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Problem Description

Background

Objectives

minimization of the expected time-average waiting cost;

minimization of the expected time-average number of uncompleted jobs;

maximization of some time-average fairness function across users.

Time varying Channel Quality Condition

GOOD: Exploit the variation → Be opportunistic

BAD: Difficult in analysis.

History

MaxRate: Myopically opportunistic [Knopp, Humblet 1995];

Proportionally Fair : Fairly opportunistic [Chaponniere et al. 2002];

Best Condition Schedulers: Smartly opportunistic [Ayesta et al. 2010].
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Problem Description

What’s new?

Markovian evolution of the channel quality conditions

⇓
More realistic than IID evolution!;

(A step towards autoregressive distribution)

Objective: Minimization of the expected time-average waiting cost;

What could be the structure of an optimal scheduler policy?
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The mathematical model

Approach

Approach:
1 Multi-armed restless bandit problem formulation [Whittle 1988]

Markov Decision Process (MDP) with infinite constraints ;

2 Relaxation
1 Whittle Relaxation;

MDP with one constraint;

2 Lagrangian Relaxation;

MDP without constraints;

3 Decomposition into independent single user subproblem;

K one armed restless bandit problem without constraints;

3 Recomposition into a feasible heuristic solution.
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The mathematical model

MDP Formulation

At every decision time an action must be chosen for every user in system:
Action space: a ∈ Ak = {0, 1}

MDP Formulation

(Nk , (Wa
k)a∈Ak

, (Ra
k)a∈Ak

, (Pa
k)a∈Ak

)

State Space: Nk = {0} ∪ {1, ...,Nk};

Wa
k :=

(
W a

k,n

)
n∈Nk

is the one period expected Work required,

W 1
k,n = 1, W 0

k,n = 0;

Ra
k :=

(
Ra
k,n

)
n∈Nk

is the one period expected Reward earned,

Ra
k,0 = 0, R0

k,n = −ck , R1
k,n = −ck(1− µk,n);
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The mathematical model

Pa
k :=

(
Pa
k,n,m

)
n,m∈Nk

is the one period State Transition Probability Matrix,

Pa
k,n,m (n,m) (n, 0) (0,m) (0, 0)

a = 0 qk,n,m 0 0 1
a = 1 (1− µkn)qk,n,m µk,n 0 1

The user k evolution is captured by the state and action processes (Xk(t), ak(t)):

Problem Pk

max
π̃k∈ΠXk ,ak

Eπ̃k
0

[ ∞∑
t=0

βtR
ak (t)
k,Xk (t) − νW

ak (t)
k,Xk (t)

]
. (1)
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The index approach

How to solve this one armed restless bandit problem?

max
π̃∈ΠX,a

Eπ̃0

[ ∞∑
t=0

βtR
a(t)
X (t) − νW

a(t)
X (t)

]

Definition

Threshold policy: ∀ν ∈ R there exists a threshold state n(ν) ∈ N such that

it is optimal to serve the user in state n if n ≥ n(ν),

it is optimal not to serve the user in state n if n < n(ν).

Definition

Index policy: The problem (1) is indexable if there exist values
ν∗n ∈ R ∪ {−∞,∞} ∀n ∈ N such that

it is optimal to serve the user in state n if ν∗n ≥ ν,

it is optimal not to serve the user in state n if ν∗n ≤ ν.

Such values ν∗n are called the (Whittle) index values, and define an optimal index
policy for the problem.
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The index approach

Conjecture about indexability

Conjecture

The single user subproblem is indexable.

Proved in particular cases:
1 IID evolution of channel quality

conditions [Ayesta et al. 2010];
2 Markovian evolution of channel

quality conditions, with 2 states
[Jacko 2011];

Massive numerical experiments:
Index are computed through the
AG-algorithm [Niño-Mora 2007].
It provides a certificate of
indexability for a specified instance
and the indexability test never
failed.
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The index approach

Index values - General case

Highest index

Theorem

Under Conjecture (1), the index value νN = cµN

1−β and we have that
νN ≥ νn ∀n ∈ N , i.e. νN =∞ under time average criterion.

2nd Highest index

Conjecture

Under Conjecture (1), the second highest index value under time average criterion
is of (every) state n which satisfies

n ∈ arg max
m∈N ′\{N}

{
cµm

q∗m(µN − µm)

}
,

and the index value of such state(s) is the corresponding maximum.

Fabio Cecchi (University of Pisa and BCAM) ACM SIGMETRICS 2013 - Pittsburgh 19 June 2013 11 / 16



The index approach

Index values - General case

Highest index

Theorem

Under Conjecture (1), the index value νN = cµN

1−β and we have that
νN ≥ νn ∀n ∈ N , i.e. νN =∞ under time average criterion.

2nd Highest index

Conjecture

Under Conjecture (1), the second highest index value under time average criterion
is of (every) state n which satisfies

n ∈ arg max
m∈N ′\{N}

{
cµm

q∗m(µN − µm)

}
,

and the index value of such state(s) is the corresponding maximum.

