
CP-Lib: Benchmark Instances of the

Clique Partitioning Problem

Michael M. Sørensen∗ Adam N. Letchford†

To appear in Mathematical Programming Computation

Abstract

The Clique Partitioning Problem is a fundamental and much-studied
NP-hard combinatorial optimisation problem, with many applications.
Several families of benchmark instances have been created in the past,
but they are scattered across the literature and hard to find. To rem-
edy this situation, we present CP-Lib, an online resource that contains
most of the known instances, plus some challenging new ones.

Key Words: clique partitioning problem; combinatorial optimisation

1 Introduction

Given a complete undirected graph, with rational weights on the edges, the
clique partitioning problem (CPP) calls for a partition of the vertex set into
subsets, such that the sum of the weights of the edges that have both end-
vertices in the same subset is maximised. The CPP was originally formulated
with statistical clustering in mind [27, 38], but has since been applied to
several other problems, including task distribution in distributed systems
[1], clustering in group technology [43, 54], microarray data analysis [34],
flight-to-gate assignment in airports [22], detecting communities in social
networks [26], cluster editing in computational biology [4], and detecting
bad links in Wikipedia [8].

The CPP is NP -hard in the strong sense [53]. A variety of solution
approaches have been devised for it, including both exact algorithms (e.g.,
[23, 27, 28, 43, 44, 47, 49, 51]) and heuristics (e.g., [7, 10, 16, 19, 23, 37, 45, 55]).
In order to compare the performance of exact and/or heuristic approaches,
it is desirable to have a collection of benchmark instances. A large number
of benchmark instances have been created in the past [4, 7, 10, 16, 19, 23, 25,

∗Department of Economics and Business Economics, Aarhus University, Fuglesangs
Allé 4, DK-8210 Aarhus V, Denmark. E-mail: mim@econ.au.dk.

†Department of Management Science, Lancaster University, Lancaster LA1 4YX,
United Kingdom. E-mail: A.N.Letchford@lancaster.ac.uk.

1



27, 36, 37, 43, 45, 54, 55]. Unfortunately, most of them have not been made
available online. To remedy this situation, we present CP-Lib, an online
resource that contains most of the known instances, plus some challenging
new ones.

The paper has the following structure. Section 2 gives an introduction
to the library, and in Section 3, we give an overview of the benchmark CPP
instances that have already been proposed in the literature. Finally, in
Section 4, we present some new instances.

Throughout the paper, the number of vertices will be denoted by n and
the weight of an edge {i, j} will be denoted by wij .

2 The Web Repository

This section introduces CP-Lib. Subsection 2.1 describes the file format, and
Subsection 2.2 presents our choice of which instances to include. Subsection
2.3 explains how we were able to compute proven optimal values for many
of the instances, and Subsection 2.4 discusses how to classify the instances
according to their difficulty.

CP-Lib can be accessed at GitHub: github.com/MMSorensen/CP-Lib.
It contains a folder with the files for each family of instances mentioned in
Sections 3 and 4 below.

2.1 File format

The data is available in plain text files containing only integers. The first
line contains the number of vertices n, and the following lines contain all
edge weights, which are separated by space or new-line characters. The data
files have the format shown in Fig. 1.

n
w1,2 w1,3 . . . w1,n

w2,3 . . . w2,n
...

wn−1,n

Figure 1: The file format.

2.2 Choice of instances

We have included most of the instances that we were able to track down
in the literature. However, there are some instances in the literature that
are associated with practical applications, such as those mentioned in [22],

2

https://github.com/MMSorensen/CP-Lib


for which the data sets are not available due to confidentiality and other
reasons.

We have also excluded some instances on the basis of their size. Instances
with n < 30 were not included, since they were all trivial to solve. Some
random instances with n > 2500, due to Lu et al. [37], were also excluded
(see Subsection 3.4). These latter instances occupy an excessive amount of
storage space, and we were not able to obtain useful lower or upper bounds
for them in reasonable computing times.

2.3 Verification of optimal values

Optimal values for many of the benchmark instances are reported in [23,27,
28, 43, 44, 47, 49, 51]. To verify these values, we used our own CPP solver.
Our solver is of branch-and-cut type, and it is based on the standard 0-1 LP
formulation of the CPP [27,38]. This formulation takes the form:

max
∑

1≤i<j≤nwijxij

s.t. xik + xjk − xij ≤ 1
(
1 ≤ i < j ≤ n, k 6= i, j

)
(1)

xij ∈ {0, 1}
(
1 ≤ i < j ≤ n

)
.

Here, the binary variable xij takes the value 1 if and only if vertices i and j
lie in the same clique.

The inequalities (1) are called transitivity inequalities. We employ these
inequalities in our branch-and-cut algorithm, together with two other fam-
ilies of (facet-defining) inequalities: the odd wheel inequalities [17] and the
2-partition inequalities [27]. The odd wheel inequalities are separated ex-
actly using the algorithm described in [21]. For the 2-partition inequalities,
we use an improved version of the separation heuristics described in [27,43].
A detailed description of the improved version can be found in [50].

We also used a metaheuristic to obtain lower bounds on the optimal
values. This metaheuristic is similar to the one by Zhou et al. [55]. For each
instance, the lower bound from the metaheuristic was fed into the branch-
and-cut solver. In most cases, this enabled us to solve the instance more
quickly.

2.4 Classification of instances

In order to give an indication of the computational difficulty of each instance,
we classify instances into three groups: easy, non-trivial, and challenging.
This is done in the following way.

