
The Stable Set Problem: Clique and

Nodal Inequalities Revisited

Adam N. Letchford∗ Fabrizio Rossi† Stefano Smriglio†

To appear in Computers & Operations Research

Abstract

The stable set problem is a fundamental combinatorial optimisa-
tion problem, that is known to be very difficult in both theory and
practice. Some of the solution algorithms in the literature are based
on 0-1 linear programming formulations. We examine an entire family
of such formulations, based on so-called clique and nodal inequalities.
As well as proving some theoretical results, we conduct extensive com-
putational experiments. This enables us to derive guidelines on how
to choose the right formulation for a given instance.
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1 Introduction

The stable set problem (SSP) is a fundamental and much-studied combina-
torial optimisation problem [21, 34]. It is also well-known to be equivalent
to the maximum clique and set packing problems [37]. These problems have
a wide range of applications in operational research, computer science and
elsewhere [3, 4, 38,45].

Unfortunately, the SSP is not only NP-hard in the strong sense, but
hard even to approximate [23]. It also tends to be very difficult in practice.
Current leading exact algorithms (such as those in [26,42,44]) struggle with
graphs with more than around 300 nodes (unless the graph has some special
structure that can be exploited). The SSP is also rather unusual, in the
sense that combinatorial algorithms, such as the ones surveyed in [39, 45],
are often more effective than mathematical programming algorithms, such
as those in [19,32,40,41].
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Another unusual feature of the SSP is that it can be formulated in many
ways. In fact, even if one considers only 0-1 linear programming (0-1 LP)
formulations, there are several different formulations in the literature [13,
18, 21, 25, 31, 37]. In this paper, we examine an entire family of 0-1 LP
formulations, based on various combinations of certain constraints known
as clique and (lifted) nodal inequalities. As well as proving some theoretical
results, we conduct extensive computational experiments, on both random
instances and DIMACS benchmark instances. A careful analysis of the
computational results enables us to derive guidelines on how to choose the
right formulation for a given instance. All the formulations studied in this
paper are publicly available through the web page http://optimization.

disim.univaq.it/stableset

The paper is structured as follows. In §2, we briefly review the rele-
vant literature. In §3, we consider the nodal inequalities and show how
to strengthen them. In §4, we present our family of formulations. The
computational experiments and analysis are described in §5 to 6. Finally,
concluding remarks are made in §7.

We use the following (standard) terminology and notation in the paper.
We are given a (simple, loopless) undirected graph G with vertex set V and
edge set E. We sometimes write n for |V | and m for |E|. A set of pairwise
adjacent (or non-adjacent) vertices in G is called a clique (or stable set).
The maximum cardinality of a clique (or stable set) in G is called the clique
number (or stability number) of G, and denoted by ω(G) (or α(G)). The
minimum number of stable sets needed to cover the nodes of G is called the
chromatic number of G and denoted by χ(G). The SSP is the problem of
determining α(G).

The complement of a graph G = (V,E) is the graph Ḡ =
(
V, Ē

)
, where

Ē =
{
{i, j} ⊂ V : {i, j} /∈ E

}
is the set of non-edges in G. By definition,

α
(
Ḡ
)

= ω(G) and ω
(
Ḡ
)

= α(G). The minimum number of cliques needed
to cover the nodes of G, called the clique covering number of G, is equal to
χ
(
Ḡ
)
. Given a node i ∈ V , we let NG(i) denote the set of neighbours of i

in G, i.e., NG(i) =
{
j ∈ V \ {i} : {i, j} ∈ E

}
. When no confusion arises,

we let NG(i) = N(i). We also let N̄(i) denote the set of non-neighbours,
i.e., N̄(i) = NḠ(i) = V \

(
{i} ∪ N(i)

)
. Finally, given some S ⊂ V , we let

G[S] =
(
S,E(S)

)
denote the subgraph of G induced by the nodes in S, and

we let r(S) denote α
(
G[S]

)
(the so-called rank of S).

2 Literature Review

We now review the relevant literature. The three subsections in this sec-
tion cover the standard 0-1 LP formulation, non-standard formulations, and
random graphs, respectively. Readers interested in other aspects of the SSP
are refered to the surveys [3, 21,38,39,45].
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2.1 The classical formulation

The “classical” formulation of the SSP is the following [37]. For each i ∈ V ,
let xi be a binary variable, taking the value 1 if and only if node i is selected.
Then:

max
∑

i∈V xi (1)

s.t. xi + xj ≤ 1 ({i, j} ∈ E) (2)

xi ∈ {0, 1} (i ∈ V ). (3)

The constraints (2) are called edge inequalities. The polytope defined by edge
and non-negativity inequalities is called the fractional stable set polytope and
denoted by FRAC(G) [21].

The convex hull of feasible solutions to (1)–(3) is called the stable set
polytope and denoted by STAB(G). Many valid inequalities are known for
this polytope; see, e.g., [4, 7, 9–12, 21, 33, 37]. The following two families of
inequalities will be of importance to us:

• clique inequalities [37], which take the form
∑

i∈C xi ≤ 1 for each
maximal clique C ⊆ V ;

• rank inequalities [33], which take the form
∑

i∈S xi ≤ r(S) for each
set S ⊆ V .

