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Motivation: Wireless Downlink

e CDMA 1xEV-DO, LTE g

e Channel conditions vary

randomly due to fading m
e Channel conditions @
Independent across users

b |

®

e Base station can serve l i

M users per slot

e No interference &

=



Our Scheduler (Homogeneous Users)

e Which users to serve at every slot?

e After modelling and some math...

e Three FIFO priority lists of uncompleted flows:

1. high priority: all the users served in the previous slot
whose feedback gave good condition

2. medium priority: all the users with no known
feedback

3. low priority: all the users whose last feedback gave
bad condition

e (For heterogeneous users: non-FIFO ordering)



Talk Outline

e Existing models and schedulers
e Our POMDP model (real-state restless bandit)
e Our scheduler

e Experiments



Models

e Availability of Current State Information (CSl):

> channel-aware: CSI

> delayed: CSI from previous slot

> ARQ feedback: CSI from the last slot when served
e Scheduling level:

> packet-level: persistent users with queues

> flow-level: arriving and departing users

e Channel state evolution:

> 1id: stationary evolution
> Markovian: knowing the matrix vs steady-state



Models

e Channel states:

> General: N states (CDMA: N =11, LTE: N = 16)
> Gilbert-Elliot: 2 states (good/bad)

o Users:
> single-class: homogeneous

> multi-class: heterogeneous

e [ his work:

> flow-level, ARQ feedback, Markovian, Gilbert-Elliot,
multi-class



History

e Scheduling with not-time-varying users

> cp-rule is optimal (Smith '56, Buyukkoc et al. '85)

o MaxWeight scheduler (Tassiulas & Ephermides '93)

> serving longest non-interfering queues

e Being opportunistic enhances capacity (Knopp &
Humblet '95) — but is very unfair

e Proportionally Fair scheduler (Qualcomm CDMA
standard, '00)

> priority to highest: current rate / realized throughput



Flow-Level lid Channel-Aware Schedulers

e Score Based

(Bonald, '04):

> priority to highest probability of not improving rate

e Proportional

> priority to

y Best (Aalto & Lassila, '10):

nighest: current rate / best rate

e Potential Improvement (Ayesta et al. '10):

> to highest:

current rate / potential rate improvement

> tie-breaking in best state: shortest first

e Maximal stability, fluid optimality (Ayesta et al., '11)



Markovian-Channel Schedulers

e Myopic at packet-level (Zhao et al., '08)
> staying-on-good round-robin
> optimal for homogeneous users (ON/OFF channels)
e Potential Improvement at flow-level (Jacko '11):
> to highest: current rate / potential rate improvement
> tie-breaking in best state: shortest first
e ARQ-based at packet-level (Ouyang et al., '11):

> involved formula: no interpretation
> near-optimal for heterogeneous users (2-state
channels)
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Job Scheduling Problem

e Discrete time (t =0,1,2,...), preemptive service

e Jobs k =1,2,... with size By (in bits) arrive randomly

> ¢ = cost of waiting for job £
> Gilbert-Elliot channel quality conditions N, := {B, G}

B G
B[ arsB kB
Qk ) 525

G\ gree arGe
> service rate 0 < s, g < s;, ¢ bits per second

e Minimize total waiting cost while serving M jobs/slot
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Observability

e Rate adaptation: z <> 0; := i/ lrc

e If user k i1s scheduled in belief state x, then ARQ
feedback:

G, w.p. (1—pup)z, if x <60
B, w.p. (1 —ppp)(l—2x), if z <0
)% wep. o, if 2 <0
Pk G, w.p. (1—pre)x, if > 04
B, w.p. (1—-2x), ifx>0;
%,  W. P. T-lpg, If x> 0%




POMDP Model

e Job/user/channel k is defined by

> action space A := {0, 1}
> departure probability
ten, =min{l,1 — (1 — 1/E|[By|)*kn}
> state space N := {x} U [0, 1]
> expected one-period capacity consumption Wi :=a
> Expected one-period reward

