Value of Information in Optimal Flow-Level Scheduling of Users with Markovian Time-Varying Channels

Peter Jacko*

Performance 2011, October 18

*BCAM — Basque Center for Applied Mathematics, Spain

Motivation: Wireless Downlink

- Channel conditions vary due to fading
- Geometric-sized jobs
- Channel conditions independent across users
- Markovian evolution of channel conditions

• Base station can serve M users per slot

Talk Outline

- Flow-level MDP model
- Relaxation of the resource allocation constraint
- Optimal index policy and indexability
- Generalized Potential Improvement rule
 - new opportunistic scheduler
- Suboptimality evaluation by numerical experiments

Job Scheduling Problem

- Discrete time (t = 0, 1, 2, ...), preemptive service
- Jobs k = 1, 2, ... with size B_k (in bits) arrive randomly > $c_k = \text{cost}$ of waiting for job k
 - ▷ Gilbert-Elliot channel quality conditions $\mathcal{N}'_k := \{\mathsf{B},\mathsf{G}\}$

$$oldsymbol{Q}_k = egin{array}{cc} \mathsf{B} & \mathsf{G} \ & \mathsf{G}$$

▷ service rate $0 \le s_{k,B} \le s_{k,G}$ bits per second

• Minimize total waiting cost while serving M jobs/slot

Markov Decision Processes Model

- Job/user/channel k is defined by
 - \triangleright action space $\mathcal{A} := \{0, 1\}$
 - departure probability
 - $\mu_{k,n} = \min\{1, 1 (1 1/\mathbb{E}[B_k])^{\varepsilon s_{k,n}}\}$
 - \triangleright state space $\mathcal{N}_k := \{0, B, G\}$
 - \triangleright expected one-period capacity consumption $oldsymbol{W}_k^a := a$
 - \triangleright expected one-period reward $oldsymbol{R}_k^a$
 - \triangleright one-period transition probability matrix $oldsymbol{P}_k^a$
- State process $X_k(t) \in \mathcal{N}_k$
- Action process $a_k(t) \in \mathcal{A}$ to be decided

Markov Decision Processes Model

• Expected one-period reward

$$egin{aligned} R^1_{k,0} &:= 0, & R^1_{k,n} &:= -c_k(1-\mu_{k,n}), \ R^0_{k,0} &:= 0, & R^0_{k,n} &:= -c_k; \end{aligned}$$

One-period transition probability matrices

Resource Allocation Problem

• Formulation under the β -discounted criterion:

$$\begin{split} & \max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k,X_{k}(t)}^{a_{k}(t)} \right] \\ & \text{subject to} \quad \sum_{k \in \mathcal{K}} W_{k,X_{k}(t)}^{a_{k}(t)} = M, \qquad \text{for all } t = 0, 1, 2, \dots \end{split}$$

- Analogously under the time-average criterion
- This problem is PSPACE-hard
 - intractable to solve exactly by Dynamic Programming
 instead, we relax and decompose the problem

Resource Allocation Problem (RAP)

- Stochastic and dynamic
- There is a number of independent users
- Constraint: resource capacity at every moment
- Objective: maximize expected "reward"
- Captures the exploitation vs. exploration trade-off
 always exploiting (being myopic) is not optimal
 always exploring (being utopic) is not optimal
- This is a model of learning by doing!

Whittle's Relaxation

 \bullet Serve M jobs in expectation

infinite number of constraints is replaced by one
 sort of perfect market assumption

$$\begin{split} \max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)} \right] \\ \text{subject to} \quad \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} W_{k, X_{k}(t)}^{a_{k}(t)} \right] = \sum_{t=0}^{\infty} \beta^{t} M \end{split}$$

• Provides an upper bound for RAP

Lagrangian Relaxation

• Pay cost ν for using the server

▷ the constraint is moved into the objective

$$\max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k,X_{k}(t)}^{a_{k}(t)} \right] - \nu \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} W_{k,X_{k}(t)}^{a_{k}(t)} \right]$$

Also provides an upper bound for RAP

 Decomposes due to user independence into single-user parametric subproblems

Optimal Solution to Subproblems

- Theorem 1: Threshold policy is optimal
 serve iff user-k state is above a threshold
- Theorem 2: Problem is indexable, which implies
 - ▷ if $\nu \leq \nu_{k,n}^*$, then it is optimal to serve in state n▷ if $\nu \geq \nu_{k,n}^*$, then it it optimal to wait in state n
- *ν*^{*}_{k,n} is the dynamic price (Whittle index value)
 ⊳ obtained by identifying the efficiency frontier

Index Values

• The index values for user k are

$$\nu_{k,G}^* = \frac{c_k \mu_{k,G}}{(1-\beta)}, \ \nu_{k,B}^* = \frac{c_k \mu_{k,B}}{(1-\beta) + \beta q_{k,B,G}^*(\mu_{k,G} - \mu_{k,B})}$$

• Weighted harmonic mean

$$q_{k,B,G}^* := \frac{1}{\frac{1 - \beta(1 - \mu_{k,G})}{q_{k,B,G}} + \frac{\beta(1 - \mu_{k,G})}{q_{k,G}^{SS}}}$$

