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Abstract. The split cuts of Cook, Kannan and Schrijver are general-purpose valid inequalities for integer
programming which include a variety of other well-known cuts as special cases. To detect violated split cuts,
one has to solve the associated separation problem. The complexity of split cut separation was recently cited
as an open problem by Cornuéjols & Li [10].

In this paper we settle this question by proving strong NP-completeness of separation for split cuts. As a
by-product we also show NP-completeness of separation for several other classes of inequalities, including
the MIR-inequalities of Nemhauser and Wolsey and some new inequalities which we call balanced split cuts
and binary split cuts. We also strengthen NP-completeness results of Caprara & Fischetti [5] (for {0, 1

2 }-cuts)
and Eisenbrand [12] (for Chvátal-Gomory cuts).

To compensate for this bleak picture, we also give a positive result for the Symmetric Travelling Salesman
Problem. We show how to separate in polynomial time over a class of split cuts which includes all comb
inequalities with a fixed handle.
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1. Introduction

A wide variety of general-purpose cutting planes (valid linear inequalities) have been
proposed for integer and mixed-integer programming over the years. These include, in
historical order, Gomory’s fractional and mixed-integer cuts [15, 16]; the intersection
cuts of Balas [1]; the Chvátal-Gomory cuts (see Chvátal [8] and Nemhauser & Wolsey
[24]); the disjunctive cuts (see Balas [2]); the split cuts of Cook, Kannan & Schrijver
[9]; the MIR-inequalities of Nemhauser & Wolsey [25]; the matrix cuts of Lovász &
Schrijver [23]; the lift-and-project cuts of Balas, Ceria & Cornuéjols [4] and the {0, 1

2 }-
cuts of Caprara & Fischetti [5].

Although this array of inequalities is rather bewildering, it is known that many of
them are essentially the same. For example, the Gomory fractional cuts are equivalent
to Chvátal-Gomory cuts, and the Gomory mixed-integer cuts are equivalent to both split
cuts and MIR inequalities. The relationships between all of these inequalities are made
precise in the recent excellent paper by Cornuéjols & Li [10].

A question of interest for a given class of inequalities is how easy they are to generate
in the context of a cutting plane algorithm. This leads us to consider the so-called sepa-
ration problem associated with each class of inequalities, i.e., the problem of detecting
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when an inequality of a given type is violated by a fractional solution of an LP relaxation
of the original problem (see Grötschel, Lovász & Schrijver [17]).

Some progress has been made in the last ten years on determining the complexity of
these separation problems. On the positive side, it is known that the separation problems
for both matrix cuts and lift-and-project cuts can be solved in polynomial time [4, 23].
On the negative side, the separation problems for both {0, 1

2 }-cuts and Chvátal-Gomory
cuts are strongly NP-complete (see [5] and [12]). The complexity of separation for the
remaining cuts was cited as an open problem by Cornuéjols & Li [10].

In this paper we prove strong NP-completeness of separation for split cuts and MIR
inequalities. The key observation leading to our result is that split cut separation can
be formulated in a nontrivial way as a (nonlinear) mixed-integer program with parity
constraints. As a by-product, we also show NP-completeness of separation for two new
classes of inequalities, which we call balanced split cuts and binary split cuts. We also
strengthen the NP-completeness results of Caprara & Fischetti [5] and Eisenbrand [12]
by showing that separation of both {0, 1

2 }-cuts and Chvátal-Gomory cuts is strongly
NP-complete even when variables are constrained to be non-negative (as is normally
the case in practice).

To compensate for this bleak picture, we also give a positive separation result for
the well-known Symmetric Travelling Salesman Problem (STSP). For this problem the
split cuts include the well-known comb inequalities as a special case, along with various
other more general facet-inducing inequalities. Although the complexity of both comb
and split cut separation in the case of the STSP is unknown, we show how to separate
in polynomial time over a class of split cuts which includes all (generalized) comb in-
equalities with a fixed handle. This result is achieved by showing that all {0, 1

2 }-cuts for
the STSP are split cuts associated with so-called natural disjunctions.

The structure of the remainder of the paper is as follows. In Section 2 we review the
definitions of various known cuts, define the new cuts (binary split cuts and balanced
split cuts), and show how the various cuts are related. In Section 3 we establish the new
NP-completeness results. In Section 4, we apply the concepts to the STSP and derive
the new separation result. Finally, conclusions are given in Section 5.

Throughout the paper, we assume that a mixed-integer linear program (MILP) has
n integer-constrained variables, p continuous variables, and m linear constraints. The
vector of integer-constrained variables will be denoted by x and the vector of continuous
variables by y. The feasible region of the LP relaxation is assumed to be the polyhedron

P := {(x, y) ∈ R
n+p : Ax + Gy ≤ b},

where A and G are integral matrices of appropriate dimension (m × n and m × p, re-
spectively) and b is an m-vector of integral right hand sides. This implies that the convex
hull of feasible MILP solutions is the polyhedron

PI := conv{x ∈ Zn, y ∈ R
p : Ax + Gy ≤ b}.