We say that an instance is easy if the standard LP relaxation (containing
only transitivity and non-negativity inequalities) has at least one integer
optimal solution. Such instances are often solved at the root node by our
algorithm, either because the LP solution is integral, or because the lower

3



bound from our heuristic is equal to the upper bound from the LP. (Note that
our definition of “easy” makes no mention of computing time. In practice,
some of the larger “easy” instances can actually take up to an hour to solve,
due to the sheer size of the LPs involved.)

Non-trivial instances are those that cannot be classified as easy, but can
be solved by our algorithm within one hour of computation. This involves
the use of the other kinds of inequalities as cutting planes, and branching
may also be performed.

Finally, challenging instances are those that cannot be solved by our
branch-and-cut algorithm within one hour of computation.

3 Instances in the Literature

This section gives an overview of the existing benchmark instances. Sub-
sections 3.1, 3.2 and 3.3 cover instances coming from aggregation of binary
relations, machine cell formation and cluster editing, respectively. Subsec-
tion 3.4 concerns instances with random weights, and Subsection 3.5 con-
cerns some instances that were designed to be challenging for local search
heuristics.

In all of the tables in this section, the column headed “Value” gives the
best known lower bound at the time of writing for the instance in question.
We mark the value with an asterisk (*) when our branch-and-cut algorithm
was able to prove optimality of the given value (within a reasonable amount
of time). In the column “Source”, we give a reference to the source of the
instance data. Sometimes, we also give a reference to the paper that was
the first to state the best known value. Finally, the column “Difficulty”
classifies instances, as explained in Subsection 2.4.

3.1 Aggregation of binary relations

Grötschel & Wakabayashi [27,53] consider the CPP in the context of a prob-
lem in qualitative data analysis known as “aggregation of binary relations
into an equivalence relation” (ABR for short). Other researchers have sub-
sequently used the CPP to model and solve instances of the same problem,
e.g. [22, 23,36].

An instance of this problem is given by n “objects”, each with m qual-
itative “attributes”. The objects and the values of their attributes can be
represented in a matrix D = (dik), where each entry dik is the value of at-
tribute k for object i. For each pair {i, j} of objects and each attribute k,
we define the binary constant

rkij =

{
1, if attribute k has the same value for objects i and j

0, otherwise.

4



Edge weights wij are then defined as the “similarities” of objects i and j
with respect to the m attributes: wij = 2

∑m
k=1 r

k
ij−m (see [27] for details).

Sometimes, the edge weights must be adjusted to take missing values or
quantitative attributes into consideration. In the case of missing values, we
follow the approach in [36], which is equivalent to the one in [27]. For any
missing value dik or djk, let rkij = 0, and let Iij be the number of missing
values for objects i or j for all attributes (missing values for both objects
are counted only once). Edge weights are then modified as

wij = 2
m∑
k=1

rkij − (m− Iij). (2)

In the case of no missing values, all weights in (2) equal the standard edge
weights as mentioned above. Otherwise, only attributes with no missing
values are considered in the calculation.

When the data contains quantitative attributes, the binary relations can
be modified as suggested in [27]:

rkij = 1 ⇔
|dik − djk|

max(dik, djk, 1)
≤ α, (3)

where α is a threshold to be specified.

3.1.1 Instances from Grötschel and Wakabayashi

Grötschel & Wakabayashi [27,53] presented six new instances from real-life
applications and seven other instances previously considered in the litera-
ture. Table 1 lists these instances. Although [27] and [53] are listed as the
only sources, some of the instances have different origins, such as [38]. We
have used the data tables provided in the sources mentioned to obtain the
input to these instances.

We note that the value of the instance “UNO 3a” does not correspond
to the one stated in [27]. We have double-checked that we have obtained
the input correctly as it appears in [53]. Furthermore, Martin Grötschel has
informed one of us that their original data got lost and may not have been
restored properly. We therefore ascribe the difference to this fact.

A few other inconsistencies are mentioned by Dorndorf and Pesch [23].
While they do not consider the instance “UNO 3a”, they state that they
obtain different objective values for three other instances (“companies”,
“UNO”, and “UNO 1b”), which may be attributed to typos in the data
matrices. They also had to adjust the parameter α used in (3) for calcu-
lating the edge weights for the instance “micro” (using α = 0.262 instead
of 0.3 as stated in [27]) to obtain the same objective value as in [27]. We also
had to make this adjustment of the parameter, but otherwise our results are
consistent with those obtained in [27]. We therefore suspect that there are
errors in the data used in [23].

5



Table 1: Instances considered by Grötschel and Wakabayashi.

Instance n Value Source Difficulty

cars 33 1501* [27] easy
cetacea 36 967* [27] easy
companies 137 81802* [27] easy
micro 40 966* [27] easy
UNO 54 798* [27] easy
UNO 1a 158 12197* [27] easy
UNO 1b 139 11775* [27] easy
UNO 2a 158 72820* [27] easy
UNO 2b 145 71818* [27] easy
UNO 3a 158 73068* [53] easy
UNO 3b 147 72629* [53] easy
wildcats 30 1304* [27] easy
workers 34 964* [27] easy

3.1.2 Further ABR instances

Further ABR instances of the CPP have been considered in the literature
(e.g., [10, 36]). Most of these instances are obtained from the UCI machine
learning repository [25]. Table 2 presents some of these and a couple of other
instances that we found.

The instance “lecturers” is obtained from the data given in [23], but
using a different weight function than the one mentioned in the reference.
Erwin Pesch has confirmed (via e-mail correspondence) that, according to
his memory, we use the same calculation as they did in [23].

