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Talk Outline

e Resource allocation MDP framework
e Decomposition and indexability

e Index rules for multi-class —/Geo/M queues

> cu-rule

> ¢(pu — 6)/60-rule (for abandonments)

> potential improvement rule (for time-varying rates)
> a new rule (for time-varying and abandonments)

e Performance evaluation in systems with arrivals



Resource Allocation Problem (RAP)

e Stochastic and dynamic

e There is a number of independent competitors
e Constraint: resource capacity M at any time
e Objective: maximize expected “reward”

e Captures the exploitation vs. exploration trade-off

> always exploiting (being myopic) is not optimal
> always exploring (being utopic) is not optimal

e This is a model of learning by doing!



MDP Framework

e Markov Decision Processes / restless bandits
e Discrete time model (t=10,1,2,...)

e Job k£ € K is defined by

> states N}, actions A := {0, 1} = {‘wait’, 'serve’}
> expected one-period capacity consumption W7
> expected one-period reward R}

> one-period transition probability matrix P},

o State process X (t) € N,

e Action process ai(t) € A — to be decided



Resource Allocation Problem

e Formulation under the 3-discounted criterion:

T t
Iﬂfﬁc L Zﬁ Rk Xk()
kek | t=0 i
subject to Z W,g’}(k =W, forallt=0,1,2,...
kek

e Analogously under the time-average criterion

e This problem is PSPACE-hard (Papad. & Tsits. 1999)

> Intractable to solve exactly by Dynamic Programming
> Instead, we relax and decompose the problem



Relaxations and Decomposition

e 1. Whittle's (1988): Serve W jobs in expectation
> infinite number of constraints is replaced by one
> sort of perfect market assumption
e 2. Lagrangian: Pay cost v for using the server
> the constraint is moved into the objective
e Decomposes due to user independence into single-user
parametric subproblems

> solved by identifying the efficiency frontier
> indexability =~ threshold policies are optimal
> math + art = characterize index values



Index Rules

e Assign an index value to each state of each user

e We are concerned with the following rule
> at each time, be greedy:
serve jobs with highest current index values
e In some problems it is optimal

> cp-rule (Cox & Smith '61): job sequencing
> Gittins index rule ('72): multi-armed bandit problem
> Klimov index rule ('74): M/G/1 model w/ feedback

e Experiments and simulations suggest that it gives a
nearly-optimal solution to RAP



Warm-up: Job Sequencing Problem

e Find a serving sequence minimizing the total cost of
waiting of jobs k € K

> ¢ = cost of waiting for job £
> 1, = completion probability for job £

o N;. := {‘completed’, ‘waiting'}, A := {'serve’, ‘wait’}

e Expected one-period capacity consumption

serve’ serve’ _
Wk ‘completed’ 17 Wk ‘waiting’ 17
W ‘wait’ 0’ wW." ‘wait’ . — 0;

k,'completed’ k,'waiting’



Warm-up: Job Sequencing Problem

e Expected one-period reward

‘serve’ L ‘serve’ .
Rk,‘completed’ =0, Rk,‘waiting' " _Ck(l _ Mk)?
‘wait’ L ‘wait’ L .
Rk,‘completed’ . 07 Rk,‘waiting' = —Ck;

e One-period transition probability matrices

‘completed” ‘waiting’

P:erve’ . ‘completed| 1 0
‘waiting [bE 1 — g
‘completed’” ‘waiting’

P};Nait’ . ‘completed] 1 0

‘waiting 0 1



JSP with Abandonments

e Find a serving sequence minimizing the total cost of
waiting and abandonment penalties of jobs k € K

> ¢ = cost of waiting for job £

> 1 = completion probability for job £

> d;. = abandonment penalty for job k

> @, = abandonment probability for job £

o N := {'completed or abandoned’, ‘waiting’}
o A := {'wait’, ‘'serve’}

e Expected one-period capacity consumption ...
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JSP with Abandonments

e Expected one-period reward

‘serve’ L ‘serve’ .
Rk,‘completed or abandoned’ * 0, Rk,‘waiting’ - _Ck<1 _ Mk)?

‘wait’ L ‘wait’ L )
Rk,‘completed or abandoned’ -7 07 Rk,‘waiting’ . _Ck(l _ 6)76) B dk@ka

e One-period transition probability matrices

‘compl. or ab.” ‘waiting’

P:erve' . ‘compl. or ab.] 1 0
‘waiting L 1 — g
‘compl. or ab.” ‘waiting’

P:];Naitr - ‘compl. or ab.] 1 0

‘Waiting 0, 1 — 6%



JSP with Abandonments

e Under discounted criterion:

INIY  cp(pr — Or) + di0i(1 — B + Buu)

Vk,‘waiting’ I 1 — ﬁ 1 69]@

AJN _
Vk,‘completed or abandoned’ — 0

e Under time-average criterion:

