Opportunistic Schedulers for Optimal Scheduling of Flows in Wireless Systems with ARQ Feedback

Peter Jacko*, Sofía S. Villar ${ }^{\dagger}$

ITC24 Krakow, September 5, 2012

[^0]
BCAM, Bilbao

Motivation: Wireless Downlink

- CDMA 1xEV-DO, LTE
- Channel conditions vary randomly due to fading
- Channel conditions independent across users
- No interference
- Base station can serve M users per slot

Our Scheduler (Homogeneous Users)

- Which users to serve at every slot?
- After modelling and some math...
- Three FIFO priority lists of uncompleted flows:

1. high priority: all the users served in the previous slot whose feedback gave good condition
2. medium priority: all the users with no known feedback
3. low priority: all the users whose last feedback gave bad condition

- (For heterogeneous users: non-FIFO ordering)

Talk Outline

- Existing models and schedulers
- Our POMDP model (real-state restless bandit)
- Our scheduler
- Experiments

Models

- Availability of Current State Information (CSI):
\triangleright channel-aware: CSI
\triangleright delayed: CSI from previous slot
\triangleright ARQ feedback: CSI from the last slot when served
- Scheduling level:
\triangleright packet-level: persistent users with queues
\triangleright flow-level: arriving and departing users
- Channel state evolution:
\triangleright iid: stationary evolution
\triangleright Markovian: knowing the matrix vs steady-state

Models

- Channel states:
\triangleright General: N states (CDMA: $N=11$, LTE: $N=16$)
\triangleright Gilbert-Elliot: 2 states (good/bad)
- Users:
\triangleright single-class: homogeneous
\triangleright multi-class: heterogeneous
- This work:
\triangleright flow-level, ARQ feedback, Markovian, Gilbert-Elliot, multi-class

History

- Scheduling with not-time-varying users
$\triangleright c \mu$-rule is optimal (Smith '56, Buyukkoc et al. '85)
- MaxWeight scheduler (Tassiulas \& Ephermides '93)
\triangleright serving longest non-interfering queues
- Being opportunistic enhances capacity (Knopp \& Humblet '95) - but is very unfair
- Proportionally Fair scheduler (Qualcomm CDMA standard, '00)
\triangleright priority to highest: current rate / realized throughput

Flow-Level lid Channel-Aware Schedulers

- Score Based (Bonald, '04):
\triangleright priority to highest probability of not improving rate
- Proportionally Best (Aalto \& Lassila, '10):
\triangleright priority to highest: current rate / best rate
- Potential Improvement (Ayesta et al. '10):
\triangleright to highest: current rate / potential rate improvement \triangleright tie-breaking in best state: shortest first
- Maximal stability, fluid optimality (Ayesta et al., '11)

Markovian-Channel Schedulers

- Myopic at packet-level (Zhao et al., '08)
\triangleright staying-on-good round-robin
\triangleright optimal for homogeneous users (ON/OFF channels)
- Potential Improvement at flow-level (Jacko '11):
\triangleright to highest: current rate / potential rate improvement
\triangleright tie-breaking in best state: shortest first
- ARQ-based at packet-level (Ouyang et al., '11):
\triangleright involved formula: no interpretation
\triangleright near-optimal for heterogeneous users (2-state channels)

Job Scheduling Problem

- Discrete time $(t=0,1,2, \ldots)$, preemptive service
- Jobs $k=1,2, \ldots$ with size B_{k} (in bits) arrive randomly
$\triangleright c_{k}=$ cost of waiting for job k
\triangleright Gilbert-Elliot channel quality conditions $\mathcal{N}_{k}^{\prime}:=\{B, G\}$

$$
\boldsymbol{Q}_{k}=\begin{array}{cc}
\mathrm{B} & \mathrm{G} \\
\mathrm{~B} \\
\mathrm{G}
\end{array}\left(\begin{array}{cc}
q_{k, \mathrm{~B}, \mathrm{~B}} & q_{k, \mathrm{~B}, \mathrm{G}} \\
q_{k, \mathrm{G}, \mathrm{~B}} & q_{k, \mathrm{G}, \mathrm{G}}
\end{array}\right)
$$