We note that the instance “primary-tumor” has an optimal partition
with three clusters, one consisting of 337 objects and the other two being
singletons. Therefore, this partition is likely of little use in the analysis of
the data.

The “soup” instance has not been considered previously in the literature.
It originates from a consumer survey with data provided by a colleague of
one of the authors of this paper.

The three “soybean” instances have 35 attributes, but the small instances
on 47 vertices have 14 attributes that are identical for all the objects. Us-
ing all the attributes, we obtain the result shown as “soybean-35”, with
an optimal partition consisting of a single cluster, which carries no useful
information (this instance is considered in [36]). We prefer the instance
“soybean-21”, which has also been considered in [10]: it uses only the 21
non-identical attributes and has an optimal partition with 3 clusters. These
small “soybean” instances consist of a subset of the objects in the “soybean-
large” instance, for which we use all 35 attributes in the weight calculations.

6



Table 2: More ABR instances.

Instance n Value Source Difficulty

bridges 108 3867* [25,36] non-trivial
Hayes-Roth 160 2800* [25,36] non-trivial
lecturers 797 14317* [23] challenging
lung-cancer 32 3472* [25,36] easy
lymphography 148 19174* [25,36] non-trivial
primary-tumor 339 323614* [25,36] easy
soup 209 4625* non-trivial
soybean-21 47 3041* [10,25] easy
soybean-35 47 14613* [25,36] easy
soybean-large 307 316469* [25] easy
sponge 76 25677* [25,36] easy
ta-evaluation 151 1108* [25,36] easy
zoo 101 16948* [10,25] easy

The instance “ta-evaluation” is used in [36] under the name “Teaching
Evaluation”. In [25], the same data set is named “tae”.

3.2 Machine cell formation

The “machine cell formation problem” occurs in the context of Group Tech-
nology in production system layout. Several instances of this problem are
considered by Oosten et al. [43] and Wang et al. [54]. All these instances
come from the literature, and they are obtained as follows.

An instance of the problem consists of a set of machines and and a set of
parts to be processed by the machines together with a 0-1 matrix containing
a column for each part and a row for each machine, or vice versa. 1-entries
in this matrix indicate that the corresponding part must be processed by
the associated machine, and 0-entries indicate the opposite.

An instance of the CPP is obtained by defining a vertex for each part and
a vertex for each machine. Edge weights are then obtained in the following
way. Edges connecting two part-vertices or two machine-vertices are given
weight 0. Each edge connecting a part-vertex and a machine-vertex is given
weight 1 if the part must be processed by the machine; otherwise the weight
is −1.

Table 3 lists many of the instances obtained from 0-1 matrices in the
literature, and the specific sources of the inputs are listed in the table.
We note that a few of the instances come from different applications, e.g.,
the instance “ROG 05” originates from a survey of industrial purchasing
behaviour.

The “Wang” instances are introduced in [54] (under the names GT 50 200,

7



GT 100 700, and GT 150 1000) and have subsequently been considered in [24]
and [29]. We have obtained the data for these instances from the first author
of the last-mentioned reference.

3.3 Cluster editing

“Cluster editing”, also known as “correlation clustering”, is a technique in
data mining [2, 20]. Given a graph G = (V,E) on n vertices, the problem
is to determine a set of edge modifications (insertions and deletions), of
minimum cardinality, such that the modified graph is a clique partition.

To explain this in detail, we need some more notation. Let En denote
the set of edges of the complete graph on n vertices, i.e., En =

{
{i, j} : 1 ≤

i < j ≤ n
}

. Also let P ⊆ En be the edge set of a clique partition. Then,
to convert E into P , we need to insert |P \ E| edges from P and delete
|E| − |P ∩ E| edges from E. The goal is to find the set P that minimises
the total number of edge modifications.

In the literature on cluster editing, the weights of the edges in En are +1
for the edges in En\E and −1 for the edges in E. However, since we consider
the maximisation version of the CPP here, the edge weights in our instances
are reversed such that the weights of the edges are −1 for the edges in En\E
and +1 for the edges in E.

Böcker et al. [4] consider several thousand semi-random instances of this
problem. These instances turn out to be quite easy, and we have decided not
to include them here. They are all available at: bio.informatik.uni-jena.
de/software/peace/.

Simanchev et al. [49] consider several instances where the edges in E
are drawn randomly from En and with different densities. We follow their
approach and provide similar instances in Table 4. The names of these
instances are “cen-d”, where n is the number of vertices of the graph and d
is the edge density measured as |E|/|En| · 100 %. We include only instances
with density between 20% and 60%, because we found that other instances
are extremely easy for both exact and heuristic solution methods.

3.4 Random instances

We now turn our attention to random instances. Most of the random in-
stances considered in the literature are obtained by using edge weights that
are random uniformly distributed integers in an interval from l to u. For
ease of notation, we will denote these weights as RUI [ l, u ].

Charon & Hudry [16] presented seven random instances. Brusco &
Köhn [10] added six “missing” random instances to those of Charon &
Hudry. The web links to data instances given in these papers appear to
be insecure or not valid any longer. Instead, we have obtained the data

8

bio.informatik.uni-jena.de/software/peace/
bio.informatik.uni-jena.de/software/peace/


Table 3: Instances from machine cell formation in Group Technology.

