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Motivation

• Perishable product

. deteriorating product with associated deadline after

which it becomes worthless, if not sold

. arises in food industry (“best before” date), fashion

industry (seasonal goods), etc.

• How to select perishable products to be promoted?

. cannot ignore time to go!

. likely to be pspace-hard

• Similar problems in task management, project selection



2

Perishable Products

• With “increasing” demand

. utility obtained at or after the deadline

. e.g., transportation tickets, concert tickets, trips

. promoted at early periods, to stimulate later demand

. promoted at very final periods (last-minute)

• With “decreasing” demand

. utility obtained before the deadline

. e.g., grocery items, seasonal goods

. promoted at final periods, to correct for wrong

inventory planning, wrong pricing, or low realized

demand
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Modeling Outline

• Single-item case: Optimal Dynamic Promotion

. Whittle index: promotion index (PI)

. promote iff PI is larger than promotion cost

• Inventory case (omitted)

. PI policy: calculate PI of each unit and promote iff

PI is larger than promotion cost

• Network case: Knapsack Problem for Perishable Items

. index-knapsack heuristic: calculate PI of each unit

and solve a knapsack problem with PIs as item values
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Characterization of a Perishable Item

• Decision moments: s = T, T − 1, . . . , 1

. occupies space W , yields profit R

. if promoted, it remains unsold with probability p

. if not promoted, it remains unsold with probability

q > p

. once sold, it never resurrects

• Deadline: s = 0

. yields salvage value αR, α < 1 if not sold
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Perishable Item as MDP

• States:

. t ∈ {T, T − 1, . . . , 1}: unsold and t periods before

deadline

− actions to choose: promote/don’t promote {1, 0}
− reward R1

t := R(1− p), R0
t := R(1− q)

. 0: unsold and perishing (exactly at deadline)

− no action to choose

− reward αR

. Ω: sold or perished (terminal state)

− no action to choose

− no reward
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The Problem

• Consider promotion cost ν per period if promoting

• Maximize the expected total β-discounted revenue:

max
π

EπT

[
T−1∑
s=0

βsR
a(s)
X(s) − ν

T−1∑
s=0

βsW
a(s)
X(s)

]

or simply max
π

RπT − νWπ
T

• Ra(s)
X(s) is the reward at time s

• W a(s)
X(s) is the “promotion work” at time s (0/W )
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Intuitive Solution

• Expected properties of optimal solution:

. if optimally promoted for ν,

then optimally promoted for ν ′ < ν

. if optimally promoted at t,

then optimally promoted at t− 1

• Aim: To each state t assign promotion index value νt
so that it is optimal to promote at state t iff νt > ν

• We expect νt ≤ νt−1 (increasing as deadline

approaches)
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Promotion Index (PI)

• Stationary policy π ≡ promotion set S ⊆ T

• PI νt for state t must satisfy: if ν = νt,

both promoting and not promoting are optimal

• So, there is a promotion set St for state t such that

RSt∪{t}
t − νtWSt∪{t}

t = RSt\{t}
t − νtWSt\{t}

t

• Therefore, if denominator is nonzero,

νt =
RSt∪{t}
t − RSt\{t}

t

WSt∪{t}
t −WSt\{t}

t

for some St
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Interpretation of PI

• Marginal rate of substitution for promoting

• Marginal productivity rate of promoting with respect to

not promoting

• Expected marginal reward divided by marginal work

• History of indices:

. cµ-rule (1950s)

. Gittins’ index (1970s)

. Whittle’s index (1988)

. MPI: Niño-Mora (2000s)
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PI for Perishable Item

• Under a regularity condition

(1− q)− α(1− βq) ≥ 0

we have

St = {t, t− 1, . . . , 1}

• Closed-form formula:

νt =
R

W

{
[(1− p)− α(1− βp)]− [(1− q)− α(1− βq)](1− βp)

(1− βq) + (βq − βp)(βp)t−1

}
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PI Properties

• Nonnegative and proportional to R/W

• Increasing in q

• Nondecreasing as deadline approaches: νt ≤ νt−1

• Extends to undiscounted case (β = 1)

• Extends to non-perishable items

νt→
R

W

(1− β)(q − p)
1− βq

as t→∞
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Knapsack Problem for Perishable Items

• Consider I perishable items

• Item i occupies space Wi

• Let C be the promotion space (knapsack)

• A dynamic and stochastic combinatorial problem

• Aim: Fill in the knapsack so that the expected

aggregate total β-discounted revenue is maximized
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KPPI → KP Reduction

• KPPI reduces to Knapsack Problem

when Ti = qi = 1, pi = 0

• (KP) is np-hard =⇒ KPPI is at least np-hard

• In fact, KPPI seems to be pspace-hard, because it is

restless
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Dynamic Programming Formulation

DT (zT )=
∑

i∈I0
T

ciz(T,i)

Ds(zs)=
∑

i∈I0s

ciz(s,i)+ min
ys≤z+

sP
i∈I+s

Wiy(s,i)≤C

 ∑
ms≤z+

s

Pys[ms]Ds+1(z+
s −ms)



• Solving a system of an exponential number of

equations for an exponential number of vectors zs at

every stage

. tractability problem: curse of dimensionality

. no interpretation
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Index-Knapsack Heuristic for KPPI

• Index-knapsack (IK) heuristic:

• 1. Compute promotion index

• 2. Solve 0-1 Knapsack Problem for items i ∈ I:

max
x

∑
i

νi,Txi

subject to
∑
i

wixi ≤ C (KP)

xi ∈ {0, 1} for all i

• 3. Promote item i iff xi = 1
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Experimental Study

• Randomly generated instances, Ri,Wi ∈ [10, 50]

• Let T = max{Ti} be the time horizon

• Poisson demand with rate λi

• Inventory planning:
1
2
λiTi ≤ Ji ≤

3
2
λiTi

• Knapsack volume W less than 30% of total volume

• Experiment: I, T varying (10000 instances)
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Performance of IK Heuristic
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Performance of IK Heuristic
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Relative Suboptimality Gap

rsg(π) =
Cπ − Cmin

Cmin

• Takes values between 0 (achievable) and ∞ (?)

• For what values of rsg(π) is π a “good” policy?

• Generally accepted: below 5%

• Is it a good measure for bounded-from-above

problems?

• What if rsg(max) = 10%? What if Cmin ≈ 0?
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Adjusted Relative Suboptimality Gap

arsg(π) =
Cπ − Cmin

Cmax − Cmin

• Takes values between 0 and 1 (both achievable)

• Suitable if Cmax can be calculated and is not ∞

• π1 is better than π2 following rsg ≡
π1 is better than π2 following arsg

• Interpretation: Fraction of absolute gap Cmax − Cmin

that is not avoided
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Other Heuristics

• EDF policy: Products with Earlier Deadline go First

. naive benchmark policy

• GRE policy: Solving (KP) by greedy heuristic

. to be used when (KP) is computationally intractable

. based on Niño-Mora (2002)

• Define performance ratio of policy π

ratio(π) =
mean (arsg(π))
mean (arsg(PI)
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Performance Ratio of EDF Policy
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Performance Ratio of EDF Policy
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Performance Ratio of GRE Policy
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Performance Ratio of GRE Policy
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Summary

• We have presented:

. a nontrivial problem with closed-form PI

. an optimal promotion policy for perishable items

. a new index-knapsack heuristic achieving

nearly-optimal performance for KPPI

. applicable to a variety of ad-hoc restrictions

. new policy performance measure for bounded

problems

• What to do: inventory control
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Thank you for your attention


