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Motivation

→ net revenue maximization

products

why perishable?

perishable goods - food, change in fashion, design

how to sell such products before their deadlines?

lower the price of those products
or
promote those products
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Problem

who boy retailer
what to do go camping sell the inventories
limits bag promotion space (shelf, room)
what clothes and other products (inventories)

camping stuff
priority most necessary things maximization of the revenue
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Outline of the Presentation

formulate the problem in the framework of Markov
decision processes (MDP) with a sample-path knapsack
capacity constraint

formulate the KPPIs problem

apply Whittle relaxation and Lagrangian method, and
decompose the problem

! derive the index

! introduce Index Knapsack heuristic and its performance
and show the near-optimality
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Knapsack Properties

I perishable products i ∈ I
Ki units of each product i

H planning horizon, H ≤ ∞
C knapsack volume,

∑
i Wi > C , where Wi is volume of

every unit of product i

product i

Ti product’s lifetime, Ti ∈ [1,H]

Ri > 0 revenue

αiRi salvage revenue, where αi ≤ 1

β discount factor
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Demand

Only a single unit of each product can be demanded by the
customers in one period.
The demand is formalized by Bernoulli arrivals of the
customers.

probability of selling:

1− pi a unit of product i is sold when promoted in a
period,

1− qi a unit of product i is sold when not promoted in a
period.

→ increase: qi − pi > 0
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Formulation of MDP Model of Perishable Inventory

with Bernoulli Demand

state n = (t, k) , where

t represents the number of remaining periods before the
deadline, and

k represents the remaining inventory;

state n = 0 - product is perished or there are no units
left

action a
1 to promote a unit
0 not to promote;

expected one-period capacity occupation:

W a
i ,n :=

{
Wi a = 1

0 a = 0
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one-period transition probability matrix P1|Ni

i under
promoting (for Ki = 2)

0 (1, 1) . . . (Ti − 1, 1) (Ti , 1) (1, 2) . . . (Ti − 1, 2)





0 1 0 0 0 0 0 0 0 0

(1, 1) 1 0 0 0 0 0 0 0 0
(2, 1) 1 − pi pi 0 0 0 0 0 0 0

.

.

.

.

.

. 0
. . . 0 0 0 0 0 0

(Ti , 1) 1 − pi 0 0 pi 0 0 0 0 0

(1, 2) 1 0 0 0 0 0 0 0 0
(2, 2) 0 1 − pi 0 0 0 pi 0 0 0

.

.

. 0 0
. . . 0 0 0

. . . 0 0
(Ti , 2) 0 0 0 1 − pi 0 0 0 pi 0

P
0|Ni

i by substituting pi by qi in P
1|Ni

i
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one-period transition probability matrix P1|Ni

i under
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0 1 0 0 0 0 0 0 0 0
(1, 1) 1 0 0 0 0 0 0 0 0
(2, 1) 1 − pi pi 0 0 0 0 0 0 0

.

.

.

.

.

. 0
. . . 0 0 0 0 0 0

(Ti , 1) 1 − pi 0 0 pi 0 0 0 0 0
(1, 2) 1 0 0 0 0 0 0 0 0
(2, 2) 0 1 − pi 0 0 0 pi 0 0 0

.

.

. 0 0
. . . 0 0 0

. . . 0 0
(Ti , 2) 0 0 0 1 − pi 0 0 0 pi 0

expected one-period revenue:

R1
i ,(t,k) := Ri(1− pi)

R1
i ,(1,k) := Ri(1− pi) + βαiRi(pi + k − 1)

R1
i ,0 := 0
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KPPIs, Relaxation and Decomposition

max
π∈ΠX,a

Eπ
0

[∑
i∈I

H∑
s=0

βsR
ai (s)
i ,Xi (s)

]
subject to

∑
i∈I

W
ai (s)
i ,Xi (s) ≤ C at each time period s ∈ H,

where X(·) := (Xi (·))i∈I is the joint state-process; and

a(·) := (ai (·))i∈I is the joint action-process.

one product parametric optimization subproblem:

max
π∈ΠXi ,ai

Eπ0

[
H∑

s=0

βsR
ai (s)
Xi (s)

]
− ν Eπ0

[
H∑

s=0

βsW
ai (s)
Xi (s)

]
,
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Indexability

Definition (Indexability).

We say that ν-parameterized inventory is indexable, if there
exist unique values −∞ ≤ νn ≤ ∞ for all n ∈ N such that
the following holds:

1 if νn ≥ ν, then it is optimal to promote in state n, and

2 if νn ≤ ν, then it is optimal not to promote in state n.

MDP theory → existence of an optimal policy (stationary,
deterministic, independent on initial state)

S(ν) active set representing a stationary policy, set of all
states with action 1
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Analytical approach

provably indexable products

Numerical approach

numerical testing of indexability
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Provably Indexable Products

Assumption
1 q − p > 0, α ≤ 0 for β ≤ 1.
2 family F1 of active sets

Figure: Behavior of added states (S filled area).
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Theorem (Indexability).

If for every ν there is an optimal active set that belongs to F1,
then the product is indexable, and the index value for its state
(t, k) ∈ T × K is

ν∗(t,k) =



R

W
(1− p)

[
1−

1− q + (q − p)βtα

1− p

]
t ≤ k

R

W
(1− p)

1−

1− q + βtα(q − p)pt−k
k−1∑
i=0

(t − k − 1 + i

i

)
(1− p)i

1− p − (q − p)βk (1− p)k
t−k−1∑
i=0

(k − 1 + i

i

)
(βp)i

 t > k

fast recursive computation: O(TK )
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Proposition (Monotonicity).

the monotonicity properties of
index are

(i) ν∗(t−1,k) ≥ ν∗(t,k)

∀k ≥ 1,∀t > 1

(ii) ν∗(t,k−1) ≤ ν∗(t,k)

∀k > 1,∀t ≥ 1

(iii) ν∗(s,l) ≥ ν∗(t,k)

∀l ≥ k ,∀s ≤ t
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Numerical Testing

problem is indexable for all products parameters

for α ≤ 0 and β ≤ 1 and for α ≤ 1 and β = 1

Figure: Behavior of added states (S filled area).
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Index Rule for KPPIs

procedure
to use the index as a price v

(s)
i := Wiν

∗
i ,Xi (s), in every

s ∈ [0,H]
to solve the following knapsack problem

max
z

∑
i∈I

z
(s)
i v

(s)
i

s.t.
∑
i∈I

z
(s)
i Wi ≤ C (KP)

z
(s)
i ∈ {0, 1} for all i ∈ I

where z(s) = (z
(s)
i : i ∈ I) is vector of binary decision

variables.

(IK) Index-Knapsack heuristic: Calculate the prices vi and
then solve the knapsack problem optimally.
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Suboptimality

solving KPPIs

optimally → Dmax

by employing the heuristic → Dπ

adjusted relative suboptimality gap

arsg(π) =
Dmax − Dπ

Dmax − Dmin
,

where 0 ≤ arsg(π) ≤ 1
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Results for Index-Knapsack heuristic
(analytically computed index)

(a) for values H = 2, 4, . . . , 16 (b) for values I = 2, 3, 4, 5

Figure: Mean adjusted relative suboptimality gap for IK heuristic
with analytically computed index.
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Conclusion

formulation of the problem as MDP

discussion of the optimal policy from analytical and
numerical point of view

derivation of the index

showing the near-optimality of IK heuristic
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Thank you for your attention.
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