Instance n Value Source Difficulty

BOC 1 46 58* [5] non-trivial
BOC 2 46 61* [5] non-trivial
BOC 3 46 60* [5] non-trivial
BOC 4 46 50* [5] non-trivial
BOC 5 46 72* [5] non-trivial
BOC 6 46 76* [5] easy
BOC 7 46 78* [5] easy
BOC 8 46 61* [5] non-trivial
BOC 9 46 89* [5] easy
BOC 10 46 70* [5] non-trivial
BOE 91 55 80* [6] non-trivial
BUR 69 55 98* [46] easy
BUR 73 126 126 [33] challenging
BUR 75 59 67* [32] non-trivial
BUR 91 59 72* [11] non-trivial
CAN 97 68 157* [12] non-trivial
CHA 86 55 102* [14] easy
CHA 87 140 347* [15] easy
GRO 80 43 53* [35] non-trivial
IRA 95 31 38* [46] non-trivial
KAT 97 108 175 [30] challenging
KIN 80 38 41* [31] easy
LEE 97 70 115* [46] easy
MAS 97 35 41* [39] non-trivial
MCC 72 40 43* [40] non-trivial
MIL 91 60 46* [41] non-trivial
NAI 96a 64 117* [42] easy
NAI 96b 64 93* [42] easy
NAI 96c 64 91* [42] non-trivial
NAI 96d 64 74* [42] non-trivial
ROG 05 65 60* [46] non-trivial
SEI 88 33 54* [48] non-trivial
SUL 91 31 46* [52] non-trivial
Wang250 250 419 [29,54] challenging
Wang800 800 1177 [29,54] challenging
Wang1150 1150 3236 [29,54] challenging

9



Table 4: Random cluster editing instances.

Instance n Value Difficulty

ce50-20 50 58* non-trivial
ce50-30 50 79* non-trivial
ce50-40 50 105* challenging
ce50-50 50 163* non-trivial
ce50-60 50 257* non-trivial
ce60-20 60 73* non-trivial
ce60-30 60 100 challenging
ce60-40 60 151* challenging
ce60-50 60 200 challenging
ce60-60 60 373* non-trivial
ce70-20 70 93* non-trivial
ce70-30 70 128 challenging
ce70-40 70 177 challenging
ce70-50 70 266 challenging
ce70-60 70 491* non-trivial
ce80-20 80 107* challenging
ce80-30 80 157 challenging
ce80-40 80 227 challenging
ce80-50 80 325 challenging
ce80-60 80 657* non-trivial

sets from Zhou et al. [55] and have transformed them into maximisation
instances of the CPP.

These instances are shown in Table 5. The instances “randn-i” on n
vertices have RUI [−i, i ] weights. The “regnier300-50” instance has been
obtained by considering 50 (random) bipartitions and setting edge weights
by counting the number of clusters in which each pair of vertices is or is
not in the same cluster. The instance “sym300-50” has been obtained by
creating 50 (random) symmetric relations among the vertices and computing
edge weights by counting the numbers of related and unrelated vertex pairs.
Finally, the instance “zahn300” has random edge weights that are −1 or 1.

Brimberg et al. [7] also use the instances in Table 5 and some random
instances of their own. The latter instances are not available, but they are
generated in the same way as the “p1000”, “p1500” and “p2000” instances
mentioned below.

Palubeckis et al. [45] consider 35 random instances on 500 to 2000 ver-
tices. Table 6 gives an overview. The instances “p500-i-c” on 500 vertices
have RUI [−i, i ] weights, and “c” is just an identifier. The larger instances
“pn-c” on 1000 and more vertices have RUI [−100, 100 ] edge weights. These

10



Table 5: Charon & Hudry and Brusco & Köhn random instances.

Instance n Value Source Difficulty

rand100-5 100 1407 [10] challenging
rand100-100 100 24296 [16] challenging
rand200-5 200 4079 [10] challenging
rand200-100 200 74924 [10] challenging
rand300-5 300 7732 [16] challenging
rand300-100 300 152709 [16] challenging
rand400-5 400 12133 [10] challenging
rand400-100 400 222757 [10] challenging
rand500-5 500 17127 [10] challenging
rand500-100 500 309125 [16] challenging
regnier300-50 300 32164 [16] challenging
sym300-50 300 17592 [16] challenging
zahn300 300 2504 [16] challenging

instances have subsequently been considered by Jovanovic et al. [29], Lu et
al. [37], and Zhou et al. [55]. Frequently some of these references obtain
better partition values, in which cases we state their best values and include
a reference to them in the “Source” column. As above, we have obtained
these instances from Zhou et al. [55].

Zhou et al. [55] provide 15 additional instances on 500 to 800 vertices as
shown in Table 7. The “gauss500-100-c” instances have random edge weights
following a Gaussian distribution N (0, 52), and the “unifn-100-c” instances
have RUI [−100, 100 ] weights. As above, these instances have also been
considered by Lu et al. [37], and when they obtain better partition values,
we state their best values and include a reference to them in the “Source”
column.

Lu et al. [37] consider 31 large random instances on 2500 to 7000 vertices.
We have chosen to include only the instances on 2500 vertices in the library,
as shown in Table 8. These instances differ from other random instances in
the sense that they are obtained by recasting ten instances of UBQP from
the OR-Lib [3]. These instances have also been considered in [29] and we
give a reference in the table to this source when it states the best partition
value. The remaining larger instances, which we do not consider here, are
generated with RUI [−100, 100 ] weights; these instances are available from
the web-link provided in [37].