Ri,o = 0, R,lm = —c - (1 —Plog, = *]),

0O ._ 0O ._ :
Rk,() — U, Rk,n . — —Ck,
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POMDP Model

e State process Ni(t) € N, transitions

Ni(t)ar.c.c + (1 — Ni(t))qk B.c,
w.p. 1, if ai(t) = 0;
Nk(t + 1) — \ 9k.G,G; oF P:ijx — G, if ak(t) — 1;

W.
Qk,B,Ga W.P. P:Ok,x — B, If Cbk(t)
W.

)

* 0. Plog, = %], if ax(t) = 1;

)

e Action process a(t) € A — to be decided
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Optimization Problem

e Formulation under the time-average criterion:

1
max lim — E" ZRk X, (1)

mell T—oo

subject to Z E" Wlf ’Ei)(t)

e This prob

> Intracta

kel

ble to solve exactly

em is PSPACE-harc

}:M, forallt=20,1,2,...

oy Dynamic Programming

> Instead, we relax and decompose the problem



Relaxations
e Whittle ('88)
> Serve M jobs on time-average

e Lagrangian

> Pay cost v for using the server

e Decomposes due to user independence into single-user
parametric subproblems

e Provides an upper bound for RAP
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Optimal Solution to Subproblems

e Conjecture: The problem is indexable, which implies

> 1f v < vy, then it Is optimal to serve in state n
> 1f v > vg,, then it it optimal to wait in state n

® Uy, is the dynamic shadow price (Whittle index value)
e Proposition: Index v, Is Increasing in x

e Proposition: Threshold policy is optimal

> serve Iff user-k state is above a threshold

e Proposition: Index vy, = 400 if last feedback was G
or no information at all



Optimal Solution to Subproblems

e Proposition: If last feedback was B, index is

Vg x = Ck S

y

1 — (1 - pra)rcc

—I—(Tk(:c) -+ 1)

where

\%’G(l — o) (@ — )1 — (1 — )i ¢l

(1 — pr.g)ar.c.c

Ll ¢
_1 — (1 - Mkz,G)@Z,G

i
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Our Scheduler

e Whittle-index based:
> serve M jobs with highest actual index
> “asymptotically optimal” (Weber & Weiss '90)

e Absolute priority: if last feedback was G or no info
> (if too many new arrivals) ordering according to

@) _ Clof bk, GT
S 1= (1 - pre)(@roe — )

e Rest: if last feedback was B

> ordering according to vy ,
> increasing index implies FIFO ordering within class
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Remarks

e Initial state: x = q;?SG

e Analogy In iid c

> maximal stabi

nannel-aware systems

ity if absolute priority to users in G

> fluid optimality: shortest-first tie-breaking

o Optimality if ¢z 5.¢ = qr.c.c for all k (classic cu-rule)

e Simplifies in single-class systems

myopic |

> equivalent to myopic scheduler v, "™ = cpui g

belief .

> equivalent to belief scheduler v25'¢ (= x



lHlustration 1

Performance

350¢
Whitle Index
3005 Myopic | ndex
° Random

250

700

150

0.01 0.012 0.014 0.016 0.018 0.02



lHlustration 2
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Conclusion

e New practical scheduler, generalizes existing

e Introduced belief scheduler, often equivalent

e Should/could be done

> testing

> optimality in single-class systems
> maximal stability

> asymptotic optimality

e Open problems

> extension to /N states
> general job sizes

22



Thank you for your attention
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Other Scheduling Disciplines

e Relatively Best (Qualcomm CDMA standard, 2000):

