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Academic Task Management
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Motivation

• Problems intractable for finding an optimal solution

• Use of dynamic priorities in daily decision making

. easy to interpret

. easy to implement

. often well-performing

• A divide and conquer solution approach

• Model: multi-armed restless bandit problem

. Markov decision process with special structure

. optimizing under the discounted or average criterion

. subject to a sample path capacity constraint
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Multi-Armed Restless Bandit Problem
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Index Policies
• Priorities defined by dynamic index values

• Index policy: assign the resource to the competitor

with highest actual index

• Proposed in increasingly more general settings by

. Smith (1956): job scheduling (optimal)

. Gittins (1970’s): classic bandits (optimal)

. Whittle (1988): restless bandits

. Niño-Mora (2000’s): index existence and

computation

. Jacko (2005-): scheduling and resource allocation

• Index policy is a tractable heuristic in general
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Talk Outline

• Resource allocation MDP framework

• Decomposition and indexability

• Selected applications

. control of Internet flows

. knapsack problem for perishable products

. scheduling of impatient customers

. user scheduling in wireless networks

• Open problems
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Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There is a number of independent competitors

• Constraint: resource capacity W at any time

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This framework models learning by doing!



8

Questions to Answer

• [Economic] For a given joint goal, is it possible to

define sound dynamic quantities for each competitor

that can be interpreted as priorities? And if yes,

• [Algorithmic] How to calculate such priorities quickly?

• [Mathematical] Under what conditions is there a

priority rule that achieves optimal resource capacity

allocation?

• [Experimental] If priority rules are not optimal, how

close to optimality do they come? And how do they

compare to alternative policies?
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MDP Framework

• Markov Decision Processes

• Discrete time model (t = 0, 1, 2, . . . )

• Competitor k ∈ K is defined by

. states Nk, actions A := {0, 1}

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) = W, for all t = 0, 1, 2, . . .

• Analogously under the time-average criterion

• PSPACE-hard (Papadimitriou & Tsitsiklis 1999)

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Relaxations and Decomposition

• 1. Whittle’s (1988): Use resource W in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

• 2. Lagrangian: Pay cost ν for using the resource

. the constraint is moved into the objective

• Decomposes due to competitor independence into

single-competitor parametric subproblems

. solved by identifying the efficiency frontier

. indexability ≈ threshold policies are optimal

. math + art = characterize index values
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Selected Applications
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Control of Internet Flows
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Control of Internet Flows

• Objective: fast and fair delivery of packets

• Difficulty: Different TCP variants, different round-trip

times, aggressive flows

• J. & Sansó (Polytechnique de Montréal) (PEVA 2011)

• Doncel (internship) (2011): UPV master thesis

• Avrachenkov, Ayesta, Doncel, J. (submitted 2011)

• Avrachenkov (INRIA Sophia-Antipolis) & J. (in prep.)



15

Knapsack Problem for Perishable Products
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Knapsack Problem for Perishable Products

• Objective: maximize revenue

• Difficulty: different perishability dates, cross-dependent

and time-varying demand

• J. (submitted 2011)

• Gráczová (PhD internship) & J. (submitted 2011)

• Possible applications in cloud computing, survey design
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Scheduling of Impatient Customers

• Callers are willing to wait an average of 30-60 sec.

• Customer who just bought water in a supermarket

• Objective: avoid losing impatient customers and keep

queues short

• Difficulty: classical queueing theory hard to apply (not

work-conserving)

• Ayesta, J. & Novák (IEEE Infocom 2011)

• Novák (internship) (2011): Comenius bachelor thesis

. best bachelor thesis, best research project
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Scheduling of Impatient Customers

• Two customer classes:
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User Scheduling in Wireless Networks

• CDMA 1xEV-DO

• Channel conditions vary

randomly due to fading

• Channel conditions

independent across users

• No interference

• Base station can serve

W users per slot
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User Scheduling in Wireless Networks

• Objective: keep waiting times short

• Difficulty: time-varying service rate and # users

• Ayesta & J. (patent filed 2010)

• Ayesta, Erausquin & J. (Performance 2010), 7 cit.

• Ayesta, Erausquin & J. (Allerton 2011), invited

• J. (Performance 2011), J. (2010)

• J., Morozov (Karelian) & Verloop (in prep.)

• Other NET papers...
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User Scheduling in Wireless Networks

• Potential improvement (opportunistic) index

actual transmission rate

potential transmission rate improvement

• Scheduler: serve the job with highest actual PI index

. tie-breaking in the best condition (index = ∞):

serve the job with highest completion probability

• Outperforming other schedulers, maximally stable, fluid

optimal, extensible to more general settings...
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User Scheduling in Wireless Networks

• Varied arrival rate so that % varies from 0.5 to 1
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Conclusion

• Rich framework to study intractable problems

. obtain elegant index rules

. index policies optimal for relaxations

. suggests structure of (asymptotically) optimal policies

• Open problems

. general stability/optimality results

. non-Markovian settings

. what if indices do not exist

. correlation among competitors
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Thank you for your attention
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Dynamic Prices (Index Values)

• We will assign a dynamic price to each user

• Arises in the solution of the parametric subproblem

. optimal policy: use server iff price greater than ν

• Prices are values of ν when optimal solution changes

• However, such prices may not exist!

. indexability has to be proved

• Price computation (if they exist):

. in general, by parametric simplex method

. by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

• For finite-state finite-action MDPs there exists an

optimal policy that is deterministic, stationary, and

independent of the initial state

. we narrow our focus to those policies

. represent them via serving sets S ⊆ N

. policy S prescribes to serve in states in S and wait in

states in SC := N \ S

• Combinatorial ν-cost problem: max
S⊆N

RSn − νWSn, where

RSn := ESn

[ ∞∑
t=0

βtR
a(t)
X(t)

]
, WSn := ESn

[ ∞∑
t=0

βtW
a(t)
X(t)

]
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Geometric Interpretation

• (WSn,R
S
n) gives rise to 2-dim. performance region

• Indexability means the performance region is convex

• Optimal (threshold) policies are extreme points of the

upper boundary of the performance region

• Index values are slopes of the upper boundary

• Indexability is sort of a dual concept to threshold

policies

. but not equivalent!
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