Du et al. [24] and Jovanovic et al. [29] created another set of random
instances, with 25 to 100 vertices. According to [24], 80 % of the edges are
generated with RUI [ 0, 100 ] weights, and the remaining 20 % of the weights
are set to a large negative value (namely, −9999). In line with our policy

11



Table 6: Palubeckis et al. random instances.

Instance n Value Source Difficulty

p500-5-1 500 17691 [45] challenging
p500-5-2 500 17169 [45] challenging
p500-5-3 500 16816 [45,55] challenging
p500-5-4 500 16808 [45] challenging
p500-5-5 500 16957 [45] challenging
p500-5-6 500 16615 [45] challenging
p500-5-7 500 16649 [45] challenging
p500-5-8 500 16756 [45] challenging
p500-5-9 500 16629 [45] challenging
p500-5-10 500 17360 [45] challenging
p500-100-1 500 308896 [45] challenging
p500-100-2 500 310241 [45,55] challenging
p500-100-3 500 310477 [45] challenging
p500-100-4 500 309567 [45] challenging
p500-100-5 500 309135 [45] challenging
p500-100-6 500 310280 [45] challenging
p500-100-7 500 310063 [45] challenging
p500-100-8 500 303148 [45] challenging
p500-100-9 500 305305 [45] challenging
p500-100-10 500 314864 [45] challenging
p1000-1 1000 885281 [29,45] challenging
p1000-2 1000 881751 [45,55] challenging
p1000-3 1000 866488 [37,45] challenging
p1000-4 1000 869374 [45,55] challenging
p1000-5 1000 888960 [37,45] challenging
p1500-1 1500 1619470 [29,45] challenging
p1500-2 1500 1649778 [37,45] challenging
p1500-3 1500 1611197 [37,45] challenging
p1500-4 1500 1641933 [37,45] challenging
p1500-5 1500 1595627 [37,45] challenging
p2000-1 2000 2508005 [29,45] challenging
p2000-2 2000 2495730 [29,45] challenging
p2000-3 2000 2544728 [29,45] challenging
p2000-4 2000 2528721 [29,45] challenging
p2000-5 2000 2514009 [29,45] challenging

12



Table 7: Zhou et al. random instances.

Instance n Value Source Difficulty

gauss500-100-1 500 265070 [55] challenging
gauss500-100-2 500 269076 [55] challenging
gauss500-100-3 500 257700 [55] challenging
gauss500-100-4 500 267683 [55] challenging
gauss500-100-5 500 271567 [55] challenging
unif700-100-1 700 515016 [55] challenging
unif700-100-2 700 519441 [55] challenging
unif700-100-3 700 512351 [55] challenging
unif700-100-4 700 513582 [55] challenging
unif700-100-5 700 510585 [37,55] challenging
unif800-100-1 800 639675 [55] challenging
unif800-100-2 800 630704 [55] challenging
unif800-100-3 800 629375 [37,55] challenging
unif800-100-4 800 624728 [55] challenging
unif800-100-5 800 625905 [55] challenging

described in Subsection 2.2, we include in our library only the instances
with at least 30 vertices. These instances, described in Table 9, were kindly
provided to us by Raka Jovanovic. For the smaller instances, the optimal
values have been verified by our CPP solver. For the remaining instances,
we give the best known lower bound, along with the reference where that
lower bound was first reported.

3.5 Artificial instances

Finally, we mention that De Amorim et al. [19] describe a method for cre-
ating so-called “special instances” that are designed to trick traditional lo-
cal search methods into arriving at a local optimum that is not a global
optimum. In each instance, they consider a weighted complete graph on
n = 2n′ vertices, where V 1, V 2 is a partition of the vertex set such that
V 1 = {1, . . . , n′} and V 2 = {n′ + 1, . . . , 2n′}. Edge weights are then as-
signed in the following way:

• Weights equal to α > 2 are assigned to the cycle {1, 2}, {2, 3}, . . . , {n′−
1, n′}, {n′, 1} of length n′ on vertices V 1.

• All other edges with end-vertices in V 1 have weight equal to 2.

• The edges {i, n′ + i} with i ∈ V 1 and n′ + i ∈ V 2, for i = 1, . . . , n′,
have weight equal to α+ 1.

• All other edges have weight equal to β < −
(
(n′)2 + 2n′(α− 1)

)
.

13



Table 8: Lu et al. random instances.

Instance n Value Source Difficulty

b2500-1 2500 1063621 [29,37] challenging
b2500-2 2500 1064144 [29,37] challenging
b2500-3 2500 1082946 [29,37] challenging
b2500-4 2500 1066239 [29,37] challenging
b2500-5 2500 1066387 [37] challenging
b2500-6 2500 1066978 [29,37] challenging
b2500-7 2500 1068377 [29,37] challenging
b2500-8 2500 1070060 [29,37] challenging
b2500-9 2500 1071272 [37] challenging
b2500-10 2500 1066770 [29,37] challenging

Note that the above description of edge weights applies to the maximi-
sation version of the CPP. The optimal partitions of these graphs consist of
n′ + 1 clusters: vertex set V 1 and singletons {n′ + i}, for each n′ + i ∈ V 2,
and their values are n′(α+ n′ − 3).

De Amorim et al. consider instances with n up to 100 (i.e. n′ ≤ 50) with
α = 10 and β = −

(
(n′)2 + 2n′α

)
. Brusco & Köhn [10] consider instances

with n between 100 and 300 vertices and the same values of α and β.
In Table 10 we present instances with n between 50 and 300 (in incre-

ments of 50) with α ∈ {3, 10, 20} and β = −
(
(n′)2 + 2n′α

)
. We name these

instances using the formula “am-n′-α”, so that the parameters are contained
in the names.

