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Motivation: Wireless Downlink

• Channel conditions vary

due to fading

• Geometric-sized jobs

• Channel conditions

independent across users

• Markovian evolution of

channel conditions

• Base station can serve M users per slot
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Talk Outline

• Flow-level MDP model

• Relaxation of the resource allocation constraint

• Optimal index policy and indexability

• Generalized Potential Improvement rule

. new opportunistic scheduler

• Suboptimality evaluation by numerical experiments
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Job Scheduling Problem

• Discrete time (t = 0, 1, 2, . . . ), preemptive service

• Jobs k = 1, 2, . . . with size Bk (in bits) arrive randomly

. ck = cost of waiting for job k

. Gilbert-Elliot channel quality conditions N ′k := {B,G}

Qk =


B G

B qk,B,B qk,B,G

G qk,G,B qk,G,G


. service rate 0 ≤ sk,B ≤ sk,G bits per second

• Minimize total waiting cost while serving M jobs/slot
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Markov Decision Processes Model

• Job/user/channel k is defined by

. action space A := {0, 1}

. departure probability

µk,n = min {1, 1− (1− 1/ E[Bk])εsk,n}
. state space Nk := {0, B,G}
. expected one-period capacity consumption W a

k := a

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided
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Markov Decision Processes Model

• Expected one-period reward

R1
k,0 := 0, R1

k,n := −ck(1− µk,n),
R0
k,0 := 0, R0

k,n := −ck;

• One-period transition probability matrices

P 1
k :=


0 B G

0 1 0 0

B µk,B µ̃k,Bqk,B,B µ̃k,Bqk,B,G

G µk,G µ̃k,Gqk,G,B µ̃k,Gqk,G,G
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) = M, for all t = 0, 1, 2, . . .

• Analogously under the time-average criterion

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There is a number of independent users

• Constraint: resource capacity at every moment

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This is a model of learning by doing!



8

Whittle’s Relaxation

• Serve M jobs in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]

subject to
∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
=

∞∑
t=0

βtM

• Provides an upper bound for RAP
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Lagrangian Relaxation

• Pay cost ν for using the server

. the constraint is moved into the objective

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− ν

∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]

• Also provides an upper bound for RAP

• Decomposes due to user independence into single-user

parametric subproblems
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Optimal Solution to Subproblems

• Theorem 1: Threshold policy is optimal

. serve iff user-k state is above a threshold

• Theorem 2: Problem is indexable, which implies

. if ν ≤ ν∗k,n, then it is optimal to serve in state n

. if ν ≥ ν∗k,n, then it it optimal to wait in state n

• ν∗k,n is the dynamic price (Whittle index value)

. obtained by identifying the efficiency frontier
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Index Values

• The index values for user k are

ν∗k,G =
ckµk,G
(1− β)

, ν∗k,B =
ckµk,B

(1− β) + βq∗k,B,G(µk,G − µk,B)

• Weighted harmonic mean

q∗k,B,G :=
1

1− β(1− µk,G)
qk,B,G

+
β(1− µk,G)

qSS
k,G

• Steady-state probability for condition G

qSS
k,G =

qk,B,G
1 + qk,B,G − qk,G,G
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Generalized Potential Improvement Rule

• Opportunistic scheduler under time-average criterion:

. serve M jobs with highest actual PI* index

ν∗k,G =∞, ν∗k,B =
ckµk,B

q∗k,B,G(µk,G − µk,B)
, ν∗k,0 = 0

. tie-breaking if in the good state: ckµk,G

• Optimality in special cases

. M = 1, qk,B,G = qk,G,B = 0, β = 0, . . .

. multi-class ON/OFF channels (µk,B = 0)

. maximal stability and fluid-optimality in i.i.d. case
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Real Wireless Data Networks

• sk,n and ε is usually known (E.g.: CDMA 1xEV-DO)

• PI* rule requires information of

. expected job size E[Bk] (for both B, G)

. state-transition matrix Qk (for B)

• Approximations:

. probability of departure µk,n ≈ sk,n · ε/ E[Bk]

. for long jobs q∗k,B,G ≈ qSS
k,G

. using both, index of B becomes independent of E[Bk]

. only tie-breaking of G jobs is cksk,G/E[Bk]
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Systems with Random Arrivals

• We evaluate performance in experiments

. M = 1

. consider 2 different classes of jobs

. λk,n: probability of arrival from class k to state n

• Schedulers: PI*, PI-SS, PI1

. randomized and cµ tie-breaking in G

• Score Based (Bonald, 2004): νSB
k,n :=

n∑
m=1

qk,n,m

. cµ tie-breaking in G
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Experiments: Scenario 1

• Class 1 channel varies from slow-fading to fast-fading
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Experiments: Scenario 2

• Class 1: µ1,G = 1, µ1,B varies

0.05 0.1 0.15 0.2 0.25
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

µ1B

R
el

at
iv

e 
su

bo
pt

im
al

ity
 g

ap

 

 

MinCost
PI1cmu
PI1rnd
PISScmu
PISSrnd
PI*cmu
PI*rnd
SBcmu



17

Experiments: Scenario 3

• Class 1: q1,G,B varies
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Experiments: Scenario 4

• Class 1: both µ1,G and µ1,B vary (decreasing job size)
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Experiments: Scenario 5

• Class 2: both µ2,G and µ2,B vary (decreasing job size)
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Experiments: Scenario 6

• Class 2: both µ2,G and µ2,B vary (decreasing job size)
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Experiments Summary

• PI variants are often nearly-optimal

• Tie-breaking in G more important than what is done in

B

• cµ tie-breaking often significantly better than

randomized

• The stability region seems similar to i.i.d. case
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Conclusion

• New PI-like opportunistic rule

• Insights about value of information

• Open problems

. PI* maximally-stable?

. optimal solution (structure)

. indices for more than 2-state channels (PI-like?)

. general job sizes

. partially observable channel conditions

. correlation among users’ channels
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Thank you for your attention
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Dynamic Prices (Index Values)

• We will assign a dynamic price to each user

• Arises in the solution of the parametric subproblem

. optimal policy: use server iff price greater than ν

• Prices are values of ν when optimal solution changes

• However, such prices may not exist!

. indexability has to be proved

• Price computation (if they exist):

. in general, by parametric simplex method

. by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

• For finite-state finite-action MDPs there exists an

optimal policy that is deterministic, stationary, and

independent of the initial state

. we narrow our focus to those policies

. represent them via serving sets S ⊆ N

. policy S prescribes to serve in states in S and wait in

states in SC := N \ S

• Combinatorial ν-cost problem: max
S⊆N

RSn − νWSn, where

RSn := ESn

[ ∞∑
t=0

βtR
a(t)
X(t)

]
, WSn := ESn

[ ∞∑
t=0

βtW
a(t)
X(t)

]
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Geometric Interpretation

• (WSn,R
S
n) gives rise to 2-dim. performance region

• Indexability means the performance region is convex

• Optimal (threshold) policies are extreme points of the

upper boundary of the performance region

• Index values are slopes of the upper boundary

• Indexability is sort of a dual concept to threshold

policies

. but not equivalent!
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Performance Region
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