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Motivation: Wireless Downlink

e Channel conditions vary g

due to fading
e Geometric-sized jobs @
e Channel conditions iIE
\-—J

8

Independent across users

e "
e Markovian evolution of lL"

channel conditions

e Base station can serve M users per slot



Talk Outline

e Flow-level MDP model
e Relaxation of the resource allocation constraint
e Optimal index policy and indexability

e Generalized Potential Improvement rule

> new opportunistic scheduler

e Suboptimality evaluation by numerical experiments



Job Scheduling Problem

e Discrete time (t =0,1,2,...), preemptive service

e Jobs k =1,2,... with size By (in bits) arrive randomly

> ¢ = cost of waiting for job £
> Gilbert-Elliot channel quality conditions N, := {B, G}
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> service rate 0 < s, g < s;, ¢ bits per second

e Minimize total waiting cost while serving M jobs/slot



Markov Decision Processes Model

e Job/user/channel k is defined by

> action space A := {0, 1}
> departure probability
ten, =min{l,1 — (1 — 1/E|[By|)*kn}
> state space N, := {0, B, G}
> expected one-period capacity consumption Wi :=a
> expected one-period reward R
> one-period transition probability matrix P

e State process X (t) € N,

e Action process ay(t) € A — to be decided



Markov Decision Processes Model

e Expected one-period reward
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e One-period transition probability matrices
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Resource Allocation Problem

e Formulation under the 3-discounted criterion:
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e Analogously under the time-average criterion

e This problem is PSPACE-hard

> Intractable to solve exactly by Dynamic Programming
> Instead, we relax and decompose the problem



Resource Allocation Problem (RAP)

e Stochastic and dynamic

e There is a number of independent users

e Constraint: resource capacity at every moment
e Objective: maximize expected “reward”

e Captures the exploitation vs. exploration trade-off

> always exploiting (being myopic) is not optimal
> always exploring (being utopic) is not optimal

e This is a model of learning by doing!



Whittle’s Relaxation

e Serve M jobs in expectation

> infinite number of constraints is replaced by one
> sort of perfect market assumption
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e Provides an upper bound for RAP



Lagrangian Relaxation

e Pay cost v for using the server

> the constraint is moved into the objective
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e Also provides an upper bound for RAP

e Decomposes due to user independence into single-user
parametric subproblems




Optimal Solution to Subproblems

e Theorem 1: Threshold policy is optimal

> serve Iff user-k state is above a threshold

e [Theorem 2: Problem is indexable, which implies
> if v < v, , then it is optimal to serve in state n
> if v > vy, then it it optimal to wait in state n

® v}, is the dynamic price (Whittle index value)

> obtained by identifying the efficiency frontier
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Index Values

e [he index values for user k are
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e Weighted harmonic mean
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e Steady-state probability for condition G
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Generalized Potential Improvement Rule

e Opportunistic scheduler under time-average criterion:

> serve M jobs with highest actual PI* index

Ckk,B
k L k . 3 k .
Veg = X Vip = — y Vieo = 0

> tie-breaking if in the good state: ciux

e Optimality in special cases

>M =1, g =qrcee =0, 0=0,...
> multi-class ON/OFF channels (u; 5 = 0)

> maximal stability and fluid-optimality in i.i.d. case

12



13

Real Wireless Data Networks

® s;, and ¢ is usually known (E.g.: CDMA 1xEV-DO)

e PI* rule requires information of

> expected job size E|By| (for both B, G)
> state-transition matrix Q; (for B)

e Approximations:

> probability of departure py,, =~ Sk, - €/ E|Bg]

> for long jobs ¢} o qlst

> using both, index of B becomes independent of E|B]
> only tie-breaking of G jobs is cis;.¢/E| Bk



Systems with Random Arrivals

e We evaluate performance in experiments

> M =1
> consider 2 different classes of jobs
> Apn: probability of arrival from class £ to state n

e Schedulers: PI*, PI-SS, Pl1

> randomized and cu tie-breaking in G

e Score Based (Bonald, 2004): u,i'i = Z Qko.nm
m=1

> ¢ tie-breaking in G
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Experiments: Scenario 1

e Class 1 channel varies from slow-fading to fast-fading
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Experiments: Scenario 2

o Class 1: p1 ¢ =1, 1 p varies
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o Class 1: g1 ¢ p varies

Relative suboptimality gap

Experiments: Scenario 3
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Experiments: Scenario 4

o Class 1: both p1 ¢ and pp p vary (decreasing job size)
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Experiments: Scenario 5

o Class 2: both py ¢ and o p vary (decreasing job size)
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Experiments: Scenario 6

o Class 2: both py ¢ and o p vary (decreasing job size)
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Experiments Summary

e Pl variants are often nearly-optimal

e Tie-breaking in G more important than what is done in
B

e ci tie-breaking often significantly better than
randomized

e [he stability region seems similar to I.i.d. case
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Conclusion

e New Pl-like opportunistic rule
e Insights about value of information

e Open problems

> PI* maximally-stable?

> optimal solution (structure)

> indices for more than 2-state channels (Pl-like?)
> general job sizes

> partially observable channel conditions

> correlation among users’ channels
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Thank you for your attention
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Dynamic Prices (Index Values)

e We will assign a dynamic price to each user

e Arises in the solution of the parametric subproblem

> optimal policy: use server iff price greater than v
e Prices are values of v when optimal solution changes

e However, such prices may not exist!

> indexability has to be proved

e Price computation (if they exist):

> in general, by parametric simplex method
> by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

e For finite-state finite-action MDPs there exists an
optimal policy that is deterministic, stationary, and
independent of the initial state

> we narrow our focus to those policies
> represent them via serving sets S C N/
> policy & prescribes to serve in states in S and wait in

states in S¢ := N\ S

e Combinatorial v-cost problem: rgaﬁfcR‘g — VW, where
C
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Geometric Interpretation

o (WS R?) gives rise to 2-dim. performance region
e Indexability means the performance region is convex

e Optimal (threshold) policies are extreme points of the
upper boundary of the performance region

e Index values are slopes of the upper boundary

e Indexability is sort of a dual concept to threshold
policies

> but not equivalent!



Performance Region
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Performance Region
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Performance Region
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Performance Region
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Performance Region
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Performance Region
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