We have PI ⊆ P and we assume in this paper that containment is strict. A cutting
plane is a linear inequality which is valid for PI (i.e., satisfied by all (x, y) ∈ PI ), but
violated by some (x, y) ∈ P \ PI .
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In the majority of interesting cases it can be assumed that all variables are constrained
to be non-negative.When this is true, we will say that the non-negativity assumption holds
and we will consider the non-negativity constraints as part of the system Ax +Gy ≤ b.

Finally, given a graph G = (V ,E), we define for any S ⊆ V the edge sets E(S) :=
{(i, j) ∈ E : i, j ∈ S} and δ(S) := {(i, j) ∈ E : i ∈ S, j ∈ V \ S}.

2. Relationships between various classes of cuts

In this section we review the definitions of some of the classes of cuts mentioned in
Section 1, introduce two new classes, and show how the various classes all relate to each
other.

We begin with the cuts introduced by Chvátal [8], which have since become known
as Chvátal-Gomory (or CG) cuts (see, e.g., [24]). The CG cuts, which are only defined
for pure integer linear programs (ILPs), are valid inequalities of the form (λA)x ≤ �λb�,
where λ ∈ R

m+ is such that λA ∈ Zn and �·� represents integer rounding downward.
Obviously, we can require that λb is not integral, because otherwise the CG cut will be
dominated by the inequalities defining P .

The CG cuts are related to the classical fractional cuts of Gomory [15]. In fact it
is often claimed that they are equivalent. However, this is not exactly true – see [10]
for a more precise statement. Indeed, we can define CG cuts even when variables are
permitted to be negative, which is not the case for fractional cuts.

The components of the vector λ used in the derivation of a CG cut are called CG
multipliers. By imposing restrictions on the CG multipliers, various special kinds of CG
cut can be defined, see Caprara & Fischetti [5] and Caprara, Fischetti & Letchford [6]. In
particular, a {0, 1

2 }-Chvátal-Gomory cut, or {0, 1
2 }-cut for short, is a CG cut in which all

CG multipliers are either zero or one-half [5]. Again it should be noted that {0, 1
2 }-cuts

can be defined even when variables are permitted to be negative.
Now we come to the most important class of cuts in this paper, the split cuts of Cook,

Kannan & Schrijver [9]. The split cuts, which are defined for general MILPs, are derived
via a so-called disjunctive argument as follows (see also Balas [2, 3]). Given any c ∈ Zn

and d ∈ Z, each MILP solution must satisfy either cx ≤ d or cx ≥ d+1. Then, if we de-
fine the polyhedra PL := {(x, y) ∈ P : cx ≤ d} and PR := {(x, y) ∈ P : cx ≥ d + 1},
we have that any inequality which is valid for PL and PR is also valid for PI . (Here,
‘L’ and ‘R’ are meant to denote ‘left’ and ‘right’.) Any inequality of this type is a split
cut.

Closely related to the split cuts are the MIR-inequalities of Nemhauser & Wolsey
[24]. Unlike the split cuts, however, the MIR-inequalities are only defined for problems
where the non-negativity assumption holds. Given two inequalities valid for P of the
form

n∑
j=1

πi
j xj +

p∑
j=1

µi
jyj ≤ πi

0

for i = 1, 2, the associated MIR-inequality takes the form
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n∑
j=1

�π2
j − π1

j �xj + 1

1 − f0


 n∑

j=1

π1
j xj +

p∑
j=1

min(µ1
j , µ

2
j )yj − π1

0


 ≤ �π2

0 − π1
0 �

where f0 = π2
0 − π1

0 − �π2
0 − π1

0 �.
It is often said (see, e.g., [9, 25]) that the split cuts, MIR-inequalities, along with

the classical mixed-integer cuts of Gomory [16], are all equivalent. However, again this
is not exactly true — see [10] for a more precise statement. In particular, we can de-
fine split cuts even when variables are permitted to be non-negative. MIR-inequalities
and mixed-integer cuts, on the other hand, are only defined when the non-negativity
assumption holds.

The so-called lift-and-project cuts of Balas, Ceria & Cornuéjols [4] are a simple kind
of split cut, obtained when the disjunction is of the form (xi ≤ 0) ∨ (xi ≥ 1), where xi
is a binary variable.

Next we will introduce two more classes of cuts to further complicate an already
complicated picture. Recall the definition of PL and PR in the above definition of split
cuts. The system of inequalities defining PL, namely

cx ≤ d,Ax + Gy ≤ b (1)

will be referred to as the left system and the inequality cx ≤ d will be referred to as the
left term. Similarly, the system of inequalities defining PR , namely

−cx ≤ −d − 1, Ax + Gy ≤ b (2)

will be called the right system and the inequality −cx ≤ −d − 1 will be called the right
term.

Note that, to show that an inequality is implied by the left system (or right system)
in a split derivation, one can sum together the inequalities in the left system, multiplied
by non-negative coefficients. We will call these coefficients disjunctive multipliers by
analogy with the CG multipliers.

Definition 1. A balanced split cut is a split cut in which the disjunctive multipliers for
the left and right term are equal to each other.

Note that the multipliers for the left and right term may be assumed to be equal to 1
in the derivation of a balanced split cut without loss of generality.

Definition 2. A binary split cut is a split cut in which all disjunctive multipliers are in
{0, 1} for both systems.

