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ON THE DISTRIBUTION DENSITY OF THE SUPREMUM

OF A RANDOM WALK IN THE SUBEXPONENTIAL CASE

D. A. Korshunov UDC 519.21

Abstract: We consider a random walk {Sn} with negative drift and heavy-tailed jumps. We study
the asymptotic behavior at infinity of the distribution density of the supremum supn Sn.
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Let {ξn} be a sequence of independent identically distributed random variables with common distribution
F (B) = P{ξ1 ∈ B} and negative mean Eξ1 = −m < 0. Put S0 = 0, Sn = ξ1 + · · · + ξn and M =
sup{Sn, n ≥ 0}. By the Strong Law of Large Numbers, the supremum M is finite with probability 1;
we denote its distribution by π(B) = P{M ∈ B}. The tail of an arbitrary distribution G we denote by
G(x) = G((x,∞)).
In the present article we consider the heavy-tailed case in which Eeλξ1 =∞ for all λ > 0. In this case

we study the large deviation asymptotics for the distribution of M . The most probable way how large
deviations occur is well known; the main contribution is due to one big jump. As a result, the asymptotic
tail behavior of the measure π is determined by the tail of F ; usually it is formulated in terms of the
distribution FI introduced by the equality

F I(x) = min

(
1,

∞∫
x

F (y) dy

)
, x > 0.

In the presence of heavy tails, the class S of subexponential distributions is of basic importance.
A distribution G on the nonnegative half-line with unbounded support is called subexponential if G ∗G(x)
∼ 2G(x) as x→∞. The next theorem is available:
Theorem 1 [1, 2]. The following are equivalent:
(i) the distribution FI is subexponential;
(ii) P{M > x} ∼ m−1F I(x) as x→∞.
The problem is that in the subexponential case under consideration the integral asymptotics π̄(x) ∼

m−1F I(x) does not allow us to obtain a precise information about the local probabilities for the supre-
mum; we can conclude only that, for any fixed t, the relation π((x, x + t]) = o(π̄(x)) holds as x → ∞.
In most applications related to the local probabilities, this is not enough. It turns out that, for a local
analog of Theorem 1, the key role is played by the class S ∗ consisting of all distributions G on the
nonnegative half-line with unbounded support and finite mean value such that

x∫
0

G(x− y)G(y) dy ∼ 2G(x)
∞∫
0

G(y) dy as x→∞.

It is known from [3] that G ∈ S ∗ implies G ∈ S and GI ∈ S .
Let F0 be a measure on (0,∞) induced by F ; that is, F0(B) = F (B ∩ (0,∞)).
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Theorem 2 [4]. If F0/F (0) is a nonlattice distribution belonging to the class S ∗ then

π((x, x+ x0]) ∼ x0

m
F (x) as x→∞ (1)

for every fixed x0 > 0.

As follows from [5, Theorem 2(b)], the converse is also true: If (1) holds for every x0 > 0 and F is
long-tailed then F0/F (0) ∈ S ∗. Some sufficient condition for (1) is given in [6, Theorem 4.2].
In view of Theorems 1 and 2 the following question is of interest: Under what conditions has π

a density in some sense (or a nonzero absolutely continuous component)? And how can we describe
the asymptotic behavior of this density in the subexponential case? In particular, in what case is that
density equivalent to F (x)/m as x → ∞? Note that the distribution π is never absolutely continuous
with respect to Lebesgue measure, since it always has an atom at the origin with weight

q ≡ P{M = 0} = P{Sn ≤ 0 for all n ≥ 1} > 0. (2)

In this connection we should clarify our terminology on densities.
We say that a distribution G has density g(x) for x > x̂ if for any Borel set B ⊆ (x̂,∞),

G(B) =

∫
B

g(y) dy.

In that case the convolution G ∗G with necessity has density for x > 2x̂.
We call a density g on (x̂,∞) long-tailed (and write g ∈ L ) if the function g(x) is bounded on

(x̂,∞), while g(x) > 0 for all sufficiently large x, and g(x + t) ∼ g(x) as x → ∞ uniformly in t ∈ [0, 1].
In particular, if g ∈ L then g(x)→ 0 as x→∞.
We say that a distribution G on the nonnegative half-line with density g(x) on (x̂,∞) belongs to the

class Sac if g ∈ L and

g∗2(x) ≡ 2
x̂∫
0

g(x− y)G( dy) +
x−x̂∫
x̂

g(x− y)g(y) dy ∼ 2g(x)

as x→∞; in that case the density g is called subexponential. We say that a nonnegative measure G on
the nonnegative half-line with density g(x) on (x̂,∞) belongs to the class Sac if G/G([0,∞)) ∈ Sac.
It follows from definitions that FI has subexponential density if and only if F0/F (0) ∈ S ∗. In [7]

the following theorem was proved in fact.

