to obtain nonnegative
coefficients), and derive inequalities that are
valid for the associated knapsack polytope.
Provided the constraint matrix of the 0–1
LP is sparse, the inequalities generated in
this way can be expected to be useful.

To our knowledge, Crowder et al. [9]
were the first to test this idea computation-
ally. They designed what is now called a
cut-and-branch algorithm, in which cutting
planes are added only at the root node of

Table 1. Percentage Gap Closed by
Inequalities on MIPLIB Instances

Name CI ECI sLCI gLCI All

P0033 63.55 71.93 71.93 80.62 87.42
P0040 76.82 100.00 100.00 100.00 100.00
P0201 33.78 33.78 33.78 33.78 33.78
P0282 94.27 94.35 94.35 96.21 98.59
P0291 95.23 95.23 95.23 96.40 99.43
P0548 67.67 67.68 67.68 67.71 84.34
P2756 86.26 86.26 86.26 86.26 86.36
bm23 5.56 15.82 15.82 16.11 20.08
lseu 39.87 61.36 61.36 66.20 76.09
mod008 3.75 17.59 17.59 18.24 89.23
pipex 16.68 27.96 27.96 73.34 86.55
sentoy 16.58 21.57 21.57 22.72 30.97

Average 50.00 57.80 57.80 63.13 74.49

the branch-and-bound tree. The cutting
planes used were simple LCIs. Hoffman and
Padberg [18] extended this approach in two
ways, by using full branch-and-cut (in which
cutting planes can be added at any node),
and using general LCIs in place of simple
LCIs. Further experiments with this scheme
were performed by Gu et al. [5].

CIs, ECIs, and LCIs turn out to be
remarkably effective when applied to large,
sparse 0–1 LPs. Table 1, adapted from Ref
[13], shows the percentage of the integrality
gap that is closed by various inequalities,
when applied to twelve 0–1 LPs taken from
the MIPLIB [31]. The columns labeled ‘‘sLCI’’
and ‘‘gLCI’’ correspond to simple and general
LCIs, respectively. The column labeled
‘‘All’’ was obtained by calling an exact (and
time-consuming) separation algorithm for
general facets of knapsack polytopes. The CIs
and ECIs were separated exactly, whereas
the LCIs were separated heuristically. In
all cases, apart from the ‘‘All’’ column, the
running times were negligible compared to
the time taken to solve the instances to
proven optimality.

Observe that even the (theoretically
weak) CIs close half of the integrality gap
on average, and the other inequalities close
even more. This good performance is typical,
though only when the constraint matrix is
sparse [13]. Observe also that the simple
LCIs gave exactly the same results as the
ECIs. Indeed, we observed that up-lifting
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coefficients greater than 1 occurred very
infrequently. This suggests that, if one does
not wish to implement down-lifting, then one
might as well use ECIs.

FOR FURTHER READING

There exist hard instances of the 0–1 KP
that require an exponential number of nodes
when solved by branch-and-bound, even if all
simple LCIs are included in the LP relaxation
[15,32].

LCIs are not the only facet-defining
inequalities for 0–1 knapsack polytopes. For
other such inequalities, see Refs 33–35.

Separation algorithms have been devised
for the 0–1 knapsack polytope itself, rather
than for specific classes of inequalities
[13,36–38].

Cover inequalities have been derived for
more complex KPs, with general integer
variables, continuous variables, and so on
[20,39–46].

An important related class of inequalities
are the lifted flow cover inequalities [47–49],
which are valid for fixed-charge problems.
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