Given a binary split cut, we also define the set SL, containing the inequalities in
the left system whose disjunctive multipliers are 1, and a corresponding set SR for the
right system. Note that one may assume without loss of generality that the left term is
in SL (and the right term is in SR), since otherwise the split cut would be implied by
the original inequality system Ax ≤ b. Thus, we may assume that binary split cuts are
balanced without loss of generality. Also, one may assume that no inequality is in both
SL and SR , because removing such an inequality from SL and SR leads to an equivalent
or stronger binary split cut.
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Fig. 1. Relationships between classes of cuts

The next proposition shows that, for ILPs, binary split cuts and {0, 1
2 }-cuts are

essentially the same.

Proposition 1. In the case of ILPs, the binary split cuts and {0, 1
2 }-cuts are equivalent.

That is, given any cut in one family, there is a cut in the other family which is equivalent
(or stronger).

Proof. Consider first a binary split cut αx ≤ β (note that β is integer). As stated
before, we can assume that the left term is contained in SL and the right term in SR . Now
consider the {0, 1

2 }-cut obtained by setting the CG multipliers to 1
2 for the inequalities

in SL ∪ SR , but excluding the left and right terms. It is immediately verified that this cut
has the form αx ≤ �β + 1

2�, i.e., it is equivalent to the binary split cut.
Now consider a {0, 1

2 }-cut γ x ≤ δ. Let S be the set of inequalities in the origi-
nal system Ax ≤ b with CG multiplier 1

2 in the derivation of this cut. The same cut
can be derived as a binary split cut from the disjunction (γ x ≤ δ) ∨ (γ x ≥ δ + 1).
This is trivial for the left side: The left term is given a disjunctive multiplier of 1 and
all other inequalities receive a disjunctive multiplier of zero. On the right side, the
right term and the inequalities in S are given disjunctive multipliers of 1. The claim
follows from the observation that the sum of the inequalities in S gives 2γ x ≤
2δ + 1. ��

Thus, in the case of ILPs, binary split cuts yield nothing new. On the other hand,
even in the case of 0-1 ILPs, there are balanced split cuts which are neither CG cuts,
nor lift-and-project cuts. Consider, for example, the polyhedron P := {x ∈ [0, 1]3 :
2x1 + x2 + x3 ≤ 2,−2x1 + x2 + x3 ≤ 0}. The inequality x2 + x3 ≤ 0 is easily shown
to be a balanced split cut, yet neither a CG cut nor a lift-and-project cut.

Figure 1 illustrates the relationships between all of the inequalities discussed. An
arrow from one class to another indicates that the former class is a proper generalization
of the latter, even in the case of pure 0-1 ILPs.

3. Separation

3.1. Known results

In order to use a class of valid linear inequalities as cutting planes, it is necessary to
solve the so-called separation problem (Grötschel, Lovász & Schrijver [17]). For a given
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family of inequalities F and a given point x∗ ∈ R
n, the separation problem is to find an

inequality in F which is violated by x∗, or to prove that none exists.
The only class of inequalities among those displayed in Figure 1 which are known to

be separable in polynomial time are the lift-and-project cuts [4, 23]. On the other hand,
the separation problems for {0, 1

2 }-cuts and CG cuts are strongly NP-complete (see
Caprara & Fischetti [5], Eisenbrand [12], respectively). However these two hardness
results are only proved for ILPs without the non-negativity assumption. The complexity
of separation for {0, 1

2 }-cuts and CG cuts under the non-negativity assumption, as well
as for the remaining inequalities in Figure 1, was unknown until the present paper.

In the next subsection we show strong NP-completeness of separation for split cuts,
balanced split cuts, binary split cuts, CG cuts, MIR-inequalities and {0, 1

2 }-cuts, in all
cases for pure ILPs under the non-negativity assumption.

3.2. Hardness of separation

In order to prove our hardness results it is necessary to express the separation problem
for split cuts in a certain nontrivial form. A split cut is a valid inequality of the form
αx + βy ≤ γ , with

α = λLc + µLA = −λRc + µRA, (3)

β = µLG = µRG, (4)

and
γ = λLd + µLb = −λR(d + 1) + µRb, (5)

where cx ≤ d ∨ cx ≥ d + 1 (c ∈ Zn, d ∈ Z) is the associated disjunction (which
has to be determined in the separation problem), and (λL, µL), (λR, µR) ≥ 0 are the
disjunctive multiplier vectors for the left and right system, respectively. Using this fact,
the split cut can be expressed as:(

(µL + µR)A + (λL − λR)c
)
x+(µL+µR)Gy ≤ (µL+µR)b+(λL−λR)d−λR. (6)

This can be simplified in the following way. First, we assume without loss of generali-
ty that λL+λR = 2 and let λ := λR . (Note that 0 < λ < 2 in any non-dominated cut, and
that λ = 1 for a balanced split cut.) Second, we define the slack vector s := b−Ax−Gy.
Then the split cut can be written as:

(µL + µR)s + (2 − 2λ)(d − cx) − λ ≥ 0. (7)

Therefore, if we are given a fractional point (x∗, y∗) ∈ P , with associated slack vector
s∗ := b − Ax∗ − Gy∗ ≥ 0, then the problem of separating the most violated split cut
can be stated as

min(µL + µR)s∗ + (2 − 2λ)(d − cx∗) − λ (8)

subject to
(µR − µL)A = 2c, (9)

(µR − µL)G = 0, (10)
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(µR − µL)b = 2d + λ, (11)

c, d integer, (12)

µL,µR ≥ 0, 0 < λ < 2. (13)

The above discussion is summarized in the following proposition:

Proposition 2. For a given (x∗, y∗) ∈ P , a split cut is violated if and only if the optimal
solution value to (8)-(13) is strictly smaller than 0.