Note that the non-dominated rank inequalities with right-hand side equal
to 1 are the clique inequalities. Clique inequalities define facets of STAB(G)
[37]. A sufficient condition for other rank inequalities to define facets is
given in [11]. It is shown in [33] that, if a rank inequality defines a facet
of STAB

(
G[S]

)
, then there exists at least one lifted rank inequality of the

form ∑
i∈S

xi +
∑
i∈V \S

βixi ≤ r(S),

that defines a facet of STAB(G).
The polytope defined by all clique and non-negativity inequalities is

called QSTAB(G) [21]. The upper bound on α(G) obtained by optimis-
ing over it is called the fractional clique covering number and is denoted by
χf (Ḡ). By definition, we have STAB(G) ⊆ QSTAB(G) ⊆ FRAC(G) and
α(G) ≤ χf (Ḡ) ≤ χ(Ḡ).

Unfortunately, the clique inequalities can be exponential in number, and
the associated separation problem is NP-hard [34]. However, as noted by
several authors (e.g., [1,32,41]), one can strengthen the continuous relaxation
over FRAC(G), while keeping the number of constraints bounded by |E|,
by replacing the edge inequalities (2) with a collection of clique inequalities
that “covers” the edges in E. This can be done with a greedy heuristic, such
as the one described in Algorithm 1.
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Algorithm 1: GreedyClqCover(G)

Data: Graph G = (V,E)
Result: A collection Ccov = C1, . . . , Ck of cliques covering all the edges

1 Set G′(V,E′) := G(V,E) and k := 0;
2 while E′ 6= ∅ do
3 k := k + 1;

4 i := arg maxj∈V

{∣∣nG′(j)
∣∣};

5 Set Ck := {i};
6 if Ck is not a maximal clique in G then
7 Add nodes to make it maximal;
8 end
9 E′ := E′ \ E(Ck);

10 end

2.2 Other formulations

Della Croce & Tadei [13] suggested a different 0-1 LP formulation. For a
given i ∈ V , if we sum up the edge inequalities over all j ∈ N(i), we obtain:∑

j∈N(i)

xj + |N(i)|xi ≤ |N(i)|. (4)

Then, a more compact 0-1 LP formulation of the SSP can be obtained by
replacing the m edge constraints with n constraints of the form (4). This is
not a good idea in itself, since the continuous relaxation of the resulting 0-1
LP is even weaker than that of the edge formulation. As noted in Murray
& Church [31], however, one can do a lot better. For a given i ∈ V , we can
replace the inequality (4) with the stronger constraint:∑

j∈N(i)

xj + r
(
N(i)

)
xi ≤ r

(
N(i)

)
.

Murray & Church [31] also proposed a “hybrid” formulation, having n
specially-selected clique inequalities and n constraints of the form:∑

j∈S(i)

xj + r
(
S(i)

)
xi ≤ r

(
S(i)

)
,

where S(i) is a specially-selected subset of N(i). Murray and Church call
these last constraints nodal inequalities.

There also exist some extended 0-1 LP formulations of the SSP, which
use additional variables (e.g., [1, 5, 18, 20, 25]). Some of these formulations
can be strengthened using semidefinite programming (e.g., [15,17,21,22,25]).
There are also formulations of the SSP as a non-linear optimisation problem
in continuous variables (e.g., [6, 19,30]). We omit details, for brevity.
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2.3 Random graphs

Finally, we recall a couple of classical results concerned with random graphs.
Following Erdös and Rényi [16], we let Gnp denote a random graph on
n nodes in which each edge is present, independently, with probability p.
Matula [28] showed that, for fixed 0 < p < 1, ω

(
Gnp

)
is

2 log n

log(1/p)
+ o(log n)

with high probability (w.h.p.). Bollobás [2] and Matula & Kučera [29] in-
dependently proved that, again for fixed p, χ

(
Gnp

)
is w.h.p.

n log
(
1/(1− p)

)
2 log n

+ o(n/ log n).

3 On Clique and Nodal Inequalities

From now on, when we say a nodal inequality, we mean an inequality of the
form ∑

j∈S
xj + r(S)xi ≤ r(S), (5)

for some i ∈ V and some S ⊆ N(i). In this section, we present some results
concerned with clique and nodal inequalities.

3.1 Expected strength for random graphs

We begin with investigating the relative strength of clique and nodal in-
equalities in large random graphs. The result of Matula mentioned in §2.3
implies that, w.h.p.,

α
(
Gnp

)
=

2 log n

log
(
1/(1− p)

) + o(log n).

It also implies that one can find a point in QSTAB(G) by setting xi to a
little less than log(1/p)/(2 log n) for all i ∈ V . This implies in turn that,
w.h.p.,

χf
(
Ḡnp

)
≥ n log(1/p)

2 log n
.

Moreover, the other result mentioned in §2.3 implies that, w.h.p.,

χ
(
Ḡnp

)
=
n log

(
1/p)

)
2 log n

+ o(n/ log n).
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Given that χf
(
Ḡnp

)
≤ χ

(
Ḡnp

)
, we obtain, w.h.p.:

χf
(
Ḡnp

)
=
n log(1/p)

2 log n
+ o(n/ log n).

Putting this all together, we have the following ratio w.h.p.:

χf
(
Ḡnp

)
α
(
Gnp

) =
n log(1/p) log

(
1/(1− p)

)
4 log2 n

+ o(n/ log2 n).

Thus, for large n, the clique and non-negativity inequalities alone are likely
to yield a poor upper bound on α(G).

