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ABSTRACT
In this work we address the problem of fast and fair transmis-
sion of flows in a router, which is a fundamental issue in net-
works like the Internet. We model the interaction between a
TCP source and a bottleneck queue with the objective of de-
signing optimal packet admission controls in the bottleneck
queue. We focus on the relaxed version of the problem ob-
tained by relaxing the fixed buffer capacity constraint that
must be satisfied at all time epoch. The relaxation allows
us to reduce the multi-flow problem into a family of single-
flow problems, for which we can analyze both theoretically
and numerically the existence of optimal control policies of
special structure. In particular, we show that for a vari-
ety of parameters, TCP flows can be optimally controlled
in routers by so-called index policies. We have implemented
index policies in Network Simulator-3 (NS-3) and compared
its performance with DropTail and RED buffers. The simu-
lation results show that the index policy has several desirable
properties with respect to fairness and efficiency.

1. INTRODUCTION
In this paper we develop a rigorous mathematical frame-

work to model the interaction between a TCP source and
a bottleneck queue with the objective of designing optimal
packet admission controls in the bottleneck queue. The TCP
sources follow the general family of Additive Increase Multi-
plicative Decrease pattern that TCP versions like New Reno
or SACK follow, but to keep the Markovian model simple we
ignore the slow-start phase. A TCP source is thus character-
ized by the decrease factor γ, which determines the decrease
factor of the congestion window in the event of a packet
loss (in New Reno γ takes the value 1

2
). The objective is
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to design a packet admission control strategy that uses the
resources efficiently and that provides satisfactory experi-
ence to users. Mathematically, we formulate the problem as
a resource allocation problem within the Markov Decision
Process (MDP) framework [5]. The main diffference of the
proposed scheme with respect to the Active Queue Manage-
ment schemes is that with our scheme we can achieve a very
large spectrum of fairness criteria.

We have implemented our solution in NS-3 [1] and per-
formed extensive simulations in a benchmark topology to
explore and validate the properties of the algorithm, and to
assess the improvement with respect to a DropTail and RED
buffer.

Due to lack of space in this paper we are including some
basic notions to understand the model and the first simula-
tions in NS-3. For full details we refer to [3].

2. MARKOV DECISION PROCESS MODEL
Let us consider the time slotted t ∈ T := {0, 1, 2, . . . },

where each time slot t corresponds to time periods of one
round-trip time (RTT). Every flow can be allocated either
the capacity required by its current congestion window (be-
ing admitted) and transmitted, or zero capacity (being re-
jected). We denote by A := {0, 1} the action space, where
0 corresponds to blocking and 1 corresponds to admitting.
This action space is the same for every flow k.

Each flow k is defined independently of other flows as
the tuple (Nk, (W a

k)a∈A, (R
a
k)a∈A, (P

a
k)a∈A), where Nk :=

{1, 2, . . . , Nk} is the state space, i.e., a set of possible con-
gestion windows flow k can set; W a

k :=
(
W a
k,n

)
n∈Nk

, where

W a
k,n is the expected one-period capacity consumption (in

number of packets), or work required by flow k at state n
if action a is decided at the beginning of a period; Ra

k :=(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-period gener-

alized α-fairness or reward earned by flow k at state n if
action a is decided at the beginning of a period; in particu-
lar R0

k,n := 0 and

R1
k,n :=


(1 + n)1−α − 1

1− α , if α 6= 1,

log(1 + n), if α = 1;

which is a convex function that depends on the parame-
ter α of the generalized α-fairness criterion [2]; and P a

k :=(
pak,n,m

)
n,m∈Nk

is the flow-k stationary one-period state-

transition probability matrix if action a is decided at the
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Figure 1: A model of an AIMD flow as a Markov chain. The arrows represent one-period transitions among
the states 1, 2, . . . , N after a congestion-free (ACK) and a congestion-experienced (NACK) transmission.

beginning of a period, i.e., pak,n,m is the probability of mov-
ing to state m from state n under action a.

The dynamics of flow k is thus captured by the state pro-
cess Xk(·) and the action process ak(·), which correspond to
state Xk(t) ∈ Nk and action ak(t) ∈ A, respectively, at all
time epochs t ∈ T . The states n ∈ Nk denote possible levels
of the sending rate. In particular W sent

n := n can therefore
be interpreted as the bandwidth capacity the flow requires
for complete transmission at the current period.

The schematic behavior of the AIMD flow as a Markov
chain is shown in Figure 1, where“ACK”represents a congestion-
free delivery of the flow packets to the receiver (positive ac-
knowledgments) and“NACK”represents a congestion-experienced
transmission (negative acknowledgments).

3. OPTIMIZATION PROBLEM
Let Π be the set of all history-dependent randomized poli-

cies. Denote by the symbol Eπn the conditional expectation
given that the initial conditions are n := (nk)k∈K, and the

policy applied is π ∈ Π. Let W be the number of packets
that can be served in one RTT, the router controller’s prob-
lem to solve under the discounted criterion (if β < 1) is the
following:

max
π∈Π

Eπn

[
∞∑
t=0

∑
k∈K

βtR
ak(t)

k,Xk(t)

]
(1)

subject to Eπn

[
∞∑
t=0

∑
k∈K

βtW
ak(t)

k,Xk(t)

]
≤ W

1− β (2)

The standard solution of such a formulation is by solving
for each ν the Lagrangian relaxation of (1)–(2), which is

max
π∈Π

Eπn

 ∞∑
t=0

∑
k∈K

βt
(
R
ak(t)
k,Xk(t)

− νW
ak(t)
k,Xk(t)

)+ ν
W

1 − β
(3)

where ν is the Lagrangian parameter that can be interpreted
as a per-packet transmission cost. The Lagrangian theory
assures that there exists ν∗, for which the Lagrangian relax-
ation (3) achieves optimum of (1)–(2). Since for any fixed
ν the flows are independent and the second term of (3) is
constant, we can decompose (3) into K individual-flow

max
πk∈Πk

Eπk
nk

[
∞∑
t=0

βt
(
R
ak(t)

k,Xk(t) − νW
ak(t)

k,Xk(t)

)]
(4)

If for a given parameter ν, each policy π∗k for k ∈ K op-
timizes the individual-flow problem then π∗ optimizes the
multi-flow problem (3).

