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Known Optimal Index Rules

• Job sequencing problem

. cµ-rule: Cox & Smith (1961)

• Multi-armed bandit problem

. Gittins index rule: Gittins & Jones (1974)

• Klimov network: Klimov (1974)

• Tax problem: Varaiya, Walrand & Buyukkoc (1985)

• Object search and detection: Bertsekas (2001)
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Motivation

• Can we cover the five problems by a unified model?

. frozen-if-not-allocated assumption

• Can we optimally solve by index rules problems with

restless competitors using the same approach?

. much more general model

. Whittle (1988): It may be too much to expect the

index policy to be optimal in the restless case

. asymptotic optimality with ∞ resources

. in applications we often have single resource

− no (asymptotic) optimality results
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Outline

• Unified MDP formulation

• Relaxations and decomposition into subproblems

• Optimal solution to subproblems

. frozen-if-not-allocated assumption

. reward normalization and the Gittins index

. optimal solution to relaxations

. optimal policy to original problem

− as a sequence of solutions to relaxed problems

• New sufficient conditions for restless case
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Markov Decision Process Framework

• Decision time epochs t = 0, 1, 2, . . .

• K independent competitors

• Two possible control actions for each k ∈ K:

. allocate the resource (action 1)

. do not allocate the resource (action 0)

• Competing for a resource that is allocated to a single

competitor at a time

• Decisions captured by action processes ak(t) for each k
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Model of Competitor

• Each competitor k is defined by

. finite state space Nk

. capacity consumption (work) W a
k,n

. reward Ra
k,n

. transition probability matrix P a
k

• Dynamics captured by state process Xk(t) ∈ Nk

• Key assumptions (to be used)

. [binary work] W a
k,n = a

. [frozen if not allocated] P 0
k = I (identity matrix)
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Unified Optimization Criterion

• β-average quantity: for 0 ≤ β ≤ 1,

Bπτ
[
Q
a(·)
X(·), β

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

• Recovers traditional measures

. time-average criterion, when β = 1

. myopic criterion, when β = 0

. (scaled) total β-discounted criterion, otherwise
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Optimization Problem

• Maximizing β-average reward

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T

• Where

. IX,a(t) := {X(0),a(0), . . . ,X(t−1),a(t−1),X(t)}

. ΠX,a is the space of policies adapted to (IX,a(t))t∈T

. Eπt [ · ] := E [ · |π, IX,a(t)]
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Two-Step Relaxation

• 1: Whittle’s Relaxation:

. allocate 1 competitor on β-average

Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= Bπ0 [1]

. instead of infinite number of sample-path constraints

• 2: Dualize this constraint using Lagrangian multiplier ν

max
π∈ΠX,a

Bπ0

[∑
k∈K

(
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

)]
+ ν

. solvable unconstrained problem!
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Properties of Relaxations

• Whittle relaxation gives an upper bound on (P)

• Lagrangian relaxation for every ν gives an upper bound

on the Whittle relaxation and on (P)

• Key property: If an optimal solution to a relaxation is

feasible for (P), then it is optimal for (P)
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Decomposition

• Joint policy π ∈ ΠX,a defines single-competitor policies

π̃k for all k ∈ K

• π̃k depends on X(·) but decides only ak(·), π̃k ∈ ΠX,ak

• Let us study single-competitor parametric subproblems

max
π̃k∈ΠX,ak

Bπ̃k
0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
• This is an MDP

. with net reward Q
ak(·)
k,Xk(·) := R

ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

. there is an optimal policy only depending on Xk(·)
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Normalization

• From now on, frozen-if-not-allocated assumption

• It is enough to solve the normalized problem:

. normalizing reward vectors (under β 6= 1)

R̂
1
k := R1

k −
(I − βP 1

k)R
0
k

1− β
, R̂

0
k := 0

. W 0
k = 0 already due to the binary-work assumption

. proof by analyzing the Bellman equation

• Then it is the one-armed bandit problem

. solved by the Gittins index
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Gittins Index

• There exist break-even values νk,n of ν, called Gittins

index values, such that at state n

. it is optimal to use resource if νk,n ≥ ν

. it is optimal not to use resource if νk,n ≤ ν

• νk,n measures the maximal achievable average reward if

using the resource

• it is the value of an optimal stopping problem

. once competitor does not use the resource, it continues

not using it forever
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Optimal Solutions to Relaxations

• For Lagrangian relaxation: For each competitor,

. it is optimal to use the resource if νk,n ≥ ν

. it is optimal not to use the resource if νk,n ≤ ν

• Policy “use the resource iff νk,n > ν” results in using a

non-increasing number of resource units

• For Lagrangian relaxation with ν0 := max{νk,Xk(0)}, it

is optimal

. to allocate a single competitor for a positive number

of periods (while its index value is ≥ ν0)

. and not to use the resource afterwards
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Sequence of Parametric Problems

• Consider a sequence of parametric problems

. each problem is of the form of the Lagrangian

relaxation defined earlier

. the problems only differ by the initial state

. each problem’s parameter is defined by the highest

index value (given by the initial state)

• They create a finite graph with problems as nodes

. when it becomes optimal at the current node not to

use the resource, move to the node with such initial

state
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Optimal Solution to Original Problem

• Frozen-if-not-allocated assump. implies: graph is a tree!

• Bandit evolution realizations give rise to a sequence of

realized problems

. with nonincreasing parameter

. therefore, the sequence is finite

(
≤
∑
k∈K
|Nk|

)
• We apply an optimal policy in each realized problem

• Merging the realized problems gives the original problem

• This merged solution is optimal and allocates exactly

one competitor at every time epoch
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Properties of Optimal Solution

• We recover the Gittins index rule:

. allocate the resource at every period to the competitor

of highest current Gittins index value

• It is optimal to stay on a winner

• Optimal learning by doing model:

. after a finite number of periods (exploration phase),

the resource is allocated to the same competitor

forever (exploitation phase)

. if all competitors are irreducible, then that competitor

is the one whose smallest Gittins index value is largest
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General Competitors

• Frozen-if-not-allocated assumption dropped: restless

• Reward normalization also possible (more general)

• Competitor is indexable, iff there exist unique values

−∞ ≤ νk,n ≤ +∞, called (Whittle) index values, such

that at state n

. it is optimal to use resource if νk,n ≥ ν

. it is optimal not to use resource if νk,n ≤ ν

• Existence not guaranteed!

• Not an optimal stopping problem (unlike Gittins index)
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General Competitors

• If all the competitors are indexable, the same relaxation

and decomposition approach holds

• But monotonicity in resource usage is not guaranteed

• Sufficient conditions for optimality of index rule

. existence of dominant competitor: if smallest index

value of one competitor is greater or equal to index

values of the others

. reinitializing if not allocated and if index value of the

initial state is greatest
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Reinitializing Competitors

• Buffer management: TCP Tahoe drops sending rate to

1 packet

• Optimal search: forgetting of relevant information and

replacing it with a prior state

• Job scheduling: new job arrival
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Conclusion

• Brief account of powerful Lagrangian approach to study

of optimality of index rules

• New sufficient conditions for optimality

• Proofs of optimality are scarce; wanted:

. if competitors are symmetric

. if Whittle index is myopic

. if several competitors can be allocated resource

. if several resource units can be allocated to competitor
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Thank you for your attention!