Now consider the LP relaxation described by n nodal inequalities:∑
j∈N(i)

xj + r
(
N(i)

)
xi ≤ r

(
N(i)

)
(i ∈ V ) (6)

Summing up these inequalities yields∑
i∈V

(
|N(i)|+ r

(
N(i)

))
xi ≤

∑
i∈V

r
(
N(i)

)
. (7)

Now, for each i, the expected value of the left-hand side coefficient of xi in
(7) is at least (n− 1)p+ 1. Moreover, the expected value of the right-hand
side is (2n log n)/ log

(
1/(1 − p)

)
+ o(n log n). Thus, the upper bound ψ

obtained with the nodal inequalities (6) satisfies

ψ
(
Gnp

)
≤ 2 log n

p log
(
1/(1− p)

) + o(log n).

This gives the following ratio w.h.p.:

ψ
(
Gnp

)
α
(
Gnp

) ≤ 1

p
+ o(1). (8)

In other words, for large n and reasonably large p, nodal inequalities are
likely to give a much stronger upper bound than clique inequalities. When
p is small, however, nodal inequalities can give a poor bound as well. For-
tunately, when G is sparse, nodal inequalities can be strengthened consid-
erably, as illustrated in the next three subsections.

3.2 Decomposition of nodal inequalities

It can happen that there exists a partition of S into sets S1, . . . , St such that

t∑
k=1

r(Sk) = r(S).
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In such a case the nodal inequality (5) is dominated by the nodal inequalities

x(Sk) + r(Sk)xi ≤ r(Sk) (k = 1, . . . , t).

We call this process decomposition. Here are two simple and fast ways to do
it:

1. Suppose that G[S] is disconnected. Then we can just let S1, . . . , St be
the node sets corresponding to the connected components.

2. Let us say that a node j ∈ S is simplicial if j ∪
(
S ∩ N(j)

)
forms a

clique. If this happens, let us denote the clique by C. One can check
that every maximum cardinality stable set in G[S] contains exactly
one node from C. From this it follows that:

r(S) = r(S \ C) + 1.

Therefore, the nodal inequality (5) can be decomposed into the clique
inequality on C ∪ {i} and the nodal inequality∑

j∈S\C

xj + r(S \ C)xi ≤ r(S \ C).

Moreover, if C ∪ {i} is not a maximal clique in G, then one should
enlarge it, in order to strengthen the clique inequality.

Note that, after the second decomposition operation has been performed,
the subgraph G[S \ C] may be disconnected. Thus, the two decomposition
operations should be applied repeatedly until no further decomposition is
possible.

3.3 Lifting nodal inequalities

Given an arbitrary nodal inequality of the form (5), one can try to find a
stronger valid inequality of the form∑

j∈N(i)

βjxj + r(S)xi ≤ r(S), (9)

where βj ≥ 1 for j ∈ S and βj ≥ 0 for j ∈ N(i) \S. We will call inequalities
of this type lifted nodal inequalities.

Observe that computing r(S) is itself NP-hard. Moreover, it follows
from arguments in [37] that one must solve a weighted SSP instance on
G[N(i)] to compute each coefficient βj . To alleviate this computational
burden, we always start by applying decomposition, so that the initial set
S is as small as possible. We also make use of the following lemma.
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Lemma 1. Suppose that S is a proper subset of N(i) and we wish to lift
the nodal inequality (5). If k ∈ N(i) \ S and k is not adjacent to any node
in S, then the variable xk cannot be lifted (i.e., βk = 0).

Proof. If we increased the LHS coefficient of xk from 0 to 1, we would obtain∑
j∈S

xj + r(S)xi + xk ≤ r(S).

But this inequality cannot possibly be valid, since there exists a stable set
that includes node k together with r(S) nodes from S.

In other words, for any given i ∈ V , we can treat each connected component
of G[n(i)] independently when lifting nodal inequalities.

3.4 Measured strength

To gain insight into the effect of decomposition and lifting and to mea-
sure the relative strength of nodal and clique inequalities, we conduct ex-
periments on random graphs. For each pair (n, p) with n ∈ {150, 175,
. . . , 300} and p ∈ {0.1, 0.2, . . . , 0.9}, we generate five Gnp graphs (making
5 × 7 × 9 = 270 graphs in total). Then, in Figure 1 we report, for each
combination of n and p, the average percentage integrality gap (i.e., the dif-
ference between the LP upper bound and α(G), expressed as a percentage
of α(G)). The wireframes correspond to:

1. Nodal inequalities (6) strengthened by decomposition (blue)

2. Nodal inequalities (6) strengthened by decomposition and lifting (ma-
genta)

3. Expected percentage gap from expression (8) (grey)

One can observe that decomposition dramatically improves the percentage
gap w.r.t. the expected value on graphs with p ∈ {0.1, 0.2}. Lifting reduces
the gap further, although its benefit decreases with n. Finally, in accordance
with the theoretical expectation (8), the percentage gap appears almost in-
sensitive to n when p > 0.3.
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Figure 1: Effect of decomposition and lifting

In Figure 2, upper bounds from nodal inequalities are compared to a close
approximation of the upper bounds obtained by optimising over QSTAB(G)
[27]. The magenta wireframe depicts the percentage gap obtained by clique
inequalities, while the blue wireframe represents the percentage gap obtained
by nodal inequalities (without lifting). For sparse graphs, the clique bound
outperforms the nodal bound, while for p > 0.4 the reverse happens. Also,
for p = 0.1, the gaps are quite similar. The explanation is that, when p =
0.1, decomposition usually splits the G[N̂(i)] into cliques, so that “genuine”
nodal inequalities are rare.