4 New Instances

In this last section, we introduce two additional sets of CPP instances. Sub-
section 4.1 introduces some instances derived from a consideration of the
“equicut” problem, and Subsection 4.2 presents a procedure for generating
new instances based on correlations between random variables.

4.1 Instances from the equicut problem

The “equicut” or “equipartition” problem is similar to the CPP, but there
is the added constraint that there must be exactly two clusters, each of
cardinality bn/2c or dn/2e (see, e.g., [9, 18]).

It is possible to convert any equicut instance into a CPP instance by
simply removing the above-mentioned constraint. Of course, for the result-
ing CPP instance to be non-trivial, it is necessary that there be a mixture
of positive and negative edge weights. It turns out that some of the equi-

14



Table 9: Du et al. and Jovanovic et al. random instances

Instance n Value Source Difficulty

CPn35-1 35 7837* [24] Non-trivial
CPn35-2 35 7215* [24] Non-trivial
CPn35-3 35 7633* [24] Non-trivial
CPn35-4 35 7652* [24] Non-trivial
CPn45-1 45 11545* [24] Challenging
CPn45-2 45 12345* [29] Non-trivial
CPn45-3 45 11880* [29] Challenging
CPn45-4 45 10506* [24] Challenging
CPn50-1 50 13562 [29] Challenging
CPn50-2 50 14080 [24] Challenging
CPn50-3 50 13172 [29] Challenging
CPn50-4 50 13728 [24] Challenging
CPn65-1 65 20028 [29] Challenging
CPn65-2 65 20753 [29] Challenging
CPn65-3 65 20463 [29] Challenging
CPn65-4 65 20000 [29] Challenging
CPn100-1 100 37188 [29] Challenging
CPn100-2 100 37460 [29] Challenging
CPn100-3 100 39766 [29] Challenging
CPn100-4 100 38192 [29] Challenging

cut instances mentioned in [9] are of this type: the so-called “negative”
instances.

The “negative” instances are created using a “density” parameter. In
detail, given a density of k%, the edge weights are set to 0 with probability
(100 − k)%, and to a non-zero integer with probability k%. In the latter
case, the weight is selected uniformly at random from {−9,−8, . . . ,−1} ∪
{1, 2, . . . 9}.

Table 11 gives some information about the instances on 50 or more ver-
tices. In this table, we include an extra column, “Density”, showing the
percentage of non-zero edge weights. Note that these instances have not
been considered previously as instances of the CPP. For this reason, the
values stated are those obtained by our own algorithms.

4.2 Correlation instances

Finally, we found that one can generate quite challenging CPP instances
by computing correlations between n independent random variables, and
then setting each edge weight to the corresponding correlation coefficient.
In more detail, we do the following:

15



Table 10: Artificial instances.

Instance n Value Difficulty

am-25-3 50 625* easy
am-25-10 50 800* easy
am-25-20 50 1050* easy
am-50-3 100 2500* easy
am-50-10 100 2850* easy
am-50-20 100 3350* easy
am-75-3 150 5625* easy
am-75-10 150 6150* easy
am-75-20 150 6900* easy
am-100-3 200 10000* easy
am-100-10 200 10700* easy
am-100-20 200 11700* easy
am-125-3 250 15625* easy
am-125-10 250 16500* easy
am-125-20 250 17750* easy
am-150-3 300 22500* easy
am-150-10 300 23550* easy
am-150-20 300 25050* easy

1. Let n be the desired number of vertices.

2. Create an n by n square matrix in which each entry is uniformly
distributed between 0 and 1.

3. For 1 ≤ i < j ≤ n, let cij be the correlation between the ith and jth
columns of the matrix.

4. For 1 ≤ i < j ≤ n, set wij to be 100cij rounded to the nearest integer.

We call instances of this kind “correlation instances”.
Following this scheme, we created ten instances of each kind for n ∈

{40, 60, 80}. The resulting instances turned out to be “non-trivial” or “chal-
lenging”. Table 12 presents some information about the instances.

References

[1] H.H. Ali & H. El-Rewini, Task allocation in distributed systems: a split
graph model, J. Combin. Math. Combin. Comput., 14, 15–32 (1993)

[2] N. Bansal, A. Blum & S. Chawla, Correlation clustering, Machine
Learning, 56, 89–113 (2004)

16



Table 11: Equicut “negative” instances.

Instance n Density Value Source Difficulty

neg-c-00 50 100 752* [9] challenging
neg-c-10 50 90 649* [9] challenging
neg-c-20 50 80 604* [9] challenging
neg-c-30 50 70 582* [9] non-trivial
neg-c-40 50 60 577* [9] non-trivial
neg-c-50 50 50 549* [9] non-trivial
neg-c-60 50 40 463* [9] non-trivial
neg-c-70 50 30 452* [9] non-trivial
neg-c-80 50 20 317* [9] non-trivial
neg-s-80 60 20 473* [9] non-trivial
neg-tt-80 70 20 592 [9] challenging

[3] J.E. Beasley, OR-Library: distributing test problems by electronic mail,
J. Oper. Res. Soc., 41, 1069–1072 (1990)

[4] S. Böcker, S. Briesemeister & G.W. Klau, Exact algorithms for cluster
editing: evaluation and experiments, Algorithmica, 60, 316–334 (2011)

[5] F. Boctor, A linear formulation of the machine-part cell formation prob-
lem, Int. J. Prod. Res., 29, 343–356 (1991)

