Nearly-Optimal Index Rules for Some Non-work-conserving Systems

Peter Jacko*
joint work with Urtzi Ayesta

INFORMS APS 2011, July 7
*BCAM - Basque Center for Applied Mathematics, Spain

Talk Outline

- Resource allocation MDP framework
- Decomposition and indexability
- Index rules for multi-class -/Geo/M queues
$\triangleright c \mu$-rule
$\triangleright c(\mu-\theta) / \theta$-rule (for abandonments)
\triangleright potential improvement rule (for time-varying rates)
\triangleright a new rule (for time-varying and abandonments)
- Performance evaluation in systems with arrivals

Resource Allocation Problem (RAP)

- Stochastic and dynamic
- There is a number of independent competitors
- Constraint: resource capacity M at any time
- Objective: maximize expected "reward"
- Captures the exploitation vs. exploration trade-off \triangleright always exploiting (being myopic) is not optimal \triangleright always exploring (being utopic) is not optimal
- This is a model of learning by doing!

MDP Framework

- Markov Decision Processes / restless bandits
- Discrete time model $(t=0,1,2, \ldots)$
- Job $k \in \mathcal{K}$ is defined by
\triangleright states \mathcal{N}_{k}, actions $\mathcal{A}:=\{0,1\}=\{$ 'wait', 'serve' $\}$
\triangleright expected one-period capacity consumption W_{k}^{a}
\triangleright expected one-period reward \boldsymbol{R}_{k}^{a}
\triangleright one-period transition probability matrix \boldsymbol{P}_{k}^{a}
- State process $X_{k}(t) \in \mathcal{N}_{k}$
- Action process $a_{k}(t) \in \mathcal{A}$ - to be decided

Resource Allocation Problem

- Formulation under the β-discounted criterion:

$$
\begin{aligned}
& \max _{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)}\right] \\
& \text { to } \quad \sum_{k \in \mathcal{K}} W_{k, X_{k}(t)}^{a_{k}(t)}=W, \quad \text { for all } t=0,1,2, \ldots
\end{aligned}
$$

subject to

- Analogously under the time-average criterion
- This problem is PSPACE-hard (Papad. \& Tsits. 1999) \triangleright intractable to solve exactly by Dynamic Programming \triangleright instead, we relax and decompose the problem

Relaxations and Decomposition

- 1. Whittle's (1988): Serve W jobs in expectation \triangleright infinite number of constraints is replaced by one \triangleright sort of perfect market assumption
- 2. Lagrangian: Pay cost ν for using the server \triangleright the constraint is moved into the objective
- Decomposes due to user independence into single-user parametric subproblems
\triangleright solved by identifying the efficiency frontier \triangleright indexability \approx threshold policies are optimal
\triangleright math + art $=$ characterize index values

Index Rules

- Assign an index value to each state of each user
- We are concerned with the following rule
\triangleright at each time, be greedy: serve jobs with highest current index values
- In some problems it is optimal $\triangleright c \mu$-rule (Cox \& Smith '61): job sequencing \triangleright Gittins index rule ('72): multi-armed bandit problem \triangleright Klimov index rule ('74): $M / G / 1$ model w/feedback
- Experiments and simulations suggest that it gives a nearly-optimal solution to RAP

Warm-up: Job Sequencing Problem

- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright \mu_{k}=$ completion probability for job k
- $\mathcal{N}_{k}:=\{$ 'completed', 'waiting' $\}, \mathcal{A}:=\{$ 'serve', 'wait' $\}$
- Expected one-period capacity consumption

$$
\begin{array}{ll}
W_{k, \text { completed ' }}^{\text {'serve' }}:=1, & W_{k, \text { weive' }}^{\text {'sering' }}:=1, \\
W_{k, \text { completed' }}^{\prime}:=0, & W_{k, \text { 'waiting }^{\prime}}^{\text {'wait' }}:=0 ;
\end{array}
$$

Warm-up: Job Sequencing Problem

- Expected one-period reward

$$
\begin{array}{ll}
R_{k, \text { 'completed' }}^{\text {serve' }}:=0, & R_{k, \text { 'waiting' }^{\prime} \text { serve' }}=-c_{k}\left(1-\mu_{k}\right), \\
R_{k, \text { completed' }}^{\prime \text { wait' }}:=0, & R_{k, \text { 'waiting }^{\prime}}^{\text {'wait' }^{\prime}}:=-c_{k} ;
\end{array}
$$

- One-period transition probability matrices

JSP with Abandonments

- Find a serving sequence minimizing the total cost of waiting and abandonment penalties of jobs $k \in \mathcal{K}$
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright \mu_{k}=$ completion probability for job k
$\triangleright d_{k}=$ abandonment penalty for job k
$\triangleright \theta_{k}=$ abandonment probability for job k
- $\mathcal{N}_{k}:=\{$ 'completed or abandoned', 'waiting' $\}$
- $\mathcal{A}:=\{$ 'wait', 'serve' $\}$
- Expected one-period capacity consumption ...