Motivated by these experimental observations, we investigate a family
of 0-1 LP formulations of the SSP, based on various combinations of clique
and (lifted) nodal inequalities, with the aim of exploiting the strong points
of both classes of inequalities.

9



|V
|

150

175

200

225

250

275

300probability p

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

% Gap

30

40

60

80

100

120

140

Clique inequalities

Nodal ineq. with decomposition

Figure 2: Percentage gap of clique and nodal inequalities

4 A Family of 0-1 LP Formulations

Consider an arbitrary collection of clique inequalities, and let C be the cor-
responding collection of cliques in G. We say that an edge e ∈ E is covered
by C if at least one clique in C includes both its endpoints. Trivially, an edge
inequality (2) is implied by the given collection of clique inequalities if and
only if {i, j} is covered by C.

Let E(C) denote the set of edges covered by C. If E(C) = E, then
nodal inequalities are unnecessary. Otherwise, we define Ê(C) = E \ E(C)
and denote by Ĝ(C) the partial graph

(
V, Ê(C)

)
. Also, for each i ∈ V ,

we let N̂(i) =
{
j ∈ N(i) : (i, j) ∈ Ê(C)

}
. Then, we obtain a valid 0-1

LP formulation by adding to the given collection of clique inequalities the
following nodal inequalities:∑

j∈N̂(i)

xj + r
(
N̂(i)

)
xi ≤ r

(
N̂(i)

) (
i ∈ V : N̂(i) 6= ∅

)
. (10)
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One can then strengthen the nodal inequalities via decomposition (and lift-
ing, if desired).

In what follows, then, we investigate formulations that can be generated
by an appropriate combination of a clique collection C and (if Ê(C) 6= ∅) a
way to generate nodal inequalities.

4.1 Generating the clique collection

There are many ways in which one could generate the clique collection C.
In our preliminary experiments, we found that each of the following five
options works well in certain situations:

C∅: just set C to ∅;

Ccov: use Algorithm 1 to generate C;

C=
cov: solve the LP relaxation with one clique inequality for each clique in
Ccov, and put into C only those cliques whose corresponding inequalities
are satisfied at equality by the LP solution;

Ccut: start with C set to Ccov, then solve the same LP relaxation, run a
cutting-plane algorithm based on additional clique inequalities (using
the separation heuristic described in [27]), and add to C all cliques
generated;

C=
cut: as Ccut, but put into C only those cliques whose inequalities are satisfied

at equality by the final LP solution.

Note that, for the second and fourth options, we have E(C) = E, which
makes nodal inequalities unnecessary. We also considered other options,
including the one proposed in [31], but none of them gave better results
than the above five options.

4.2 Reduced nodal inequalities

In additional preliminary experiments, we found that decomposition should
always be applied where possible. Unfortunately, when graphs are fairly
dense, decomposition is usually not applicable, meaning that the nodal in-
equalities tend to be dense as well. This has two drawbacks: first, the
evaluation of r

(
N̂(i)

)
may require a large CPU time; second, dense inequal-

ities can put an undue burden on the LP solver. In order to obtain sparser
inequalities, one can also consider the following option.

Given a ranking of the vertices and a vertex v in i-th position, a reduced
nodal inequality is a nodal inequality generated at vertex v after removing
from G all vertices in position h < i. Notice that a valid 0-1 LP formula-
tion is still obtained by generating reduced nodal inequalities sequentially
(according to the ranking), since, if an edge {v, w} with v preceding w in
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the ranking has been removed at step i from G, then w ∈ N̂(v) and the
variables xv, xw appear in the inequality∑

j∈N̂(v)

xj + r
(
N̂(v)

)
xv ≤ r

(
N̂(v)

)
with coefficients r

(
N̂(v)

)
and 1, respectively.

A natural ranking of the vertices is by non-increasing order of degree, as
it rapidly reduces the density of the inequalities. Note that reduced nodal
inequalities may be weaker than standard ones, but not necessarily, since
the right-hand sides differ.

4.3 Three-field notation

To distinguish between various formulations in our family, we use the three-
field notation “C |N | lift”. The first two fields specify respectively the initial
clique collection and the nodal inequalities collection. Entries for C are{
C∅, Ccov, C=

cov, Ccut, C=
cut

}
, as defined in §4. Entries for N are

{
N∅,N ,Nred

}
,

indicating, respectively, no nodal inequalities, nodal inequalities of the form
(10), and reduced nodal inequalities. Decomposition is always applied. Fi-
nally, the last field contains the entry l if lifting is applied (and no entry if
not). Overall, we have 14 meaningful models, summarized in Table 1.

C∅|N| C∅|Nred| C∅|N|l C∅|Nred|l
Ccov|N∅| C=

cov|N| C=
cov|Nred| C=

cov|N|l C=
cov|Nred|l

Ccut|N∅| C=
cut|N| C=

cut|Nred| C=
cut|N|l C=

cut|Nred|l

Table 1: Models notation summary

We remark that most of the steps involved in building the models take
very little time. However, as mentioned in §3.3, computing the coefficients
of the nodal inequalities (9) involves the solution of (small but possibly
weighted) SSP instances. Fortunately, as we will see, this can be done
reasonably quickly in most cases. (Moreover, the construction of nodal
inequalities can be parallelised easily, since each nodal inequality can be
handled independently.)