[6] W.J. Boe & C.H. Cheng, A close neighbour algorithm for designing
cellular manufacturing systems, Int. J. Prod. Res., 29, 2097–2116 (1991)

[7] J. Brimberg, S. Janićijević, N. Mladenović & D. Uros̆ević, Solving the
clique partitioning problem as a maximally diverse grouping problem,
Optim. Lett., 11, 1123–1135 (2017)

[8] S. Bruckner, F. Hüffner, Ch. Komusiewicz & R. Niedermeier, Eval-
uation of ILP-based approaches for partitioning into colorful compo-
nents. In V. Bonifaci et al. (eds.) Experimental Algorithms, pp. 176–187.
Springer, Heidelberg (2013)

[9] L. Brunetta, M. Conforti & G. Rinaldi, A branch-and-cut algorithm for
the equicut problem, Math. Program., 77, 243–263 (1997)

[10] M.J. Brusco & H.F. Köhn, Clustering qualitative data based on binary
equivalence relations: neighborhood search heuristics for the clique par-
titioning problem, Psychometrika, 74, 685–703 (2009)

[11] J.L. Burbidge, Production flow analysis for planning group technology.
J. Oper. Manag., 10, 5–27 (1991)

17



Table 12: Correlation instances.

Instance n Value Difficulty

corr40-1 40 2191* non-trivial
corr40-2 40 1852* non-trivial
corr40-3 40 2310* non-trivial
corr40-4 40 2084* non-trivial
corr40-5 40 2245* non-trivial
corr40-6 40 2516* non-trivial
corr40-7 40 2294* non-trivial
corr40-8 40 2184* non-trivial
corr40-9 40 2129* non-trivial
corr40-10 40 2301* non-trivial
corr60-1 60 3678* non-trivial
corr60-2 60 3445* challenging
corr60-3 60 3595* non-trivial
corr60-4 60 3565* non-trivial
corr60-5 60 3313* non-trivial
corr60-6 60 3295* non-trivial
corr60-7 60 3506* non-trivial
corr60-8 60 3540* non-trivial
corr60-9 60 3372* non-trivial
corr60-10 60 3570* non-trivial
corr80-1 80 4724 challenging
corr80-2 80 4667 challenging
corr80-3 80 4993 challenging
corr80-4 80 4504 challenging
corr80-5 80 5090 challenging
corr80-6 80 4465 challenging
corr80-7 80 5088 challenging
corr80-8 80 4757 challenging
corr80-9 80 4430 challenging
corr80-10 80 5071 challenging

18



[12] M. Cantamessa & A. Turroni, A pragmatic approach to machine and
part grouping in cellular manufacturing system design, Int. J. Prod.
Res., 35, 1031–1050 (1997)

[13] H.M. Chan & D.A. Milner, Direct clustering algorithm for group for-
mation in cellular manufacturing, J. Manuf. Syst., 1, 65-74 (1982)

[14] M.P. Chandrasekharan & R. Rajagopalan, MODROC: an extension of
rank order clustering for group technology, Int. J. Prod. Res., 24, 1221–
1233 (1986)

[15] M.P. Chandrasekharan & R. Rajagopalan, ZODIAC — an algorithm for
concurrent formation of part-families and machine-cells, Int. J. Prod.
Res., 25, 835–850 (1987)

[16] I. Charon & O. Hudry, Noising methods for a clique partitioning prob-
lem, Discr. Appl. Math., 15, 754–769 (2006)

[17] S. Chopra & M.R. Rao, The partition problem, Math. Program., 59,
87–115 (1993)

[18] M. Conforti, M.R. Rao & A. Sassano, The equipartition polytope I:
formulations, dimension and basic facets, Math. Program., 49, 49–70
(1990)

[19] S.G. De Amorim, L.-P. Barthélemy & C.C. Riberio, Clustering and
clique partitioning: simulated annealing and tabu search approaches,
J. Classif., 9, 17–41 (1992)

[20] F. Dehne, M.A. Langston, X. Luo, S. Pitre, P. Shaw & Y. Zhang,
The cluster editing problem: implementations and experiments. In
H.L. Bodlaender & M.A. Langston (eds) Proc. IWPEC ’06. Springer,
Berlin (2006)

[21] M. Deza, M. Grötschel & M. Laurent, Clique-web facets for multicut
polytopes, Math. Oper. Res., 17, 981–1000 (1992)

[22] U. Dorndorf, F. Jaehn & E. Pesch, Modeling robust flight-gate schedul-
ing as a clique partitioning problem, Transp. Sci., 42, 292–301 (2008)

[23] U. Dorndorf & E. Pesch, Fast clustering algorithms, ORSA J. Comput.,
6, 141–153 (1994)

[24] Y. Du, G. Kochenberger, F. Glover, H. Wang, M. Lewis, W. Xie &
T. Tsuyuguchi, Solving clique partitioning problems: a comparison of
models and commercial solvers. Int. J. Inf. Technol. Decis. Mak., 21,
59–81 (2022)

19



[25] D. Dua & C. Graff (2019) UCI Machine Learning Repository
[archive.ics.uci.edu/ml/]. Irvine, CA: University of California, School
of Information and Computer Science.