It is also instructive to see that, in the case of balanced split cuts (with λ fixed to 1),
the formulation (8)-(13) is a MILP. Moreover, in that case, the c and d variables can be
eliminated and constraints (9) and (11) can be replaced with

(µR − µL)A mod 2 = 0, (14)

(µR − µL)b mod 2 = 1, (15)

where, given a (not necessarily integer) valuex,x mod2 is interpreted to meanx−2�x/2�.
The resulting problem is very similar to the formulation for {0, 1

2 }-separation given in
[5]. However, whereas it is natural to observe that {0, 1

2 }-separation involves parity con-
straints, the fact that the same sort of constraints (i.e., (9) and (11)) appear for split cut
separation is certainly surprising. As we show next, this is the key to our complexity
result.

We will find the following lemma very useful.

Lemma 1. Non-dominated split cuts arise for µL,µR such that, for i = 1, . . . , m,
µL
i · µR

i = 0. Moreover, in the case of ILPs, 0 ≤ µL
i < 2 and 0 ≤ µR

i < 2 for
i = 1, . . . , m.

Proof. Consider a solution of (8)-(13) in which µL
i , µ

R
i > 0 for some i, assuming with-

out loss of generality µL
i > µR

i . Since the slacks are non-negative, a solution which is
not worse can be obtained by replacing µL

i by (µL
i − µR

i ) and µR
i by 0.

Now suppose that we are dealing with an ILP. Recall that A and b are integral.
Consider a solution of (8)-(13) in which µL

i ≥ 2 for some i. If we reduce µL
i by two

and increase c and d accordingly to satisfy (9) and (11), the objective (8) decreases by
2λs∗

i ≥ 0. Similarly, if µR
i ≥ 2 for some i and we reduce µR

i by two and decrease c

and d accordingly, the objective (8) decreases by (4 − 2λ)s∗
i ≥ 0. This reduction can be

repeated until all multipliers are less than 2. ��

Now we are ready for the main theorem.

Theorem 1. The separation problem for split cuts is strongly NP-complete even for
pure ILPs under the non-negativity assumption.
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Proof. We reduce the well-known (and strongly NP-complete) max-cut problem (in its
cardinality version) to the problem mentioned. Let G = (V ,E) be a graph. Denote by
M the node-edge incidence matrix of G, i.e., the matrix with |V | rows and |E| columns,
with a one in row i and column j if and only if node i is incident on edge j . Let r
denote the row vector consisting of |E| ones. Define a matrix A, with |V | + 1 rows and
|E| + |V | + 1 columns, as A := (

M
r | − 2I

)
. Also define a column vector b consisting

of |V | zeros followed by a −1.
Consider the polyhedron P := {x ∈ R

|E|+|V |+1 : Ax ≤ b, x ≥ 0} and the as-
sociated split cuts. We let µL and µR denote the disjunctive multiplier vectors for the
inequalities Ax ≤ b, and πL and πR denote the disjunctive multipliers for the non-neg-
ativity inequalities. Note that µL,µR ∈ R

|V |+1
+ and πL, πR ∈ R

|E|+|V |+1
+ .

Claim 1. If a vector x∗ ∈ P violates a split cut, then it violates a split cut in which
πL
i = πR

i = 0 for i = |E| + 1, . . . , |E| + |V | + 1.
To see this, note that each of the associated non-negativity inequalities is dominated

by one of the inequalities in the system Ax ≤ b, together with the non-negativity in-
equalities on the first |E| variables.

After the elimination of the non-negativity inequalities mentioned in Claim 1, for
i = 1, . . . , |V |, variable x|E|+i appears only in one constraint – namely, the ith con-
straint of the system Ax ≤ b – and in this constraint it has a coefficient of −2.

Claim 2. If a vector x∗ ∈ P violates a split cut, then it violates a split cut in which
µL and µR are binary.

To see this, notice that Claim 1 and Equation (9) imply (µR−µL)·(−2I ) = 0 mod 2.
Equivalently, for i = 1, . . . , |V | + 1 we have (µR

i −µL
i ) ∈ Z. Together with Lemma 1

this implies that µL and µR are binary.

Claim 3. If a vector x∗ ∈ P violates a split cut, then it violates a split cut in which
µL, µR , πL and πR are all binary.

To see this, notice that Claim 1 and Equation (9) imply (µR − µL)A + (πR −
πL)(−I ) = 0 mod 2. Since by Claim 2, µR and µL are integral, we have that πR − πL

must be integral too. Together with Lemma 1 this implies that πL and πR are binary.