5 Experiments with Random Graphs

In this section we experiment with the collection of 270 random graphs de-
scribed in §3.4. Since it is well known that weighted SSP instances tend
to be easier than unweighted ones for algorithms based on mathematical
programming, we report results here only for unweighted instances. In the
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following three subsections, we evaluate the models according to three cri-
teria: the percentage integrality gap (see §3.4), the amount of time taken to
construct the model, and the time taken to solve the model by a commercial
branch-and-cut solver.

All computations were run on a machine with Intel Xeon CPU E5-2698
v4 clocked at 2.2GHz with 256GB RAM. The coefficients r(S) and β in
(9) were computed by the combinatorial max-clique solver CLIQUER [35, 36]
(after complementing the graphs). In order to get a good approximation of
QSTAB(G) we set the parameter ε in [27] to 10−3 for graphs with density
< 50% and to 10−1 for graphs with density ≥ 50%.

5.1 Integrality gaps

We already presented the gaps for C∅|N| and Ccut|N∅|) in Figure 1. Figure
3 displays the gaps for all fourteen models. The first column in Figure 3
corresponds to models with nodal inequalities but no reduction, while the
second column refers to those with reduction applied. The gray wireframes
represent models without nodal inequalities. The blue and magenta ones
represent models with non-lifted and lifted nodal inequalities, respectively.

The first row of Figure 3 contains models from C∅. We see that nodal
inequalities yield small gaps when graph density exceeds 30%, but are not
competitive when density goes below 20%. Moreover, the effect of both
lifting and reduction is surprisingly small.

The second row contains models from C=
cov. It appears that nodal in-

equalities help significantly for graphs in the density range [0.3, 0.7], but the
gap is still larger than that of the C∅ models. Lifting once again gives a
marginal contribution. Reduction appears to make the gap slightly worse.
Models based on C=

cut, reported in the third row, share a similar behaviour,
except that the gap decrease due to nodal inequalities is even smaller.

In summary, nodal inequalities yield a noticable benefit when the den-
sity exceeds about 20%. We remark that an additional benefit of nodal
inequalities is that they lead to more compact models; see Appendix A for
details.

5.2 Model construction

Figure 4 shows the time taken to build the various models. All charts in the
figure share the same x-axis, in which is reported the probability p, while on
the y-axis is reported the average CPU time (in seconds) needed to construct
(sequentially) the models. The marker size is proportional to n and the blue
diamond marker represents models that use reduction.

By comparing the charts in the bottom row with those in the other rows,
we see that the cutting-plane algorithm (based on clique inequalities) takes
up to around 50 seconds, which is not bad for graphs of this size. Comparing
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the charts in the second column with those in the first, we see that, perhaps
surprisingly, computing the right-hand sides of the nodal inequalities is not
a bottleneck. On the other hand, the top two charts in the third column
indicate that lifting can take a significant amount of time, especially when
reduction has not been applied. (The red lines in those two charts represent
the maximum time spent when no lifting is applied.) Oddly, however, lifting
is no problem for C=

cut|N|l and C=
cut|Nred|l. This is probably because most of

the edges in G are covered by the cliques in C=
cut.

Overall, the ∗|Nred| models (i.e, the ones that use reduction but not
lifting) look the most promising. This is because the small unweighted SSPs
can be solved quickly and the upper bound degradation due to reduction is
marginal. Moreover, such models consistently show the smallest number of
nonzeros in the constraint matrix (see Appendix A).

5.3 Model resolution

Now we turn our attention to the time taken to solve the most promising
models. We use the MIP solver of CPLEX v. 12.8.0, with 4 threads. Default
settings are used, with the exception of the branching strategy. The lesson
learned from combinatorial algorithms is that branching on a vertex with
highest degree typically yields benefits (e.g., [8, 43]). To implement this,
we used the CPLEX parameter branching priority, with the priority of
variable xi set to |nG(i)|. A time limit of 5, 400 seconds per instance was
also imposed. The non-binding clique inequalities for the C=

∗ models, that
is the ones in Ccov \ C=

cov and Ccut \ C=
cut, are transferred to CPLEX as “user

cuts”. The management of possible duplicates of clique inequalities is left
to the solver.

Table 2 reports the time taken to build and solve models Ccov|N∅|,
C∅|Nred|, C=

cov|Nred| and C=
cut|Nred|. It also shows the time taken to build

and solve the edge formulation FRAC(G). CPU times are reported in sec-
onds and each figure represents the shifted geometric mean

∏n
i=1(ti+s)

1/n−s
with s = 10 and n = 25, corresponding to 5 random instances executed 5
times with different CPLEX random seeds. The presence of an index next
to the number declares the number of unsolved instances (in such a case,
statistics are collected at time limit). In Appendix B, Table 6 reports the
shifted geometric mean of the number of enumerated subproblems. For all
tables, instances are sorted by increasing density and size. Finally, Figure 5
shows the relative speedup of each model w.r.t. FRAC(G) (the red line in
the charts). A speedup less than 1 represents of course a performance worse
than FRAC(G).
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Figure 5

We now discuss the results in increasing order of graph density.

