
Opportunistic Schedulers for
Optimal Scheduling of Flows in

Wireless Systems with
ARQ Feedback

Peter Jacko∗, Sof́ıa S. Villar†

ITC24 Krakow, September 5, 2012

∗BCAM — Basque Center for Applied Mathematics, Spain
†UC3M — Universidad Carlos III de Madrid, Spain



1

BCAM, Bilbao



2

Motivation: Wireless Downlink

• CDMA 1xEV-DO, LTE

• Channel conditions vary

randomly due to fading

• Channel conditions

independent across users

• No interference

• Base station can serve

M users per slot
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Our Scheduler (Homogeneous Users)

• Which users to serve at every slot?

• After modelling and some math...

• Three FIFO priority lists of uncompleted flows:

1. high priority: all the users served in the previous slot

whose feedback gave good condition

2. medium priority: all the users with no known

feedback

3. low priority: all the users whose last feedback gave

bad condition

• (For heterogeneous users: non-FIFO ordering)
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Talk Outline

• Existing models and schedulers

• Our POMDP model (real-state restless bandit)

• Our scheduler

• Experiments
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Models

• Availability of Current State Information (CSI):

. channel-aware: CSI

. delayed: CSI from previous slot

. ARQ feedback: CSI from the last slot when served

• Scheduling level:

. packet-level: persistent users with queues

. flow-level: arriving and departing users

• Channel state evolution:

. iid: stationary evolution

. Markovian: knowing the matrix vs steady-state
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Models

• Channel states:

. General: N states (CDMA: N = 11, LTE: N = 16)

. Gilbert-Elliot: 2 states (good/bad)

• Users:

. single-class: homogeneous

. multi-class: heterogeneous

• This work:

. flow-level, ARQ feedback, Markovian, Gilbert-Elliot,

multi-class
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History

• Scheduling with not-time-varying users

. cµ-rule is optimal (Smith ’56, Buyukkoc et al. ’85)

• MaxWeight scheduler (Tassiulas & Ephermides ’93)

. serving longest non-interfering queues

• Being opportunistic enhances capacity (Knopp &

Humblet ’95) — but is very unfair

• Proportionally Fair scheduler (Qualcomm CDMA

standard, ’00)

. priority to highest: current rate / realized throughput
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Flow-Level Iid Channel-Aware Schedulers

• Score Based (Bonald, ’04):

. priority to highest probability of not improving rate

• Proportionally Best (Aalto & Lassila, ’10):

. priority to highest: current rate / best rate

• Potential Improvement (Ayesta et al. ’10):

. to highest: current rate / potential rate improvement

. tie-breaking in best state: shortest first

• Maximal stability, fluid optimality (Ayesta et al., ’11)
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Markovian-Channel Schedulers

• Myopic at packet-level (Zhao et al., ’08)

. staying-on-good round-robin

. optimal for homogeneous users (ON/OFF channels)

• Potential Improvement at flow-level (Jacko ’11):

. to highest: current rate / potential rate improvement

. tie-breaking in best state: shortest first

• ARQ-based at packet-level (Ouyang et al., ’11):

. involved formula: no interpretation

. near-optimal for heterogeneous users (2-state

channels)
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Job Scheduling Problem

• Discrete time (t = 0, 1, 2, . . . ), preemptive service

• Jobs k = 1, 2, . . . with size Bk (in bits) arrive randomly

. ck = cost of waiting for job k

. Gilbert-Elliot channel quality conditions N ′k := {B,G}

Qk =


B G

B qk,B,B qk,B,G

G qk,G,B qk,G,G


. service rate 0 ≤ sk,B ≤ sk,G bits per second

• Minimize total waiting cost while serving M jobs/slot
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Observability

• Rate adaptation: x ≤> θk := µk,B/µk,G

• If user k is scheduled in belief state x, then ARQ

feedback:

ok,x :=



G, w. p. (1− µk,B)x, if x ≤ θk;
B, w. p. (1− µk,B)(1− x), if x ≤ θk;
∗, w. p. µk,B, if x ≤ θk;
G, w. p. (1− µk,G)x, if x > θk;