Claim 4. If a vector x∗ ∈ P violates a split cut, then it violates a binary split cut.
By Claim 3, µL, µR , πL and πR can be assumed to be binary. Now notice that,

since the vector b only contains one non-zero entry, Equation (11) reduces to −µR
|V |+1 +

µL
|V |+1 = 2d + λ. This implies that λ ∈ Z, which, since 0 < λ < 2, implies that λ = 1.

So from this point on, by Proposition 1, we can assume that the split cut is a {0, 1
2 }-cut

derived from the inequalitiesAx ≤ b and the non-negativity inequalities on x1, . . . , x|E|.
Let λ ∈ {0, 1

2 }|V |+1 denote the vector of CG multipliers for the inequalities in the sys-
tem Ax ≤ b and let ϕ ∈ {0, 1

2 }|E| denote the vector of CG multipliers for the first
|E| non-negativity inequalities. To obtain rounding on the right hand side, λ|V |+1 must
equal one. To obtain integer coefficients on the left hand side we must have ϕi = 1/2 if
and only if (λM)i ∈ {0, 1}, since the coefficient of edge i in the {0, 1

2 }-cut has the form
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(λM)i +λ|V |+1 +ϕi . Let S ⊆ V be defined by S := {i ∈ V : λi = 1/2}. Then, the set of
edges in G whose associated variables have ϕi = 1/2 is given by E \δ(S). Furthermore,
it is easy to show [5] that the {0, 1

2 }-cut is violated by a vector x∗ ∈ R
|E|+|V |+1
+ if and

only if λs∗ + ϕx∗ < 1, where s∗ := b − Ax∗ and ϕ|E|+i := 0 for i = 1, . . . , |V |.
We are now ready for the reduction. Let di denote the degree of vertex i in G.

Define the vector x∗ ∈ R
|E|+|V |+1
+ as follows. For i = 1, . . . , |E|, let x∗

i = ε, where
ε is some small positive quantity that we will define later. For i = 1, . . . , |V |, let
x∗
|E|+i = εdi/2. Finally, let x∗

|E|+|V |+1 = (1 + ε|E|)/2. Notice that, by construction,
all of the inequalities in the system Ax ≤ b are tight (have zero slack) at x∗. Then,
finding a {0, 1

2 }-cut violated by x∗, if any, is equivalent to finding, if any, S ⊆ V such
that

∑
i∈E\δ(S) x∗

i = ε|E \ δ(S)| < 1. The max-cut problem, in its cardinality and
recognition version, calls for a set S ⊆ V such that |δ(S)| > K , or, equivalently,
|E \ δ(S)| < |E| − K . Setting ε := 1/(|E| − K) completes the reduction. ��

Noting that the disjunctive multipliers have to be binary and that λ has to be one in
the proof of Theorem 1 immediately yields several corollaries:

Corollary 1. The separation problem for binary split cuts is strongly NP-complete,
even for pure ILPs under the non-negativity assumption.

Corollary 2. The separation problem for balanced split cuts is strongly NP-complete,
even for pure ILPs under the non-negativity assumption.

Corollary 3. The separation problem for MIR-inequalities is strongly NP-complete,
even for pure ILPs.

Corollary 4. The separation problem for CG cuts is strongly NP-complete, even under
the non-negativity assumption.

Corollary 5. The separation problem for {0, 1
2 }-cuts is strongly NP-complete, even

under the non-negativity assumption.

Before moving on, we would like to make a couple of interesting observations. First,
it is not difficult to show that, when P is defined in the proof of Theorem 1, then P is
unbounded and has a unique vertex. Second, and paradoxically, it is not difficult to show
how to minimize any linear function over the associated PI (or prove unboundedness) in
polynomial time. If the optimal value is indeed bounded, then the minimization problem
amounts to finding a minimum weight odd circuit in G. This can be done using the
algorithm of Gerards & Schrijver [14].

Therefore, all of the above-mentioned separation problems remain strongly NP-
complete even when P has only one vertex, and even when optimization over PI is
polynomial-time solvable.

3.3. Separation when the disjunction is fixed

The results of the previous subsection paint a rather bleak picture. On a more positive
note, results in [3] and [4] imply that, for a fixed disjunction, the separation of split
cuts can be carried out in polynomial time, even if the system Ax + Gy ≤ b contains
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exponentially many constraints, provided an efficient separation procedure is known for
this system. We give an explicit proof of this here to make the presentation self contained:

Theorem 2. Split cuts associated with system Ax + Gy ≤ b and a given disjunction
(cx ≤ d) ∨ (cx ≥ d + 1) can be separated in polynomial time provided an efficient
separation procedure is known for Ax +Gy ≤ b as well as for the homogenized system
Ax + Gy ≤ 0.

Proof. Separation of split cuts means testing, for a given (x∗, y∗) ∈ R
n+p, if (x∗, y∗)

lies in the convex hull of {(x, y) ∈ R
n : cx ≤ d,Ax + Gy ≤ b} ∪ {x ∈ R

n : −cx ≤
−d − 1, Ax + Gy ≤ b}. As shown in [3], this is equivalent to finding a solution to the
linear system

xL + xR = x∗,
yL + yR = y∗,
tL + tR = 1,

cxL ≤ dtL,

AxL + GyL ≤ btL,

−cxR ≤ (−d − 1)tR,

AxR + GyR ≤ btR,

xL, xR, yL, yR, tL, tR ≥ 0,

where xL and xR are n-dimensional vectors, yL and yR are p-dimensional vectors and
tL, tR are scalars. If a solution exists, no split cut is violated, otherwise the dual solution
of the above system (with a suitably-defined objective function) yields the multipliers
to derive a violated split cut; see [4] for details.