\triangleright service rate $0 \leq s_{k, B} \leq s_{k, G}$ bits per second

- Minimize total waiting cost while serving M jobs/slot

Observability

- Rate adaptation: $x \leq>\theta_{k}:=\mu_{k, B} / \mu_{k, G}$
- If user k is scheduled in belief state x, then ARQ feedback:

$$
o_{k, x}:= \begin{cases}G, & \text { w. p. }\left(1-\mu_{k, B}\right) x, \text { if } x \leq \theta_{k} ; \\ B, & \text { w. p. }\left(1-\mu_{k, B}\right)(1-x), \text { if } x \leq \theta_{k} ; \\ *, & \text { w. p. } \mu_{k, B}, \text { if } x \leq \theta_{k} ; \\ G, & \text { w. p. }\left(1-\mu_{k, G}\right) x, \text { if } x>\theta_{k} ; \\ B, & \text { w. p. }(1-x), \text { if } x>\theta_{k} ; \\ *, & \text { w. p. } x \cdot \mu_{k, G}, \text { if } x>\theta_{k} ;\end{cases}
$$

POMDP Model

- Job/user/channel k is defined by
\triangleright action space $\mathcal{A}:=\{0,1\}$
\triangleright departure probability

$$
\mu_{k, n}=\min \left\{1,1-\left(1-1 / \mathbb{E}\left[B_{k}\right]\right)^{\varepsilon s_{k, n}}\right\}
$$

\triangleright state space $\mathcal{N}_{k}:=\{*\} \cup[0,1]$
\triangleright expected one-period capacity consumption $W_{k}^{a}:=a$
\triangleright Expected one-period reward

$$
\begin{array}{ll}
R_{k, 0}^{1}:=0, & R_{k, n}^{1}:=-c_{k} \cdot\left(1-\mathbb{P}\left[o_{k, x}=*\right]\right), \\
R_{k, 0}^{0}:=0, & R_{k, n}^{0}:=-c_{k}
\end{array}
$$

POMDP Model

- State process $N_{k}(t) \in \mathcal{N}_{k}$ transitions

$$
N_{k}(t+1)= \begin{cases}N_{k}(t) q_{k, G, G}+\left(1-N_{k}(t)\right) q_{k, B, G} \\ & \text { w.p. } 1, \text { if } a_{k}(t)=0 ; \\ q_{k, G, G}, & \text { w.p. } \mathbb{P}\left[o_{k, x}=G\right], \text { if } a_{k}(t)=1 ; \\ q_{k, B, G}, & \text { w.p. } \mathbb{P}\left[o_{k, x}=B\right], \text { if } a_{k}(t)=1 ; \\ *, & \text { w.p. } \mathbb{P}\left[o_{k, x}=*\right], \text { if } a_{k}(t)=1 ;\end{cases}
$$

- Action process $a_{k}(t) \in \mathcal{A}$ - to be decided

Optimization Problem

- Formulation under the time-average criterion:

$$
\begin{aligned}
& \max _{\pi \in \Pi} \lim _{T \rightarrow \infty} \frac{1}{T} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{T-1} R_{k, X_{k}(t)}^{a_{k}(t)}\right] \\
& \text { subject to } \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[W_{k, X_{k}}^{a_{k}(t)}(t)\right]=M, \text { for all } t=0,1,2, \ldots
\end{aligned}
$$

- This problem is PSPACE-hard
\triangleright intractable to solve exactly by Dynamic Programming
\triangleright instead, we relax and decompose the problem

Relaxations

- Whittle ('88)
\triangleright Serve M jobs on time-average
- Lagrangian
\triangleright Pay cost ν for using the server
- Decomposes due to user independence into single-user parametric subproblems
- Provides an upper bound for RAP

Optimal Solution to Subproblems

- Conjecture: The problem is indexable, which implies
\triangleright if $\nu \leq \nu_{k, x}$, then it is optimal to serve in state n
\triangleright if $\nu \geq \nu_{k, x}$, then it it optimal to wait in state n
- $\nu_{k, x}$ is the dynamic shadow price (Whittle index value)
- Proposition: Index $\nu_{k, x}$ is increasing in x
- Proposition: Threshold policy is optimal
\triangleright serve iff user- k state is above a threshold
- Proposition: Index $\nu_{k, x}=+\infty$ if last feedback was G or no information at all