B, w. p. (1− x), if x > θk;

∗, w. p. x · µk,G, if x > θk;
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POMDP Model

• Job/user/channel k is defined by

. action space A := {0, 1}

. departure probability

µk,n = min {1, 1− (1− 1/ E[Bk])εsk,n}
. state space Nk := {∗} ∪ [0, 1]
. expected one-period capacity consumption W a

k := a

. Expected one-period reward

R1
k,0 := 0, R1

k,n := −ck · (1− P[ok,x = ∗]),
R0
k,0 := 0, R0

k,n := −ck;
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POMDP Model

• State process Nk(t) ∈ Nk transitions

Nk(t+ 1) =



Nk(t)qk,G,G + (1−Nk(t))qk,B,G,

w.p. 1, if ak(t) = 0;

qk,G,G, w.p. P[ok,x = G], if ak(t) = 1;

qk,B,G, w.p. P[ok,x = B], if ak(t) = 1;

∗, w.p. P[ok,x = ∗], if ak(t) = 1;

• Action process ak(t) ∈ A – to be decided
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Optimization Problem

• Formulation under the time-average criterion:

max
π∈Π

lim
T→∞

1
T

∑
k∈K

Eπ
[
T−1∑
t=0

R
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

Eπ
[
W

ak(t)
k,Xk(t)

]
= M, for all t = 0, 1, 2, . . .

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Relaxations

• Whittle (’88)

. Serve M jobs on time-average

• Lagrangian

. Pay cost ν for using the server

• Decomposes due to user independence into single-user

parametric subproblems

• Provides an upper bound for RAP
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Optimal Solution to Subproblems

• Conjecture: The problem is indexable, which implies

. if ν ≤ νk,x, then it is optimal to serve in state n

. if ν ≥ νk,x, then it it optimal to wait in state n

• νk,x is the dynamic shadow price (Whittle index value)

• Proposition: Index νk,x is increasing in x

• Proposition: Threshold policy is optimal

. serve iff user-k state is above a threshold

• Proposition: Index νk,x = +∞ if last feedback was G

or no information at all
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Optimal Solution to Subproblems

• Proposition: If last feedback was B, index is

νk,x = ck

{
φ∗k,G

1− (1− µk,G)qk,G,G
(1− ρk)(qSS

k,G − x)[1− (1− µk,G)φ∗k,G]

+(Tk(x) + 1)

[
(1− µk,G)qk,G,G

1− (1− µk,G)φ∗k,G
− 1

]}

where

φ∗k,G :=
1

µk,G

φ
Tk
k (qk,B,G)

+
1− µk,G
φSS
k,G
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Our Scheduler

• Whittle-index based:

. serve M jobs with highest actual index

. “asymptotically optimal” (Weber & Weiss ’90)

• Absolute priority: if last feedback was G or no info

. (if too many new arrivals) ordering according to

ν
(2)
k,x =

ckµk,Gx

1− (1− µk,G)(qk,G,G − x)
,

• Rest: if last feedback was B

. ordering according to νk,x

. increasing index implies FIFO ordering within class
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Remarks

• Initial state: x = qSS
k,G

• Analogy in iid channel-aware systems

. maximal stability if absolute priority to users in G

. fluid optimality: shortest-first tie-breaking

• Optimality if qk,B,G = qk,G,G for all k (classic cµ-rule)

• Simplifies in single-class systems

. equivalent to myopic scheduler νmyopic
k,x := ckµk,Gx

. equivalent to belief scheduler νbelief
k,x := x
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Illustration 1
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Illustration 2

Whitle Index

Myopic Index
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Conclusion

• New practical scheduler, generalizes existing

• Introduced belief scheduler, often equivalent

• Should/could be done

. testing

. optimality in single-class systems

. maximal stability

. asymptotic optimality

• Open problems

. extension to N states

. general job sizes
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Thank you for your attention
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Other Scheduling Disciplines