RB . Hk,n
Vem "=
E i mtk.m
m=1

> ~ Proportionally Fair scheduler (Borst, 2005)
e Score Based (Bonald, 2004): u > = qum

e Proportionally Best: v.° = Pk
’ Mk, Ny

> maximum stability region (Aalto & Lassila, 2010)
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Systems with Random Arrivals

e Pl rule has maximum stability region

> the only rule under general ¢;'s

e Pl equivalent to RB in “symmetric’ systems

> performance characterized as processor sharing

o We eva

uate performance in simulations

> consider 2 different classes of jobs
> Ar: probability of arrival from class &
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Experiments: Scenario 1

e Class 1 channel varies from slow-fading to fast-fading
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Experiments: Scenario 2

o Class 1: p1 ¢ =1, 1 p varies
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o Class 1: g1 ¢ p varies

Relative suboptimality gap

Experiments: Scenario 3
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Experiments: Scenario 4

o Class 1: both p1 ¢ and pp p vary (decreasing job size)
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Experiments: Scenario 5

o Class 2: both py ¢ and o p vary (decreasing job size)
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Experiments: Scenario 6

o Class 2: both py ¢ and o p vary (decreasing job size)
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Experiments Summary

e Pl variants are often nearly-optimal

e Tie-breaking in G more important than what is done in
B

e ci tie-breaking often significantly better than
randomized

e [he stability region seems similar to I.i.d. case
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Numerical Simulations: Scenario 1
e Varied \; so that p varies from 0.5 to 1
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Numerical Simulations: Scenario 1

e Varied \; so that p varies from 0.5 to 1

Mean number of users
Y
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Numerical Simulations: Scenario 1

e Sample path of the number of users, o = 0.95
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Numerical Simulations: Scenario 1

e Sample path of the number of users, o = 0.95
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Numerical Simulations: Scenario 1

e Indifference curves for mean number of users

Mean number of class-2 users
P
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Mean number of class-1 users

37



Numerical Simulations: Scenario 1

e Indifference curves for mean number of users

Mean number of class-2 users
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Numerical Simulations: Scenario 2
e Varied class-1 job length so that p varies from 0.5 to 1
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Numerical Simulations: Scenario 2

e Varied class-1 job length so that p varies from 0.5 to 1
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Numerical Simulations: Stoch. Dominance

e Typical picture of empirical CDFs
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Simulations Summary

e Pl consistently outperforms all the other rules
e Or its mean performance is equivalent to the best one

e Simulations strongly suggest stochastic dominance of
Pl over the other rules

e The stability region is the maximum for Pl rule, while
it is not for cu and RB rules
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Conclusion

e Framework to study opportunistic policies

> RB (PF), PB roughly recovered under other rewards

e Tractable framework to obtain a new Pl policy

> asymptotically fluid-optimal (AEJV '10)
> the only maximally stable policy in general (AL "10)
> excellent performance in small-scale problems

e Pl policy implies (roughly):

> In low load: be channel-opportunistic
> in high load: take into account job size (cu)
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Dynamic Prices (Index Values)

e We will assign a dynamic price to each user

e Arises in the solution of the parametric subproblem

> optimal policy: use server iff price greater than v
e Prices are values of v when optimal solution changes

e However, such prices may not exist!

> indexability has to be proved

e Price computation (if they exist):

> in general, by parametric simplex method
> by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

e For finite-state finite-action MDPs there exists an
optimal policy that is deterministic, stationary, and
independent of the initial state

> we narrow our focus to those policies
> represent them via serving sets S C N/
> policy & prescribes to serve in states in S and wait in

states in S¢ := N\ S

e Combinatorial v-cost problem: rgaﬁfcR‘g — VW, where
C

O O

RS =E5 [ ) ﬁthb((’éi) C WS =ES | ) 6tW§(<tt))
=0 =
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Geometric Interpretation

o (WS R?) gives rise to 2-dim. performance region
e Indexability means the performance region is convex

e Optimal (threshold) policies are extreme points of the
upper boundary of the performance region

e Index values are slopes of the upper boundary

e Indexability is sort of a dual concept to threshold
policies

> but not equivalent!



Performance Region
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Performance Region
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Performance Region
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Performance Region
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Performance Region
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Performance Region
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