In the case whereA andG have exponentially many rows, the above linear system can
be solved efficiently if one can test efficiently, for a given pair of vectors ((xL)∗, (yL)∗),
and a given scalar (tL)∗, if ai(xL)∗ + gi(yL)∗ > bi(t

L)∗ for some row (ai, gi) of

(A,G). If (tL)∗ �= 0, this is equivalent to testing if ai (x
L)∗

(tL)∗ + gi
(yL)∗
(tL)∗ > bi and an

efficient separation procedure for Ax + Gy ≤ b is sufficient. Otherwise, if (tL)∗ = 0,
we have to find, if any, a row (ai, gi) of (A,G) such that ai(xL)∗ + gi(yL)∗ > 0, i.e.,
we need a separation procedure for the homogenized system. ��

Note that, for most cases of practical interest (such as the one that we will consider
in the next section), an efficient separation procedure for Ax + Gy ≤ b can easily be
adapted to the homogenized system Ax + Gy ≤ 0. Indeed, when P is bounded (i.e.,
a polytope), the only point satisfying Ax + Gy ≤ 0 is the origin and the associated
separation problem is trivial.

Theorem 2 implies as a corollary the already-mentioned fact that lift-and-project cuts
can be separated in polynomial time (because at most n fixed disjunctions are needed to
derive them). In particular, the so-called odd hole inequalities for the stable set problem
are lift-and-project cuts with respect to a standard formulation and therefore we obtain
the well-known result that odd hole inequalities are separable in polynomial time [4,
17].

At this point we would like to mention what we call natural disjunctions, defined
only for pure ILPs.
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Definition 3. A (two-term) disjunction is natural if it is of the form aix ≤ f or aix ≥
f + 1 for some row aix ≤ bi of the original system Ax ≤ b and for some integer f .

The resulting natural split cuts are a generalization of lift-and-project cuts, yet Theo-
rem 2 implies that they can still be separated in polynomial time. Some other implications
of Theorem 2 are discussed in Letchford [22].

We note in passing that there may be {0, 1
2 }-cuts which are not natural split cuts.

For example, the famous blossom inequalities for matching problems (Edmonds [11])
are easily shown to be of this type. Note that, if the blossom inequalities were natural
split cuts, as an immediate corollary one would get a compact (polynomial-size) LP
formulation of the matching problem – thus solving a long-standing open problem (see
Yannakakis [31]).

Thus, the natural split cuts should be placed immediately above the lift-and-project
cuts in Figure 1.

In the next section we examine the situation with the Symmetric Travelling Salesman
Problem.

4. The symmetric travelling salesman problem

Given a complete undirected graph G = (V ,E) with non-negative costs cij for each
(i, j) ∈ E, the well-known Symmetric Travelling Salesman Problem (STSP) is that of
finding a minimum weight Hamiltonian circuit (tour) in G.

At present, the most successful approach to solving large-scale STSP instances to
optimality is the so-called branch-and-cut method [30], which is based on adding cutting
planes to the following ILP formulation of this problem. Define a binary variable xij for
each edge (i, j) ∈ E, taking the value 1 if (i, j) is in the tour and 0 otherwise, and let
x(F ) for any F ⊆ E denote

∑
(i,j)∈F xij . The formulation is:

min
∑

(i,j)∈E
cij xij (16)

subject to
x(δ({i})) = 2 (∀i ∈ V ) (17)

x(E(S)) ≤ |S| − 1 (∀S ⊂ V : 2 ≤ |S| ≤ |V | − 2) (18)

xij ∈ {0, 1} (∀(i, j) ∈ E). (19)

Constraints (17) are called degree equations and Constraints (18) are the well-known
subtour elimination constraints (SECs). Note that there are an exponential number of
SECs and that the SECs with |S| = 2 impose upper bounds of 1 on the variables.

The polytope P := {x ∈ R
|E|
+ : (17), (18) hold} is known as the subtour elimina-

tion polytope. The associated integer polytope, PI := conv{x ∈ P ∩ Z|E|}, is called
the travelling salesman polytope. The most successful cutting planes are those which
induce facets (faces of maximal dimension) of this polytope.

Among the inequalities known to induce facets of PI , apart from the SECs them-
selves, are the comb inequalities of Grötschel & Padberg [19, 20]. Let p ≥ 3 be an
odd integer. Let H ⊂ V and Tj ⊂ V for j = 1, . . . , p be such that H ∩ Tj �= ∅ and
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Tj \ H �= ∅ for j = 1, . . . , p, and Ti ∩ Tj = ∅ for i, j = 1, . . . , p, i �= j . The comb
inequality is:

x(E(H)) +
p∑

j=1

x(E(Tj )) ≤ |H | +
p∑

j=1

|Tj | − (3p + 1)/2. (20)

The set H is called the handle of the comb and the Tj are called teeth. When |Tj | = 2
for all teeth, the comb inequalities are known as 2-matching inequalities, see [11, 19,
20].