Graphs with p = 0.1 Here the solver was able to solve instances with
up to 225 nodes within the time limit. One can observe that all models
have a very similar performance, although there is some variation when
n ≥ 200. The explanation is that, when the graph is sparse, decomposition
tends to reduce most or all of the nodal inequalities to clique inequalities.
Moreover, the solver itself generates clique inequalities at the root node for
most instances.
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Graphs with p ∈ {0.2, 0.3, 0.4} Here, slightly larger instances can be
solved. Model C∅|Nred| tends to perform worse than FRAC(G). This per-
formance is consistent with the measured integrality gap. Models Ccov|N∅|
slightly outperforms FRAC(G), while models C=

cov|Nred| and C=
cut|Nred| yield

a significant speedup. Closer inspection of the results shows that models
with nodal inequalities tend to enumerate a larger number of subproblems
than those based on clique inequalities alone. This is more than offset,
however, by the fact that each subproblem is solved much more quickly.

Graphs with p = {0.5, 0.6} Thanks to its relatively small integrality
gaps, the model C∅|Nred| begins to be competitive. In particular, it now
outperforms FRAC(G). Moreover, C=

cov|Nred| outperforms C=
cut|Nred|. Closer

inspection of the results revealed that, for this density range, the improve-
ment in bound gained by (aggressive) clique separation is outweighed by the
increased burden on the LP solver. Moreover, the clique separation heuristic
itself gets slower.

Graphs with p = {0.7, 0.8, 0.9} The observed trend for p = {0.5, 0.6}
continues for p > 0.6. Here the best times are consistently obtained by
C∅|Nred|, despite the fact that it is very dense.

To summarise, for medium density, C=
cut|Nred| is the clear winner. As

density increases, the best perfomance is achieved by C=
cov|Nred| and then by

C∅|Nred|. For low density, the choice of model is relatively unimportant.

6 Experiments with DIMACS graphs

In this section we experiment with the famous DIMACS benchmark max-
clique instances (see [14, 24]). As usual, we complemented the graphs, to
convert the max-clique instances into SSP instances (DSJC125* graphs are
not complemented, as these belong to the “color” benchmark set). We
excluded the very easy instances (namely, the smallest johnson, c-fat and
san graphs), along with all instances which could not be solved by any of
the models within 5,400 seconds (namely, the largest johnson, brock, C,
keller, p-hat and sanr instances).

We first explored the models’ ability to certify the optimality of a given
optimal solution. The solver’s settings were the same as in the case of
the Gnp graphs, except that the “MIP emphasis” was set to “emphasize
optimality” and the primal heuristics were disabled. The parameter ε in [27]
was set to ε = 10−2 for graphs with density ≤ 45% and 0.3 otherwise.

Table 3 shows the total solution time, in seconds, for 31 instances and 5
models. The last row reports the average speedup w.r.t. FRAC(G) on the
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FRAC(G) Ccov|N∅| C∅|Nred| C=
cov|Nred| C=

cut|Nred| CLIQUER
Graph

C125-9 0.7 0.7 0.7 0.7 0.6 4.9
DSJC125.1 0.8 0.8 0.7 0.7 0.7 10.1
DSJC125.5 2.1 1.0 0.7 0.7 0.8 0.0
MANN a45 3.5 4.0 6.0 5.1 5.0 †
MANN a81 354.1 191.5 115.6 139.4 138.3 †
brock200 1 74.7 64.7 123.2 51.0 40.4 6.4
brock200 2 15.1 9.2 8.4 6.8 6.4 0.0
brock200 3 31.3 19.8 48.9 11.6 11.6 0.1
brock200 4 31.5 27.7 54.5 15.1 13.4 0.4
c-fat200-5 4.6 19.9 0.5 1.4 1.6 0.1
c-fat500-1 2.2 4.4 1.2 3.8 86.9 0.0
c-fat500-10 3.0 15.2 5.2 12.2 14.0 0.0
c-fat500-2 1.7 6.2 4.8 6.5 21.7 0.0
c-fat500-5 2.1 13.6 7.3 11.8 13.1 0.0
keller4 2.0 1.3 10.4 1.3 1.7 0.1
p hat300-1 117.5 12.4 1.8 7.7 12.6 0.0
p hat300-2 51.3 7.8 12.5 5.0 6.6 0.3
p hat300-3 156.5 103.8 90.8 62.3 50.6 323.2
p hat500-1 92.1 104.1 30.4 63.0 149.7 0.0
p hat500-2 148.4 146.7 218.7 103.2 110.7 71.5
p hat700-1 433.8 489.8 16.6 256.8 358.7 0.1
p hat700-2 2,007.0 1,285.8 † 756.6 756.8 †
san1000 22.3 64.9 209.9 23.4 115.2 0.1
san400 0.5 1 2.0 3.2 1.8 1.7 5.2 0.0
san400 0.7 1 4.2 4.7 3.5 3.5 9.1 †
san400 0.7 2 2.9 4.0 2.8 3.0 7.7 1291.0
san400 0.7 3 1.8 1.9 0.9 1.6 46.0 3.7
san400 0.9 1 3.6 3.0 2.3 3.0 1.2 †
sanr200 0.7 52.5 44.7 103.2 30.1 27.1 2.0
sanr200 0.9 86.4 87.8 81.9 66.4 60.4 †
sanr400 0.5 2,570.7 1,340.5 1,655.6 662.6 804.0 1.2

Speedup 1.0 1.5 0.8 2.7 2.2

Table 3: DIMACS Instances: CPU time to prove optimality

whole testbed. In the last column we include the solution time taken by
CLIQUER.

Table 4 shows, for the models that involve nodal inequalities, the to-
tal time spent by CLIQUER and the number of CLIQUER calls. Table 7 in
Appendix B reports the number of enumerated subproblems.