• Relatively Best (Qualcomm CDMA standard, 2000):

νRB
k,n :=

µk,n
Nk∑
m=1

qk,mµk,m

. ≈ Proportionally Fair scheduler (Borst, 2005)

• Score Based (Bonald, 2004): νSB
k,n :=

n∑
m=1

qk,m

• Proportionally Best: νPB
k,n =

µk,n
µk,Nk

. maximum stability region (Aalto & Lassila, 2010)
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Systems with Random Arrivals

• PI rule has maximum stability region

. the only rule under general ck’s

• PI equivalent to RB in “symmetric” systems

. performance characterized as processor sharing

• We evaluate performance in simulations

. consider 2 different classes of jobs

. λk: probability of arrival from class k
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Experiments: Scenario 1

• Class 1 channel varies from slow-fading to fast-fading
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Experiments: Scenario 2

• Class 1: µ1,G = 1, µ1,B varies
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Experiments: Scenario 3

• Class 1: q1,G,B varies
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Experiments: Scenario 4

• Class 1: both µ1,G and µ1,B vary (decreasing job size)
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Experiments: Scenario 5

• Class 2: both µ2,G and µ2,B vary (decreasing job size)
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Experiments: Scenario 6

• Class 2: both µ2,G and µ2,B vary (decreasing job size)
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Experiments Summary

• PI variants are often nearly-optimal

• Tie-breaking in G more important than what is done in

B

• cµ tie-breaking often significantly better than

randomized

• The stability region seems similar to i.i.d. case
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Numerical Simulations: Scenario 1

• Varied λ1 so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 1

• Varied λ1 so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 1

• Sample path of the number of users, % = 0.95
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Numerical Simulations: Scenario 1

• Sample path of the number of users, % = 0.95
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Numerical Simulations: Scenario 1

• Indifference curves for mean number of users
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Numerical Simulations: Scenario 1

• Indifference curves for mean number of users
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Numerical Simulations: Scenario 2

• Varied class-1 job length so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 2

• Varied class-1 job length so that % varies from 0.5 to 1
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Numerical Simulations: Stoch. Dominance

• Typical picture of empirical CDFs
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Simulations Summary

• PI consistently outperforms all the other rules

• Or its mean performance is equivalent to the best one

• Simulations strongly suggest stochastic dominance of

PI over the other rules

• The stability region is the maximum for PI rule, while

it is not for cµ and RB rules
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Conclusion

• Framework to study opportunistic policies

. RB (PF), PB roughly recovered under other rewards

• Tractable framework to obtain a new PI policy

. asymptotically fluid-optimal (AEJV ’10)

. the only maximally stable policy in general (AL ’10)

. excellent performance in small-scale problems

• PI policy implies (roughly):

. in low load: be channel-opportunistic

. in high load: take into account job size (cµ)
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Dynamic Prices (Index Values)

• We will assign a dynamic price to each user

• Arises in the solution of the parametric subproblem

. optimal policy: use server iff price greater than ν

• Prices are values of ν when optimal solution changes

• However, such prices may not exist!

. indexability has to be proved

• Price computation (if they exist):

. in general, by parametric simplex method

. by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

• For finite-state finite-action MDPs there exists an

optimal policy that is deterministic, stationary, and

independent of the initial state

. we narrow our focus to those policies

. represent them via serving sets S ⊆ N

. policy S prescribes to serve in states in S and wait in

states in SC := N \ S

• Combinatorial ν-cost problem: max
S⊆N

RSn − νWSn, where

RSn := ESn

[ ∞∑
t=0

βtR
a(t)
X(t)

]
, WSn := ESn

[ ∞∑
t=0

βtW
a(t)
X(t)

]
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Geometric Interpretation

• (WSn,R
S
n) gives rise to 2-dim. performance region

• Indexability means the performance region is convex

• Optimal (threshold) policies are extreme points of the

upper boundary of the performance region

• Index values are slopes of the upper boundary

• Indexability is sort of a dual concept to threshold

policies

. but not equivalent!
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