In [6] it was shown that the comb inequalities, and even some more general facet-
inducing inequalities known as extended comb inequalities, are a special case of {0, 1

2 }-
cuts. The vertices in the handle are precisely those whose degree equations receive a
CG multiplier of 1/2. By analogy, we extend the use of the term handle to mean the
set of vertices whose degree equations have CG multiplier 1/2, in any {0, 1

2 }-cut for the
STSP, and denote the handle by H . Letting F denote the family of SECs having CG
multiplier 1/2, and using the (convenient although imprecise) notation �αx� for �α�x,
the {0, 1

2 }-cut has the form:⌊
2x(E(H)) + x(δ(H)) + ∑

Si∈F x(E(Si))

2

⌋
≤

⌊
2|H | + ∑

Si∈F (|Si | − 1)

2

⌋
, (21)

noting that once the Constraints (17) and (18) having CG multiplier 1/2 are fixed, the
CG multipliers for the non-negativity constraints are uniquely defined as the left hand
side coefficients must be integer (see [5]).

Our main goal in this section is to show that any {0, 1
2 }-cut for the STSP is a natural

(binary) split cut. To show this, we will need a few preliminary definitions and lemmas.

Definition 4. A family of vertex sets S1, . . . , Sk ⊂ V is said to be nested (or laminar)
if, for all i, j , Si ∩ Sj �= ∅ implies either Si ⊆ Sj or Sj ⊆ Si .

The following lemma was stated, but not proved, in [6]. Here we give an explicit
proof as this result will be used extensively in the sequel.

Lemma 2. Let S1, . . . , Sk ⊂ V be the sets of vertices whose SECs have CG multiplier
1/2 in the derivation of a {0, 1

2 }-cut for the STSP. Then, we can assume without loss of
generality that the sets S1, . . . Sk ⊂ V form a nested family.

Proof. We use a standard uncrossing argument. Suppose that two sets Si and Sj both
have CG multiplier 1/2, and Si ∩ Sj , Si \ Sj and Sj \ Si are all non-empty. The sum of
the two SECs can be written as x(E(Si \ Sj )) + x(E(Sj \ Si)) + 2x(E(Si ∩ Sj )) ≤
|Si \Sj |+ |Sj \Si |+2|Si ∩Sj |−2. Now consider what happens if we reduce the multi-
pliers of both sets to zero and, instead, increase the multipliers of the two SECs on Si \Sj
and Sj \ Si , together with the degree equations on the vertices in Si ∩ Sj , by one-half.
The sum of these is x(E(Si \Sj ))+ x(E(Sj \Si))+ 2x(E(Si ∩Sj ))+ x(δ(Si ∩Sj )) ≤
|Si \ Sj | + |Sj \ Si | + 2|Si ∩ Sj | − 2. Thus, the new CG cut is at least as strong as the
original {0, 1

2 }-cut. Moreover, if any CG multiplier is now equal to one, we can obtain
a still stronger cut by setting it to zero instead. The resulting cut is a {0, 1

2 }-cut. ��
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Definition 5. Let S1, . . . , Sk ⊂ V be a nested family. A set Si which is not contained in
any other set Sj is said to be at nesting level 1. Recursively, for r > 1, a set Si which is
contained in a set Sj at nesting level r − 1 but not contained in any other set at nesting
level ≥ r is said to be at nesting level r .

Given a nested family F := S1, . . . , Sk , we partition F into two sub-families O and
E , where O contains all sets Si which are at an odd nesting level, and E contains all sets
Si which are at an even nesting level. We next show that the SECs associated with sets
at an odd nesting level contribute more to the right hand side of a {0, 1

2 }-cut than the
SECs associated with sets at an even nesting level.

Lemma 3. If F is a nested family and O and E are defined as above, then:∑
Si∈O

(|Si | − 1) −
∑
Si∈E

(|Si | − 1) ≥ 0. (22)

Moreover, if F is to be used to derive a non-dominated {0, 1
2 }-cut for the STSP, then the

left hand side of (22) must be odd.

Proof. Let Si be a set at nesting level r , r odd, and let Ei denote the (possibly empty)
family of sets at nesting level r + 1 which are contained in Si . By definition,

|Si | ≥
∑
Sj∈Ei

|Sj |.

It follows immediately that, if |Ei | ≥ 1 then

|Si | − 1 ≥
∑
Sj∈Ei

(|Sj | − 1). (23)

Moreover, (23) holds trivially when |Ei | = 0. We then obtain (22) by summing (23) over
all sets in O.

The fact that the left hand side of (22) must be odd follows from the fact that we
want rounding down to occur on the right hand side of the {0, 1

2 }-cut, yet the right hand
side of each degree equation is 2, i.e., even. ��

We are now ready to show the main result of this section:

Theorem 3. Any {0, 1
2 }-cut for the STSP is a natural binary split cut.