Optimal Solution to Subproblems

- Proposition: If last feedback was B, index is

$$
\begin{aligned}
\nu_{k, x}=c_{k} & \left\{\phi_{k, G}^{*} \frac{1-\left(1-\mu_{k, G}\right) q_{k, G, G}}{\left(1-\rho_{k}\right)\left(q_{k, G}^{S S}-x\right)\left[1-\left(1-\mu_{k, G}\right) \phi_{k, G}^{*}\right]}\right. \\
& \left.+\left(T_{k}(x)+1\right)\left[\frac{\left(1-\mu_{k, G}\right) q_{k, G, G}}{1-\left(1-\mu_{k, G}\right) \phi_{k, G}^{*}}-1\right]\right\}
\end{aligned}
$$

where

$$
\phi_{k, G}^{*}:=\frac{1}{\frac{\mu_{k, G}}{\phi_{k}^{T_{k}}\left(q_{k, B, G}\right)}+\frac{1-\mu_{k, G}}{\phi_{k, G}^{S S}}}
$$

Our Scheduler

- Whittle-index based:
\triangleright serve M jobs with highest actual index
\triangleright "asymptotically optimal" (Weber \& Weiss '90)
- Absolute priority: if last feedback was G or no info
\triangleright (if too many new arrivals) ordering according to

$$
\nu_{k, x}^{(2)}=\frac{c_{k} \mu_{k, G} x}{1-\left(1-\mu_{k, G}\right)\left(q_{k, G, G}-x\right)},
$$

- Rest: if last feedback was B
\triangleright ordering according to $\nu_{k, x}$
\triangleright increasing index implies FIFO ordering within class

Remarks

- Initial state: $x=q_{k, G}^{S S}$
- Analogy in iid channel-aware systems
\triangleright maximal stability if absolute priority to users in G
\triangleright fluid optimality: shortest-first tie-breaking
- Optimality if $q_{k, B, G}=q_{k, G, G}$ for all k (classic $c \mu$-rule)
- Simplifies in single-class systems
\triangleright equivalent to myopic scheduler $\nu_{k, x}^{\text {myopic }}:=c_{k} \mu_{k, G} x$
\triangleright equivalent to belief scheduler $\nu_{k, x}^{\text {belief }}:=x$

Illustration 1

Illustration 2

Conclusion

- New practical scheduler, generalizes existing
- Introduced belief scheduler, often equivalent
- Should/could be done
\triangleright testing
\triangleright optimality in single-class systems
\triangleright maximal stability
\triangleright asymptotic optimality
- Open problems
\triangleright extension to N states
\triangleright general job sizes

Thank you for your attention

Other Scheduling Disciplines

- Relatively Best (Qualcomm CDMA standard, 2000):

$$
\nu_{k, n}^{\mathrm{RB}}:=\frac{\mu_{k, n}}{\sum_{m=1}^{N_{k}} q_{k, m} \mu_{k, m}}
$$

$\triangleright \approx$ Proportionally Fair scheduler (Borst, 2005)

- Score Based (Bonald, 2004): $\nu_{k, n}^{\mathrm{SB}}:=\sum_{m=1}^{n} q_{k, m}$
- Proportionally Best: $\nu_{k, n}^{\mathrm{PB}}=\frac{\mu_{k, n}}{\mu_{k, N_{k}}}$
\triangleright maximum stability region (Aalto \& Lassila, 2010)

Systems with Random Arrivals

- PI rule has maximum stability region \triangleright the only rule under general c_{k} 's
- PI equivalent to RB in "symmetric" systems \triangleright performance characterized as processor sharing
- We evaluate performance in simulations
\triangleright consider 2 different classes of jobs
$\triangleright \lambda_{k}$: probability of arrival from class k