Theorem 3. Suppose that F0/F (0) ∈ S ∗, the distribution F has density f on (0,∞), and this
density is long-tailed. Then π has a density on (0,∞) asymptotically equivalent to F (x)/m as x→∞.
In [7] Theorem 3 was formulated under a different condition. It was assumed that F has density f

on (x̂,∞) for some x̂ rather than on (0,∞). Note in passing that the proof in [7] is inconsistent for x̂ > 0
since the variables Ak(x0) are incorrectly defined, in general, in the key Proposition 8 of that paper. To
be more specific, the convolution F ∗n may fail to have density for x ≤ nx̂, and, for x̂ > 0, this level
increases as n→∞.
Moreover, the distribution π always contains F0 as a component with weight at least q (defined

in (2)); also, each of these F ∗n0 is a component with weight at least q as well. Hence, if the distribution F
has an atom at some point u > 0 then the distribution π has an atom at each point ku, k ∈ Z+, with
weight at least (F{u})kq.
Let us briefly remind the history of Theorem 3. In the paper [8] the single server queue was considered

with a Poisson input flow. In terms of random walk it is equivalent to the case where ξ1 = σ1 − τ1,
the random variables σ1 and τ1 are nonnegative and independent, σ1 is a typical service time, and τ1
is a typical interarrival time having exponential distribution. In that case the distribution of ξ1 has
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density on the whole real line; and Theorem 4.1 of [8] (in its part devoted to the subexponential case)
is a particular case of Theorem 3. In Proposition 1 of [4] it was claimed that the same asymptotics as
in [8] may be obtained for a general random walk. But there is no proof whatsoever and, from our point
of view, the conditions stated are not correct.
In the present article, in particular, we try to understand what happens if F has density on a set

(x̂,∞) with x̂ > 0. Let us formulate and prove a statement on the absolutely continuous component
of the distribution M (to be compared with the theorem of [9] dealing with an absolutely continuous
component of a renewal measure).

Theorem 4. Let the measure F0 admit decomposition into two nonnegative measures F0 = F1+F2,
where F1 is absolutely continuous and has density f(x), while F2 is such that there is some λ2 > 0
satisfying ∫

R

eλ2xF2(dx) <∞. (3)

If F0/F (0) ∈ S ∗ and f ∈ L then the decomposition π = π1 + π2 holds, where the measure π1 is
absolutely continuous with density asymptotically equivalent to F (x)/m as x → ∞, and the tail of the
measure π2 possesses the estimate π̄2(x) ≤ ce−λx for some λ > 0.
If the distribution F has density for x > x̂, then we deal with a particular case of Theorem 4; here

the measure F2 has bounded support. If in addition x̂ = 0 then we have F2 = 0.
In general, the measure π1 fails to be the whole of the absolutely continuous component of π. The-

orem 4 says nothing about the density of the probably nonzero absolutely continuous component of π2.
Nevertheless, it is often sufficient in various calculations to have an exponential estimate for the tail of π2.

Proof of Theorem 4. Consider the following stopping time:

η = inf{n ≥ 1 : Sn > 0} ≤ ∞
which has a proper distribution. Let {ψn} be independent identically distributed random variables with
distribution

G(B) ≡ P{ψn ∈ B} = P{Sη ∈ B | η <∞}.
It is well known (e.g., see [10, Chapter 12]) that the maximum M coincides in distribution with the
randomly stopped sum ψ1 + · · · + ψν , where the stopping time ν is independent of the sequence {ψn}
and is geometrically distributed with parameter p = P{M > 0} < 1, that is, P{ν = k} = (1 − p)pk for
all k = 0, 1, . . . ; here we put the sum equal to zero on the event {ν = 0}. Equivalently,

P{M ∈ B} = (1− p)
∞∑
k=0

pkG∗k(B). (4)

The distribution G possesses the following representation:

G(B) =

0∫
−∞

F0(B − y)H(dy), B ∈ B(0,∞),

where the taboo renewal measure H is defined by

H(dy) =

∞∑
n=0

P{Sj ≤ 0 for all j ≤ n, Sn ∈ dy}, y ≤ 0.

Thus, the following decomposition of G holds:

G(B) =

0∫
−∞

F1(B − y)H(dy) +
0∫

−∞
F2(B − y)H(dy) ≡ G1(B) +G2(B).
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Since the measure F1 is absolutely continuous with density f , the measure G1 is also absolutely
continuous with density

g(x) =

0∫
−∞

f(x− y)H(dy), x > 0.

By assumption f ∈ L . Hence, applying Lemma 3 of [7] (with v(x) = f(x)) we obtain the equivalence

g(x) ∼ (1− p)F 1(x)/pm.
Since both measures F and F1 are heavy-tailed while the measure F2 is light-tailed (its tail is exponentially
decreasing), F (x) ∼ F 1(x) as x→∞, and

g(x) ∼ (1− p)F (x)/pm. (5)

In view of F0/F (0) ∈ S ∗ the density g is subexponential.
By (3), the measure G2 satisfies Cramér’s condition for all λ < λ2:

ϕ(λ) ≡
∫
R

eλxG2(dx) <∞, ϕ(0) = G2(0,∞).

We deduce from (4):

π = (1− p)
∞∑
k=0

pk
k∑
n=0

G∗n1 G
∗(k−n)
2

k!

(k − n)!n!

= (1− p)
∞∑
n=0

pnG∗n1
1

n!