Fabio Cecchi (University of Pisa and BCAM) ACM SIGMETRICS 2013 - Pittsburgh 19 June 2013 11 / 16



3 Channel Quality Conditions

3 Channel Quality Conditions

The Conjecture about the 2nd
highest index is proved.
An expression for the lowest index
is also available.

3

2 1

1 2

Threshold Policy

No Threshold Policy

Index value
Highest Lowest

Example

Q =

 0.9 0.08 0.02
0.05 0.15 0.8
0.03 0.07 0.9

 , µ =

 0.10
0.12
0.20

 ,

c = 1, β = 0.999

In this case the indices obtained through the AG-algorithm are

ν∗3 = 200 ν∗1 = 3.372 ν∗2 = 2.089
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3 Channel Quality Conditions

Approximation through Steady State distribution

Theorem

Let us fix a bound M such that µ3 ≤ M ≤ 1. Then we have that the index value
of state 1 and 2,

ν∗1 =
cµ1 +O

(
M2
)∑

m=2,3

qSS
m (µm − µ1) +O

(
M2
) , ν∗2 =

cµ2 +O
(
M2
)

qSS
3 (µ3 − µ2) +O

(
M2
)

M Absolute Error Relative Error

1 0.3880 14.08%
0.5 0.1854 7.424%
0.3 0.1273 4.498%
0.1 0.0399 1.571%

0.05 0.0237 0.828%
0.01 0.0051 0.176%

0.001 0.0005 0.017%

Table: Mean absolute and relative
errors of the approximation of ν∗1 .

Absolute errors are linear in M,
hyperbolic in the job size;

Mp3 5MB → M ∼ 0.0003.
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Proposed Scheduler

Proposed Scheduler

Scheduling problem

PI* scheduler

Serve the C users with the highest index at the beginning of every slot of time.

Possible generalization

PISS, where

ν∗k,n =
ckµk,n∑

m>n

qSS
k,m(µk,m − µk,n)

.

PIAG , where the indices are computed through the AG-algorithm.
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Conclusion

Conclusion

Simulations:

The PI ∗ scheduler has been tested in various scenarios and compared with the
other schedulers existing in literature: the results are definitely interesting.

Open questions:

Threshold policies

Sufficient conditions;

Properties of the PI SS scheduler:

Fairness;
N-state generalization.

Model extensions

Lack of knowledge of some
parameters;

Possibility of abandonments;

Multiple base stations.
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Conclusion

Thank you for your attention!

Grazie per l’attenzione!
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Conclusion

Numerical Simulation

Other schedulers

the cµ rule, i.e. νcµk,n = ckµk,n, [Knopp, Humblet 1995];

the Relatively Best rule, i.e. νRBk,n =
ckµk,n∑Nk

m=1 q
SS
k,mµk,m

, [Chaponniere et al. 2002];

the Proportionally Best rule, i.e. νPBk,n =
ckµk,n

µk,Nk
, [Aalto et al. 2010];

the Score Based rule, i.e. νSBk,n = ck
∑n

m=1 qSS
k,m [Bonald 2004];

Traffic intensity

%k :=
λk
µk,Nk

% :=
∑
k∈K

%k

.

Simulations time range: 5 to 15 minutes.

Time slot ∼ 0.167msec.
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Conclusion

Scenario 1

Example

Job Service rate c Q

1 0.5MB

 53.76
67.2

80.64

Mb/sec 1

 0.4 0.21 0.39
0.48 0.5 0.02
0.26 0.3 0.44


2 0.5MB

 4.2
26.88
33.6

Mb/sec 1

 0.34 0.35 0.31
0.27 0.45 0.28
0.45 0.15 0.4



In this scenario the PI*, the PB and the SB rules lead to the same policy;
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Conclusion

Figure: PI*,SB,PB (red), RB (green), cµ (blue).
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Figure: PI*,SB,PB (red), RB (green), cµ (blue).
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Conclusion

Scenario 2

Example

Job Service rate c Q

1 0.5MB

 26.88
53.76
80.64

Mb/sec 10

 0.38 0.20 0.42
0.43 0.19 0.38
0.48 0.27 0.25


2 0.5MB

 26.88
53.76
80.64

Mb/sec 1

 0.38 0.20 0.42
0.43 0.19 0.38
0.48 0.27 0.25



In this scenario the PB, the RB, the SB and the cµ rules lead to the same
policy;
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Conclusion
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Conclusion
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Conclusion

Sufficient conditions for the Threshold Policy optimality

Theorem

If Conjecture (1) holds for the problem with N = 3 and β = 1, then we have that
q13 ≥ q23 implies that ν∗2 > ν∗1 , i.e., the problem is solvable by threshold policies.

Theorem

Let us denote by ∆ := min{µ3 − µ2, µ2 − µ1} and 1 > M ≥ µ3 . If Conjecture (1)

holds for the problem with N = 3 and β = 1, then we have that ∆ ≥ M2

3(1−M) =: ε

implies that ν∗2 > ν∗1 , i.e., the problem is solvable by threshold policies.

M 1 0.5 0.3 0.1 0.05 0.01

ε +∞ 0.16667 0.04286 0.00370 0.00088 0.00003
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