A first observation is that, on the whole, the model C∅|Nred| performs
worse than FRAC(G) (since the overall speedup is less than 1). A closer
inspection of the results shows that C∅|Nred| works best when decomposition
is effective (that is, the number of CLIQUER calls is low). If this is not the case,
the performance observed with nodal inequalities turns out to be worsened.

The results for C=
cov|Nred| and Ccov|N∅| are more promising, with C=

cov|Nred|
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C∅|Nred| C=
cov|Nred| C=

cut|Nred|
Time # Calls Time # Calls Time # Calls

Graph

C125-9 0.00 1 0.00 0 0.00 1
DSJC125.1 0.00 0 0.00 0 0.00 0
DSJC125.5 0.02 110 0.00 86 0.00 85
MANN a45 0.00 0 0.00 0 0.00 0
MANN a81 0.00 0 0.00 0 0.00 0
brock200 1 0.02 143 0.01 117 0.01 112
brock200 2 0.08 184 0.02 168 0.02 169
brock200 3 0.06 181 0.02 149 0.02 149
brock200 4 0.05 165 0.02 142 0.01 141
c-fat200-5 0.05 191 0.05 188 0.05 188
c-fat500-1 0.64 489 0.06 418 0.11 447
c-fat500-10 0.54 492 0.54 492 0.53 492
c-fat500-2 0.68 489 0.27 473 0.27 473
c-fat500-5 0.50 488 0.49 486 0.50 486
keller4 0.02 135 0.00 72 0.00 59
p hat300-1 0.40 283 0.04 255 0.03 247
p hat300-2 0.96 219 0.13 206 0.13 203
p hat300-3 0.39 171 0.10 159 0.10 150
p hat500-1 2.13 488 0.24 454 0.20 459
p hat500-2 37.70 374 3.52 352 2.93 352
p hat700-1 7.87 682 1.10 661 0.98 664
p hat700-2 1,004.52 539 45.61 521 49.03 521
san1000 0.57 581 0.00 0 0.00 0
san400 0.5 1 0.09 190 0.00 0 0.00 0
san400 0.7 1 0.01 40 0.00 0 0.00 0
san400 0.7 2 0.03 133 0.00 0 0.00 0
san400 0.7 3 0.05 214 0.00 0 0.00 0
san400 0.9 1 0.00 0 0.00 0 0.00 0
sanr200 0.7 0.04 163 0.01 127 0.01 134
sanr200 0.9 0.00 15 0.00 6 0.00 7
sanr400 0.5 1.79 379 0.40 365 0.39 366

Table 4: DIMACS Instances: CLIQUER time and calls.
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in particular showing a significant speedup. A partial explanation is that the
time spent by CLIQUER is drastically smaller for C=

cov|Nred| than for C∅|Nred|.
Note that, for the san graphs in particular, C=

cov|Nred| needs no calls at all
to CLIQUER. This is due to decomposition.

As for C=
cut|Nred|, its performance is good, but not quite as good as

C=
cov|Nred|. As in the case of the random graphs, aggressive generation of

clique inequalities does not pay off for dense graphs. On the other hand,
clique separation is (significantly) rewarding for brock200 1, brock200 4,
p hat300-3 and sanr200 0.7.

We now make some comments concerned with the relative performance
of MIP models and CLIQUER. The solution times taken by the latter, reported
in the last column of Table 3, reveal that CLIQUER is usually faster by one or
two orders of magnitude. Nevertheless, it fails to solve six instances within
the time limit, and in two cases, namely, p hat300-3 and san400 0.7 2, it
is significantly outperformed.

We remark that the DIMACS test-set considered in this study extends
those used in previous papers on exact MIP algorithms [1, 18–20, 40, 41].
In particular, mann a81, p hat500-1, p hat500-2, p hat700-1, p hat700-2

and sanr400 0.5 have not been considered before, to the best of our knowl-
edge. Moreover, based on the insight gained in our experiments, we were
able to tackle three even harder instances, namely brock400 4, p hat500-3

and keller5. CLIQUER takes 176.6 CPU secs to solve brock400 4, while it
fails on the others.

For brock400 4 and p hat500-3, it was enough to let CPLEX use 32
threads and use one of Ccov|N∅|, C=

cov|Nred| and C=
cut|Nred|. Details are in the

following table (speedup is measured w.r.t. Ccov|N∅|).

Ccov|N∅| C=
cov|Nred| C=

cut|Nred|
Graph Time Time Speedup Time Speedup

brock400 4 3,686.4 2,732.3 1.4 1,646.8 2.24
p hat500-3 3,890.5 1,962.3 1.98 1,215.0 3.20

Table 5: solution of brock400 4 and p hat500-3

By contrast, keller5 required some specific tuning, as all previous models
failed in the time limit. The best result was achieved by using C∅|N|, solving
the LP relaxation, running the clique separation algorithm [27], and adding
all generated cliques to CPLEX as “user cuts”. The final formulation had
776 rows, 150,196 nonzeros, and 27,858 user cuts. It required about 840
seconds to be generated and about 170 seconds to be solved. It is worth-
while mentioning that keller5 is challenging also for the state-of-the-art
combinatorial algorithms (see Table 3 of [45]).