AN cr(pr — 1) + dipirOy
k,'waiting’ — Qk
AJN 0

Vk,‘completed or abandoned’ —

e Ayesta, J. & Novak (2011), IEEE INFOCOM
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JSP with Abandonments

e Two classes: ;1 =0.4, us =0.22 , 6; =0.1, 65 = 0.2
and Clzdlzdgz)\l:)\gzl
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JSP with iid Time-Varying Service Rates

e Job/user k € K is defined by

> ¢ = cost of waiting for job £

> qi., = probability to move to condition n

> i, = completion probability for job k under
condition n (ordered: i, < fkn+i1)

e Find a serving sequence minimizing the total cost of
waiting of jobs k € KC

o N, :=4{0,1,2,..., N}, A:= {'wait’, ‘serve’}

e 0 = ‘completed’ ; n = ‘waiting’ and condition is n

13
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JSP with iid Time-Varying Service Rates

e Expected one-period reward

Rserve — O, Rserve — —Ck(l — ,uk,n)a
Rwalt — O, Rwalt :— —Cg,

e One-period transition probability matrices

0 1 . N
0 ( 1 0 0 0 \
1 i1 ﬁk,1%,1 e ﬁk,1Qk,Nk
P = 2| purs  PkoGei - Ik 2Gk, N,

Nkz\,uk,Nk Uk NGkl - ﬁk,quk,Nk)
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JSP with iid Time-Varying Service Rates

e Potential improvement (opportunistic) index

e Under discounted criterion:

o Cklk.n
1= B) 4+ B Gen(fkm — frn)
m>n

e Under time-average criterion:

PI CkHk,n PI
v, = ’ for n £ Nj, U n = OO
. Z Qk,m(:uk,m _ :uk,n) 7 gl

m>n

> tie-breaking if in the best state: cpuy v,

o Ayesta, Erausquin & J. (2010), IFIP Performance



JSP with iid Time-Varying Service
e Varied \; so that p varies from 0.5 to 1
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with Markov Time-Varying Service Rates

e Job/user k € K is defined by

> ¢ = cost of waiting for job £

> Qk.n.m = probability to move from condition n to m

> i, = completion probability for job £ under
condition n (ordered: i, < fhin+i1)

e Find a serving sequence minimizing the total cost of
waiting of jobs k € K

e Gilbert-Elliot conditions: bad (B), good (G)
o N, :={0,B,G}, A:={'wait’, 'serve’}

e 0 = ‘completed’ ; n = ‘waiting’ and condition is n
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with Markov Time-Varying Service Rates

e Expected one-period reward

R ‘serve’ | O R ‘serve’ :
)
R ‘wait’ . — O, R Walt :

_Ck(l i ,uk,n),

—CL;

e One-period transition probability matrices

0 B G
o 1 0 o)
PSelrve ‘= DB prp MeBIKBB [kBIKB.G
G \uk,a el XN : B Xell| XeXe. /
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with Markov Time-Varying Service Rates

e Generalized Potential improvement index

e Under discounted criterion:

» CkHk,G Ck bk, B
5G T (1 - B)’ 51— p) + 8q; g .ok, — Lk,B)

1
1 —pre) B — pre)
Gk,B.G e

QZ,B,G = 1 — ﬁ(

e J. (2011), IFIP Performance
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with Markov Time-Varying Service Rates

e Varied py p, while g =1

MinCost
Pllcmu
Plirnd

B FisScmu
][] PisSmd




with 1id Time-Varying and Abandonments

e Job/user k € K is defined by

> ¢ = cost of waiting for job £

> g, = probability to move to condition n

> i, = completion prob. for job £ under condition n
> d; = abandonment penalty for job £

> @, = abandonment probability for job £

e Find a serving sequence minimizing the total cost of
waiting and abandonment penalties of jobs k£ € K

o N :={0,1,2,..., N}, A:= {'wait’, ‘serve’}

> 0 = ‘completed or abandoned;
n = ‘waiting’ and condition is n
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with 1id Time-Varying and Abandonments

e Expected one-period reward

Rserve . O, Rserve = —Ck(l — ,uk,n)a
Rwalt =0, Rwa't — —ck(l — Hk) — dj0k;

e One-period transition probability matrices

0 1 N
o[ 1 0 0 0 )
1| Oka 5k,1£]k,1 5/«,1%,1@
Pt = 9 0% 2 5k,2qk,1 5k,2qk,Nk

Nk\ek,Nk Ok, N QL1 - 9k,Nka,Nk/
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with 1id Time-Varying and Abandonments

e A new (opportunistic) index

e Under time-average criterion:

ce(prn — Or) + diby (Mk,n + > Qe — Mm))

m>n

O + D Qem(Lkm — Hin)

m>n

VAN
Vk,n Bl

e Recovers Pl and AJN indices
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with iid Time-Varying and Abandonments

e Varied )\ so that p varies from 0.5 to 0.75




Conclusion

e Rich framework to study scheduling problems

> obtain elegant index rules
> index policies optimal for relaxations
> suggests structure of (asymptotically) optimal policies

e Weakness

> no stability /optimality results

e Open problems

> non-geometric job sizes
> optimal solution (structure)
> correlation among users

25



Thank you for your attention
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Dynamic Prices (Index Values)

e We will assign a dynamic price to each user

e Arises in the solution of the parametric subproblem

> optimal policy: use server iff price greater than v
e Prices are values of v when optimal solution changes

e However, such prices may not exist!

> indexability has to be proved

e Price computation (if they exist):

> in general, by parametric simplex method
> by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

e For finite-state finite-action MDPs there exists an
optimal policy that is deterministic, stationary, and
independent of the initial state

> we narrow our focus to those policies
> represent them via serving sets S C N/
> policy & prescribes to serve in states in S and wait in

states in S¢ := N\ S

e Combinatorial v-cost problem: rgaﬁfcR‘g — VW, where
C

O O

RS =E5 [ ) ﬁthb((’éi) C WS =ES | ) 6tW§(<tt))
=0 =
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Geometric Interpretation

o (WS R?) gives rise to 2-dim. performance region
e Indexability means the performance region is convex

e Optimal (threshold) policies are extreme points of the
upper boundary of the performance region

e Index values are slopes of the upper boundary

e Indexability is sort of a dual concept to threshold
policies

> but not equivalent!



Performance Region
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