Proof. First, note that the {0, 1
2 }-cut (21), below denoted also byαx ≤ β, can be rewritten

as:

x(E(H)) +
⌊
x(δ(H)) + ∑

Si∈O x(E(Si)) + ∑
Si∈E x(E(Si))

2

⌋

≤ |H | +
⌊∑

Si∈F (|Si | − 1)

2

⌋
. (24)
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In particular, given a generic edge e ∈ E, let he := 1 if e ∈ E(H) and he := 0 if
e �∈ E(H). Let ωe := |{Si ∈ O : e ∈ E(Si)}| and εe := |{Si ∈ E : e ∈ E(Si)}| denote,
respectively, the number of SECs at an odd and even nesting level containing edge e.
Moreover, let S be the smallest set in F such that e ∈ E(S). Note that ωe = εe if S is at
an even nesting level (and also if e �∈ E(S) for all S ∈ F), and ωe = εe + 1 if S is at an
odd nesting level. From (24), we get

αe =
{
he + � 1

2 (ωe + εe + 1)� = he + ωe if e ∈ δ(H),

he + � 1
2 (ωe + εe)� = he + εe if e �∈ δ(H).

(25)

To derive αx ≤ β as a natural binary split cut we use the disjunction:

x(E(H)) ≤ |H | −
⌈∑

Si∈O(|Si | − 1) − ∑
Si∈E (|Si | − 1)

2

⌉
∨

−x(E(H)) ≤ −|H | +
⌊∑

Si∈O(|Si | − 1) − ∑
Si∈E (|Si | − 1)

2

⌋
.

Note that this disjunction is natural, because the quantity x(E(H)) is the left hand side
of the SEC for H .

It remains to be shown that the {0, 1
2 }-cut is valid for the left system and the right

system. By adding to the left term the SECs for the sets at odd nesting level, we obtain

x(E(H)) +
∑
Si∈O

x(E(Si)) ≤ |H | +
⌊∑

Si∈F (|Si | − 1)

2

⌋
,

which dominates the {0, 1
2 }-cut as the coefficient of each edge e is he + ωe ≥ he + εe.

On the other hand, by adding to the right term the SECs for the sets at even nesting level,
together with the degree equations for the vertices in H , we obtain

x(E(H)) + x(δ(H)) +
∑
Si∈E

x(E(Si)) ≤ |H | +
⌊∑

Si∈F (|Si | − 1)

2

⌋

which also dominates the {0, 1
2 }-cut, as the coefficient of each edge e is he + εe + 1 ≥

he + ωe if e ∈ δ(H) and he + εe if e �∈ δ(H). ��

Now let us consider the implications of these results for separation. It is well-known
that, although there are an exponential number of SECs, the separation problem for them
can be solved in polynomial time (see, e.g., Padberg & Grötschel [27]). Polynomial-time
separation algorithms are also known for the 2-matching inequalities (Padberg & Rao
[28]), for comb inequalities with a fixed number of teeth (Carr [7]) and for a certain
generalization of comb inequalities when the edges whose variables are positive induce
a planar graph (Letchford [21], see also Fleischer & Tardos [13]).

As mentioned in the previous section, the separation problem for {0, 1
2 }-cuts is

strongly NP-complete in general [5]. However, it is unknown whether this is true in
the case of the STSP. Also, the complexity of separation is unknown even for comb
inequalities. However, considering Theorems 2 and 3, we have:
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Corollary 6. Given a fixed handle H , one can separate in polynomial time over a class
of inequalities which includes all {0, 1

2 }-cuts with that handle.

Corollary 7. Given a fixed handle H , one can separate in polynomial time over a class
of inequalities which includes all extended comb inequalities with that handle.

These separation results are new.

At first sight it might be thought that these corollaries rely on the use of the ellipsoid
method (which, while polynomial, is inefficient in practice). However, by considering
a compact LP formulation for the subtour polytope (see e.g. [31]), one can derive the
same results without requiring the ellipsoid method. Moreover, the standard simplex
method provides a practically useable, though theoretically non-polynomial, method for
separation.

To use the separation result in a practical cutting plane algorithm for the STSP, a heu-
ristic must be devised for finding suitable handles H with which to form a disjunction.
We do not address this question in detail here, but we would like to note that:

• A set H is more likely to be a ‘good’ handle candidate if x∗(δ(H)) is close to an odd
integer.

• Good heuristics for finding a handle of a comb already exist, see for example Gröt-
schel & Holland [18] or Padberg & Rinaldi [29].

To close this section, we mention an open question. Although we have proved that
the natural, ‘handle-type’ disjunctions can be used to derive the {0, 1

2 }-cuts, we have not
shown that the {0, 1

2 }-cuts are the only cuts which can be derived in this way. Are there
any other (non-redundant and preferably facet-inducing) cuts which can be derived from
‘handle-type’ disjunctions?

5. Conclusion

We have explored the relationships between many different classes of cutting planes for
ILPs and MILPs and given some new results about the complexity of the associated
separation problems. These results settle the complexity status of all inequalities dis-
cussed. Moreover, we have given a new separation result for (a generalization of) the
comb inequalities for the STSP, which is the latest in a series of incremental advances
on comb separation [28, 30, 7, 13, 21].

Future research could include searching for special cases where separation of a
given class of cuts can be performed in polynomial time, as done in [5, 6] for {0, 1

2 }-
cuts. Moreover, the practical use of ‘handle-type’ disjunctions for the STSP should be
investigated.
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