Experiments: Scenario 1

- Class 1 channel varies from slow-fading to fast-fading

Experiments: Scenario 2

- Class 1: $\mu_{1, G}=1, \mu_{1, B}$ varies

Experiments: Scenario 3

- Class 1: $q_{1, G, B}$ varies

Experiments: Scenario 4

- Class 1: both $\mu_{1, G}$ and $\mu_{1, B}$ vary (decreasing job size)

Experiments: Scenario 5

- Class 2: both $\mu_{2, G}$ and $\mu_{2, B}$ vary (decreasing job size)

Experiments: Scenario 6

- Class 2: both $\mu_{2, G}$ and $\mu_{2, B}$ vary (decreasing job size)

Experiments Summary

- PI variants are often nearly-optimal
- Tie-breaking in G more important than what is done in B
- $c \mu$ tie-breaking often significantly better than randomized
- The stability region seems similar to i.i.d. case

Numerical Simulations: Scenario 1

- Varied λ_{1} so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 1

- Varied λ_{1} so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 1

- Sample path of the number of users, $\varrho=0.95$

Numerical Simulations: Scenario 1

- Sample path of the number of users, $\varrho=0.95$

Numerical Simulations: Scenario 1

- Indifference curves for mean number of users

Numerical Simulations: Scenario 1

- Indifference curves for mean number of users

Numerical Simulations: Scenario 2

- Varied class- 1 job length so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 2

- Varied class- 1 job length so that ϱ varies from 0.5 to 1

Numerical Simulations: Stoch. Dominance

- Typical picture of empirical CDFs

Simulations Summary

- PI consistently outperforms all the other rules
- Or its mean performance is equivalent to the best one
- Simulations strongly suggest stochastic dominance of PI over the other rules
- The stability region is the maximum for PI rule, while it is not for $c \mu$ and RB rules

Conclusion

- Framework to study opportunistic policies
\triangleright RB (PF), PB roughly recovered under other rewards
- Tractable framework to obtain a new PI policy
\triangleright asymptotically fluid-optimal (AEJV '10)
\triangleright the only maximally stable policy in general (AL '10)
\triangleright excellent performance in small-scale problems
- PI policy implies (roughly):
\triangleright in low load: be channel-opportunistic
\triangleright in high load: take into account job size $(c \mu)$

Dynamic Prices (Index Values)

- We will assign a dynamic price to each user
- Arises in the solution of the parametric subproblem \triangleright optimal policy: use server iff price greater than ν
- Prices are values of ν when optimal solution changes
- However, such prices may not exist!
\triangleright indexability has to be proved
- Price computation (if they exist):
\triangleright in general, by parametric simplex method
\triangleright by analysis sometimes obtained in a closed form

Optimal Solution to Subproblems

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
\triangleright we narrow our focus to those policies
\triangleright represent them via serving sets $\mathcal{S} \subseteq \mathcal{N}$
\triangleright policy \mathcal{S} prescribes to serve in states in \mathcal{S} and wait in states in $\mathcal{S}^{\mathrm{C}}:=\mathcal{N} \backslash \mathcal{S}$
- Combinatorial ν-cost problem: $\max _{\mathcal{S} \subseteq \mathcal{N}} \mathbb{R}_{n}^{\mathcal{S}}-\nu \mathbb{W}_{n}^{\mathcal{S}}$, where

$$
\mathbb{R}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} R_{X(t)}^{a(t)}\right], \quad \mathbb{W}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} W_{X(t)}^{a(t)}\right]
$$

Geometric Interpretation

- $\left(\mathbb{W}_{n}^{\mathcal{S}}, \mathbb{R}_{n}^{\mathcal{S}}\right)$ gives rise to 2-dim. performance region
- Indexability means the performance region is convex
- Optimal (threshold) policies are extreme points of the upper boundary of the performance region
- Index values are slopes of the upper boundary
- Indexability is sort of a dual concept to threshold policies
\triangleright but not equivalent!

Performance Region

Performance Region

Performance Region

Performance Region

Performance Region

Performance Region

[^0]: *BCAM - Basque Center for Applied Mathematics, Spain
 †UC3M — Universidad Carlos III de Madrid, Spain