[26] S. Fortunato, Community detection in graphs, Phys. Rep., 486, 75–174
(2010)

[27] M. Grötschel & Y. Wakabayashi, A cutting plane algorithm for a clus-
tering problem, Math. Program., 45, 59–96 (1989)

[28] F. Jaehn & E. Pesch, New bounds and constraint propagation tech-
niques for the clique partitioning problem, Discr. Appl. Math., 161,
2025–2037 (2013)

[29] R. Jovanovic, A.P. Sanfilippo & S. Voß, Fixed set search applied to the
clique partitioning problem, Eur. J. Oper. Res., 309, 65–81 (2023)

[30] I.A. Kattan, Design and scheduling of hybrid multi-cell flexible manu-
facturing systems, Int. J. Prod. Res., 35, 1239–1257 (1997)

[31] J.R. King, Machine component group formation in group technology,
Omega, 8, 193–199 (1980)

[32] J.R. King, Machine-component grouping in production flow analysis:
an approach using a rank order clustering algorithm, Int. J. Prod. Res.,
18, 213–232 (1980)

[33] J.R. King & V. Nakornchai, Machine-component group formation in
group technology: review and extension, Int. J. Prod. Res., 20, 117–
133 (1982)

[34] G. Kochenberger, F. Glover, B. Alidaee & H. Wang, Clustering of mi-
croarray data via clique partitioning, J. Comb. Optim., 10, 77–92 (2005)

[35] K.R. Kumar, A. Kusiak & A. Vannelli, Grouping of parts and compo-
nents in flexible manufacturing systems, Eur. J. Oper. Res., 24, 387–397
(1986)

[36] L.H.N. Lorena, M.G. Quiles, L.A.N. Lorena, A.C.P.L.F. de Carvalho
& J.G. Cespedes, Qualitative data clustering: a new integer linear pro-
gramming model, Proc. IJCNN ’19. IEEE, Piscataway, NJ (2019)

[37] Z. Lu, Y. Zhou & J-K. Hao, A hybrid evolutionary algorithm for the
clique partitioning problem, IEEE Trans. Cyber., 52, 9391–9403 (2022)

[38] J.F. Marcotorchino, Aggregation of Similarities in Automatic Classifi-
cation (in French). Doctoral Thesis, Université Paris VI (1981)

20

http://archive.ics.uci.edu/ml/


[39] A. Masnata & L. Settineri, An application of fuzzy clustering to cellular
manufacturing, Int. J. Prod. Res., 35, 1077–1094 (1997)

[40] W.T. McCormick, Jr., P.J. Schweitzer & T.W. White, Problem decom-
position and data reorganization by a clustering technique, Oper. Res.,
20, 993–1009 (1972)

[41] J. Miltenburg & W. Zhang, A comparative evaluation of nine well-
known algorithms for solving the cell formation problem in group tech-
nology, J. Oper. Manag., 10, 44–72 (1991)

[42] G.J.K. Nair & T.T. Narendran, Grouping index: a new quantitative
criterion for goodness of block-diagonal forms in group technology, Int.
J. Prod. Res., 34, 2767–2782 (1996)

[43] M. Oosten, J.H.G.C. Rutten & F.C.R. Spieksma, The clique partition-
ing problem: facets and patching facets, Networks, 38, 209–226 (2001)

[44] G. Palubekis, A branch-and-bound approach using polyhedral results
for a clustering problem, INFORMS J. Comput., 9, 30–42 (1997)

[45] G. Palubeckis, A. Ostreika & A. Tomkevičius, An iterated tabu search
approach for the clique partitioning problem, Sci. World J., article
353101 (2014)

[46] D.F. Rogers & S.S. Kulkarni, Optimal bivariate clustering and a genetic
algorithm with an application in cellular manufacturing, Eur. J. Oper.
Res., 160, 423–444 (2005)

[47] M. Schader & U. Tüshaus, A subgradient algorithm for classification of
qualitative data (in German), OR Spektrum, 7, 1–5 (1985)

[48] H. Seifoddini, Machine grouping — expert systems: comparison be-
tween single linkage and average linkage clustering techniques in form-
ing machine cells, Comput. Indust. Eng., 15, 210–216 (1988)

[49] R.Y. Simanchev, I.V. Urazova & Y.A. Kochetov, The branch and cut
method for the clique partitioning problem, J. Appl. Ind. Math., 13,
539–556 (2019)

[50] M.M. Sørensen, A separation heuristic for 2-partition inequalities for
the clique partitioning problem, Working paper, Department of Eco-
nomics and Business Economics, Aarhus University (2020)

[51] N. Sukegawa, Y. Yamamoto & L. Zhang, Lagrangian relaxation and
pegging test for the clique partitioning problem, Adv. Data Anal. Clas-
sif., 7, 363–391 (2013)

21



[52] D.R. Sule, Machine capacity planning in group technology, Int. J. Prod.
Res., 29, 1909–1922 (1991)

[53] Y. Wakabayashi, Aggregation of Binary Relations: Algorithmic and
Polyhedral Investigations. PhD Thesis, Augsburg University (1986)

[54] H. Wang, B. Alidaee, F. Glover & G. Kochenberger, Solving group
technology problems via clique partitioning, Int. J. Flex. Manuf. Syst.,
18, 77–97 (2006)

[55] Y. Zhou, J.-K. Hao & A. Goëffon, A three-phased local search approach
for the clique partitioning problem, J. Combin. Optim., 32, 469–491
(2016)

22


	Introduction
	The Web Repository
	File format
	Choice of instances
	Verification of optimal values
	Classification of instances

	Instances in the Literature
	Aggregation of binary relations
	Instances from Grötschel and Wakabayashi
	Further ABR instances

	Machine cell formation
	Cluster editing
	Random instances
	Artificial instances

	New Instances
	Instances from the equicut problem
	Correlation instances