4. INDEXABILITY AND THRESHOLD POLI-
CIES

Definition 1 (Optimality of Threshold Policies).
We say that problem (4) is optimally solvable by threshold
policies, if for every real-valued ν there exists threshold state
n ∈ Nk ∪ {0} such that threshold policy admitting the flow

in states S(n) := {m ∈ Nk : m ≤ n} and rejecting otherwise
is optimal for problem (4).

Of our interest will be the index proposed by Whittle [5].
We adopt the definition of indexability from [4].

Definition 2 (Indexability). We say that ν-parameter
problem (4) is indexable, if there exist unique values −∞ ≤
νk,n ≤ ∞ for all n ∈ Nk such that the following holds for
every state n ∈ Nk:

(i) if νk,n ≥ ν, then it is optimal to admit flow k in state
n, and

(ii) if νk,n ≤ ν, then it is optimal to reject flow k in state
n.

The function n 7→ νk,n is called the (Whittle) index, and
νk,n’s are called the (Whittle) index values.

An immediate consequence of the two definitions is for-
mulated in the following previously known result [4].

Proposition 1. If problem (4) is indexable and the in-
dex is nonincreasing, i.e., νk,1 ≥ νk,2 ≥ · · · ≥ νk,Nk , then
problem (4) is optimally solvable by threshold policies. More-

over, for a given ν the optimal threshold policy is S(n∗) with
n∗ ∈ Nk ∪ {0} such that νk,n∗ ≥ ν ≥ νk,n∗+1 (defining
νk,0 := −∞, νk,Nk+1 :=∞).

4.1 Analytical and Numerical Results
From the analytical point of view, it was proven in [4] that

one- and two-state flows are always indexable and solvable
under threshold policies. In three-states flow, if the decrease
factor γ is less than 2

3
, then it was also shown in [4] that

the scheme is always indexable and solvable by threshold
policies.

We show that three-state flow with γ ≥ 2
3

is always index-
able, see [3] for details. We give a closed-form expression of
the indices in this instance and we conclude that the value
of the indices changes depending on α parameter as follows.
If α < 1, the threshold policies are optimal and the values
of the indices are

• νk,1 =
Rk,1

Wk,1
,

• νk,2 =
Rk,2−βRk,1

Wk,2−βWk,1
,
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Figure 2: Congestion Window and size of the queue in

droptail

• νk,3 =
Rk,3+β(Rk,3−Rk,2)

Wk,3+β(Wk,3−Wk,2)
.

If α ≥ 1, threshold policies are not optimal in general
(νk,1 > νk,3 > νk,2) and the values of the indices are

• νk,1 =
Rk,1

Wk,1
,

• νk,2 =
Rk,2+β(Rk,3−Rk,1)+β2(Rk,3−Rk,2)

Wk,2+β(Wk,3−Wk,1)+β2(Wk,3−Wk,2)
,

• νk,3 =
Rk,3−β2Rk,1

Wk,3−β2Wk,1
.

From the numerical point of view, we have tested the
indexability of the problem over a large number of flows
with different parameters. The numerical analysis estab-
lished that in all tested cases the problem was indexable.
We conjecture that the scheme as defined in this paper is
always indexable.

5. SIMULATION RESULTS
In this section we present simulation results from imple-

menting index policy in NS-3 [1]. We define the following
heuristic index policy to be implemented in the Internet
routers:

Heuristic index policy at packet level: Upon a packet ar-
rival, if the buffer is not full, then accept the packet. Other-
wise, drop the packet (either the new one or from the queue)
with smallest index value. In case of ties, drop the packet
that has been the longest in the queue.

As the measure of fairness we employ the Jain’s fairness
index.

5.1 Two Symmetric Users
As a baseline scenario, we consider two symmetric (equal)

users that are sending data to a server through a bottleneck
router. The delay of the access link of each of the users is
10ms. The delay of the bottleneck link in this scenario is
10ms and the bandwidth capacity of the bottleneck link is
1500kb/s. The packet size is 536 Bytes. The buffer size is
set to 14, that corresponds to the Bandwidth-Delay product
of a single user.

Each user k = 1, 2 is halving its congestion window, i.e.,
γk = 1/2. We set β = 0.9999 which approximates the time-
average criterion.

In the figures, user 1 is depicted with a blue and thick
solid line, and user 2 with a green and thin line.

We depict the evolution of the congestion window and the
size of the queue of the router in time for DropTail and RED
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Figure 3: Congestion Window and size of the queue in

RED
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Figure 4: Indices, Congestion Window and size of the

queue in index policy with α = 1 model

in Figure 2 and in Figure 3, respectively. We show the evolu-
tion of the indices, the congestion window and the size of the
queue of the router in time for the index policy in Figure 4.
We observe users with the index policy become perfectly un-
synchronized. The throughput increases comparing to RED
and Droptail, caused by the more efficient buffer manage-
ment, while fairness remains essentially the same as under
the DropTail policy.
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