• Steady-state probability for condition G

$$q_{k,G}^{SS} = \frac{q_{k,B,G}}{1 + q_{k,B,G} - q_{k,G,G}}$$

Generalized Potential Improvement Rule

Opportunistic scheduler under time-average criterion:
 > serve M jobs with highest actual PI* index

$$\nu_{k,G}^* = \infty, \quad \nu_{k,B}^* = \frac{c_k \mu_{k,B}}{q_{k,B,G}^*(\mu_{k,G} - \mu_{k,B})}, \quad \nu_{k,0}^* = 0$$

▷ tie-breaking if in the good state: $c_k \mu_{k,G}$

• Optimality in special cases

M = 1, q_{k,B,G} = q_{k,G,B} = 0, β = 0, . . .
> multi-class ON/OFF channels (μ_{k,B} = 0)
> maximal stability and fluid-optimality in i.i.d. case

Real Wireless Data Networks

- $s_{k,n}$ and ε is usually known (E.g.: CDMA 1xEV-DO)
- PI* rule requires information of
 - ▷ expected job size E[B_k] (for both B, G)
 ▷ state-transition matrix Q_k (for B)
- Approximations:
 - probability of departure µ_{k,n} ≈ s_{k,n} · ε/ ℝ[B_k]
 for long jobs q^{*}_{k,B,G} ≈ q^{SS}_{k,G}
 using both, index of B becomes independent of ℝ[B_k]
 only tie-breaking of G jobs is c_ks_{k,G}/ℝ[B_k]

Systems with Random Arrivals

• We evaluate performance in experiments

- $\triangleright M = 1$
- consider 2 different classes of jobs
- $\triangleright \lambda_{k,n}$: probability of arrival from class k to state n
- Schedulers: PI*, PI-SS, PI1
 - \triangleright randomized and $c\mu$ tie-breaking in G
- Score Based (Bonald, 2004): $u_{k,n}^{\mathsf{SB}} := \sum_{m=1}^{n} q_{k,n,m}$
 - $\triangleright c\mu$ tie-breaking in G

• Class 1 channel varies from slow-fading to fast-fading

• Class 1: $\mu_{1,G} = 1$, $\mu_{1,B}$ varies

• Class 1: $q_{1,G,B}$ varies

• Class 1: both $\mu_{1,G}$ and $\mu_{1,B}$ vary (decreasing job size)

• Class 2: both $\mu_{2,G}$ and $\mu_{2,B}$ vary (decreasing job size)

• Class 2: both $\mu_{2,G}$ and $\mu_{2,B}$ vary (decreasing job size)

Experiments Summary

- PI variants are often nearly-optimal
- Tie-breaking in G more important than what is done in B
- $c\mu$ tie-breaking often significantly better than randomized
- The stability region seems similar to i.i.d. case

Conclusion

- New PI-like opportunistic rule
- Insights about value of information
- Open problems
 - PI* maximally-stable?
 - optimal solution (structure)
 - ▷ indices for more than 2-state channels (PI-like?)
 - general job sizes
 - partially observable channel conditions
 - correlation among users' channels

Thank you for your attention

Dynamic Prices (Index Values)

- We will assign a dynamic price to each user
- Arises in the solution of the parametric subproblem
 ▷ optimal policy: use server iff price greater than *ν*
- Prices are values of ν when optimal solution changes
- However, such prices may not exist!
 indexability has to be proved
- Price computation (if they exist):
 - in general, by parametric simplex method
 - by analysis sometimes obtained in a closed form

Optimal Solution to Subproblems

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
 - ▷ we narrow our focus to those policies
 - \triangleright represent them via serving sets $\mathcal{S} \subseteq \mathcal{N}$
 - $\triangleright \text{ policy } \mathcal{S} \text{ prescribes to serve in states in } \mathcal{S} \text{ and wait in states in } \mathcal{S}^{\mathsf{C}} := \mathcal{N} \setminus \mathcal{S}$
- Combinatorial ν -cost problem: $\max_{\mathcal{S} \subseteq \mathcal{N}} \mathbb{R}_n^{\mathcal{S}} \nu \mathbb{W}_n^{\mathcal{S}}$, where

$$\mathbb{R}_{n}^{\mathcal{S}} := \mathbb{E}_{n}^{\mathcal{S}} \left[\sum_{t=0}^{\infty} \beta^{t} R_{X(t)}^{a(t)} \right], \quad \mathbb{W}_{n}^{\mathcal{S}} := \mathbb{E}_{n}^{\mathcal{S}} \left[\sum_{t=0}^{\infty} \beta^{t} W_{X(t)}^{a(t)} \right]$$

Geometric Interpretation

- $(\mathbb{W}_n^{\mathcal{S}}, \mathbb{R}_n^{\mathcal{S}})$ gives rise to 2-dim. performance region
- Indexability means the performance region is convex
- Optimal (threshold) policies are extreme points of the upper boundary of the performance region
- Index values are slopes of the upper boundary
- Indexability is sort of a dual concept to threshold policies
 - ▷ but not equivalent!

 $\mathbb{W}^{\mathcal{S}}$

 $\mathbb{W}^{\mathcal{S}}$

 $\mathbb{W}^{\mathcal{S}}$