To sum up the results of this section and the previous one, C=
cov|Nred|

and C=
cut|Nred| are the most promising models.
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7 Conclusions

This paper presents, to our knowledge, the first detailed study of alternative
stable set formulations in the “natural” space of the node variables. We
have shown that a careful selection and strengthening of clique and nodal
inequalities can have a significant impact on the performance of MIP-based
approaches to the stable set problem. In particular, the models C=

cov|Nred|
and C=

cut|Nred| can be particularly useful, and have enabled us to solve some
instances that have never before been solved with MIP-based approaches.

We remark that, in this paper, we have used (lifted) nodal inequalities
only in the initial formulation. An interesting topic for future research is
the dynamic generation of (lifted) nodal inequalities in a cut-and-branch or
branch-and-cut algorithm.

To end the paper, we make some remarks about the performance of
MIP algorithms relative to combinatorial algorithms. It is widely held (see,
e.g., [45]) that combinatorial algorithms are superior. This is indeed true for
the majority of the instances tested. For instance, in the brock graph family,
instances with n = 800 have been solved by combinatorial methods, but are
beyond the scope of current MIP models. However, for some instances, our
best MIP configurations clearly outperform the combinatorial algorithms.
Prominent examples are mann a45, mann 81 and keller5. So we believe
that MIP approaches still warrant further investigation. Recall also that
MIP algorithms tend to perform much better on weighted instances, whereas
most combinatorial methods are geared toward cardinality instances.
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A Model sizes for random graphs

In this appendix, we report some figures concerned with the size of the
various 0-1 LP models. Figures 6 and 7 show, for each model, the number
of linear inequalities, the number of non-zeroes in the constraint matrix, and
the number of genuine nodal inequalities. As in the previous charts, marker
size is proportional to n and blue markers refer to models in which reduction
is applied. Charts reporting the number of inequalities and non-zeros have
a log scale.
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Figure 6: Features of models without nodal inequalities

Figure 6 reports the data for Ccov|N∅| and Ccut|N∅|. The decrease in
model size when density reaches 0.5 is due to the fact that we change the
clique violation parameter ε from 0.001 to 0.1 at that point.

Figure 7 reports on the models with nodal inequalities. When the graph
density is 0.1, decomposition converts most or all nodal inequalities into
clique inequalities, leading to 0-1 LPs with lots of constraints but low density.
As density increases (≥ 20%), the number of non-zeroes increases and the
number of nodal inequalities approaches n. On the other hand, reduction
of nodal inequalities significantly decreases the number of non-zeroes. (As
one might expect, it is typically halved.) Finally, note that the number of
constraints and non-zeroes for all models based on Ccov and Ccut are similar.

B Enumerated subproblems

In this appendix, we report the number of branch-and-bound nodes needed
to solve the various models for the test instances considered.
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Figure 7: Features of models with nodal inequalities
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FRAC(G) Ccov|N∅| C∅|Nred| C=
cov|Nred| C=

cut|Nred|

C125-9 1,512.9 1,473.0 1,566.9 1,665.3 1,595.8
DSJC125.1 3,017.0 3,005.8 2,958.6 3,211.4 3,045.5
DSJC125.5 731.6 673.5 4,702.0 957.0 923.2
MANN a45 5,457.6 7,861.1 7,400.4 7,960.5 7,960.5
MANN a81 110,173.7 213,099.1 156,374.6 52,447.5 52,447.5
brock200 1 127,422.3 124,203.9 436,194.0 97,132.8 69,965.0
brock200 2 5,225.9 5,698.7 34,047.4 8,541.9 6,883.7
brock200 3 16,757.9 14,330.8 175,927.2 20,123.9 15,173.3
brock200 4 26,172.4 28,087.1 224,541.2 30,943.5 23,619.3
c-fat200-5 1.0 6.0 163.4 144.0 144.0
c-fat500-1 1.0 1.0 1.0 1.0 1.0
c-fat500-10 1.0 1.0 300.4 1.0 1.0
c-fat500-2 1.0 1.0 111.3 1.0 1.0
c-fat500-5 1.0 1.0 265.5 1.0 1.0
keller4 2,228.5 2,825.3 58,430.9 2,643.5 1,987.8
p hat300-1 6,556.0 5,305.2 2,694.7 7,372.7 6,725.2
p hat300-2 3,691.7 2,505.9 14,252.0 3,552.2 2,990.6
p hat300-3 89,316.1 74,430.7 109,680.7 46,717.6 27,655.8
p hat500-1 38,984.1 36,781.7 47,159.5 45,403.8 41,892.4
p hat500-2 31,292.3 30,262.0 146,402.8 29,770.6 26,977.7
p hat700-1 87,524.8 71,018.0 2,815.6 97,360.2 93,692.1
p hat700-2 242,023.2 201,541.8 603,979.8 131,010.8 129,413.6
san1000 1.0 1.0 552.0 1.0 1.0
san400 0.5 1 1.0 1.0 1.0 1.0 1.0
san400 0.7 1 1.0 1.0 1.0 1.0 1.0
san400 0.7 2 1.0 1.0 1.0 1.0 1.0
san400 0.7 3 1.0 1.0 1.0 1.0 1.0
san400 0.9 1 1.0 1.0 1.0 1.0 1.0
sanr200 0.7 72,649.2 69,740.9 462,536.1 62,815.5 50,354.8
sanr200 0.9 268,008.5 262,676.4 246,479.6 203,523.0 181,005.4
sanr400 0.5 771,069.4 628,429.6 3,886,181.9 764,598.5 743,241.5

Table 7: Enumerated subproblems for DIMACS graphs
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