∞∑
k=n

pk−nG∗(k−n)2

k!

(k − n)! = (1− p)
∞∑
n=0

pnG∗n1
1

n!
Hn,

where the measure Hn is introduced by the equality

Hn ≡
∞∑
k=0

(pG2)
∗k (k + n)!

k!
.

The characteristic function of Hn is equal to

∞∫
0

eitxHn(dx) =
∞∑
k=0

(pψ(t))k
(k + n)!

k!
=

n!

(1− pψ(t))n+1 ,

where ψ(t) =
∫∞
0 eitxG2(dx); the right equality follows from the Taylor series expansion

n!

(1− y)n+1 =
∞∑
k=0

yk
(k + n)!

k!
.

Since (1− pψ(t))−1 is the characteristic function of the renewal measure

J ≡
∞∑
k=0

(pG2)
∗k,

Hn = n!J
∗(n+1), and we arrive at the key equality

π = (1− p)J + (1− p)J ∗
∞∑
n=1

pn(G1 ∗ J)∗n.
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Put

π2 ≡ (1− p)J and π1 ≡ (1− p)J ∗
∞∑
n=1

pn(G1 ∗ J)∗n.

For every λ > 0 such that pϕ(λ) < 1, we have the following exponential estimate for the tail of J :

J(x) ≤ e−λx
∞∫
0

eλyJ(dy) = e−λx
∞∑
k=0

pkϕk(λ) =
e−λx

1− pϕ(λ) .

The distribution F is long-tailed, and so

J((x, x+ 1]) = o(F (x)) as x→∞. (6)

As was mentioned above, the density g of G1 is subexponential; in particular, it is long-tailed, that
is, g(x− y)/g(x)→ 1 as x→∞ for every fixed y. Hence, there exists an increasing level A(x)→∞ such
that g(x− y)/g(x)→ 1 as x→∞ uniformly in |y| ≤ A(x). Therefore,

A(x)∫
0

g(x− y)J(dy) ∼ g(x)J((0,∞)) as x→∞.

In addition, (5) implies that g(z) ≤ cF (z) for some c <∞. Thus,
x∫

A(x)

g(x− y)J(dy) ≤ c
x∫

A(x)

F (x− y)J(dy) = o
( x∫
A(x)

F (x− y)F (y) dy
)
= o(F (x))

as x→∞ in view of (6) and F0/F (0) ∈ S ∗. Summing up, we see as x→∞ that
x∫
0

g(x− y)J(dy) ∼ J((0,∞))g(x) = g(x)

1− pϕ(0) .

Therefore, the measure G1∗J has density asymptotically equivalent as x→∞ to g(x) times (1−pϕ(0))−1.
Hence, it follows from Theorem 3 of [7] (with x̂ = 0, see the remark on Theorem 3 above) that the density
of π1 is asymptotically equivalent to cg(x) as x→∞, where

c = (1− p)J((0,∞))
∞∑
n=1

npnGn−11 ((0,∞))Jn((0,∞)).

Taking into account that G1((0,∞)) = p−G2((0,∞)) = 1− ϕ(0), we finally find the constant:

c =
(1− p)p
(1− pϕ(0))2

∞∑
n=1

n
[p(1− ϕ(0))
1− pϕ(0)

]n−1
=

p

1− p.

Together with (5) this completes the proof of Theorem 4.

In case (3) fails, we supplement Theorem 4 as follows:
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Theorem 5. Let the measure F0 possess decomposition into two nonnegative measures F0 = F1+F2,
where F1 is absolutely continuous with density f(x), and F2 is such that there exists a distribution Q on
the nonnegative half-line such that F 2(x) ≤ Q(x) for all x, Q ∈ S ∗, and

Q(x) = o(F (x)) as x→∞. (7)

If F0/F (0) ∈ S ∗ and f ∈ L then the representation π = π1+π2 holds, where π1 is absolutely continuous
with density asymptotically equivalent to F (x)/m as x→∞, and π2 possesses a local estimate π2((x, x+
1]) = O(Q(x)) as x→∞.
Proof. The measure G2 of the previous proof enjoys the following estimate:

G2((x, x+ 1]) =

0∫
−∞

F2((x− y, x+ 1− y])H(dy) ≤ c1F2(x)

for some c1 < ∞. Thus, G2((x, x + 1]) = O(QI((x, x + 1])) as x → ∞. Since Q ∈ S ∗, the distribution
QI is locally subexponential; applying Proposition 4 of [7] we come to the upper bound

J((x, x+ 1]) = O(QI((x, x+ 1])) as x→∞.
Therefore, π2((x, x + 1]) ≤ cQ(x) for some c < ∞. In addition, by (7) the measure J satisfies (6).
Altogether, it allows us to complete the proof in the same way as in Theorem 4.

This paper was mostly written while the author was visiting the Boole Centre for Research in Infor-
matics, University College Cork, thanks to the hospitality of Neil O’Connell and the financial support
of the Science Foundation Ireland (Grant SFI 04/RP1/I512). The author is grateful to the referee for
helpful comments, in particular, for his/her advice to include Theorem 5.
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