JSP with Abandonments

- Expected one-period reward

$$
\begin{aligned}
& R_{k, \text { 'completed or abandoned' }}^{\text {'serve' }}:=0, \quad R_{k, ' \text { waiting' }}^{\text {serve' }}:=-c_{k}\left(1-\mu_{k}\right) \\
& R_{k, \text { 'completed or abandoned' }}^{\prime \text { wait' }}:=0, \quad R_{k, ' \text { waiting' }}^{\prime \text { wait' }}:=-c_{k}\left(1-\theta_{k}\right)-d_{k} \theta_{k} ;
\end{aligned}
$$

- One-period transition probability matrices

$$
\begin{aligned}
& \left.\boldsymbol{P}_{k}^{\text {'serve' }}:=\begin{array}{r}
\text { 'compl. or ab.(} \\
\text { 'waiting }
\end{array} \begin{array}{cc}
\text { 'compl. or ab.' } & \text { 'waiting' } \\
1 & 0 \\
\mu_{k} & 1-\mu_{k}
\end{array}\right) \\
& \text { 'compl. or ab.' 'waiting' } \\
& \boldsymbol{P}_{k}^{\text {'wait' }}:=\begin{array}{r}
\text { 'compl. or ab.' } \\
\text { 'waiting }
\end{array}\left(\begin{array}{cc}
1 & 0 \\
\theta_{k} & 1-\theta_{k}
\end{array}\right)
\end{aligned}
$$

JSP with Abandonments

- Under discounted criterion:

$$
\begin{aligned}
& \nu_{k, ' \text { waiting' }}^{\mathrm{AJN}}=\frac{c_{k}\left(\mu_{k}-\theta_{k}\right)+d_{k} \theta_{k}\left(1-\beta+\beta \mu_{k}\right)}{1-\beta+\beta \theta_{k}} \\
& \nu_{k, \text { 'completed or abandoned' }}=0
\end{aligned}
$$

- Under time-average criterion:

$$
\begin{aligned}
& \nu_{k, \text { waiting' }}^{\mathrm{AJN}}=\frac{c_{k}\left(\mu_{k}-\theta_{k}\right)+d_{k} \mu_{k} \theta_{k}}{\theta_{k}} \\
& \nu_{k, \text { completed or abandoned' }}=0
\end{aligned}
$$

- Ayesta, J. \& Novak (2011), IEEE INFOCOM

JSP with Abandonments

- Two classes: $\mu_{1}=0.4, \mu_{2}=0.22, \theta_{1}=0.1, \theta_{2}=0.2$ and $c_{1}=d_{1}=d_{2}=\lambda_{1}=\lambda_{2}=1$

JSP with iid Time-Varying Service Rates

- Job/user $k \in \mathcal{K}$ is defined by
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright q_{k, n}=$ probability to move to condition n
$\triangleright \mu_{k, n}=$ completion probability for job k under condition n (ordered: $\mu_{k, n} \leq \mu_{k, n+1}$)
- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
- $\mathcal{N}_{k}:=\left\{0,1,2, \ldots, N_{k}\right\}, \mathcal{A}:=\{$ 'wait', 'serve' $\}$
- $0=$ 'completed' $; n=$ 'waiting' and condition is n

JSP with ifd Time-Varying Service Rates

- Expected one-period reward

$$
\begin{array}{rlr}
R_{k, 0}^{\text {'serve' }}:=0, & R_{k, n}^{\text {'serve' }}:=-c_{k}(\\
R_{k, 0}^{\text {'wait' }}:=0, & R_{k, n}^{\text {wa }^{\text {wait' }}}:=-c_{k} ;
\end{array}
$$

- One-period transition probability matrices

$$
\begin{gathered}
\\
\boldsymbol{P}_{k}^{\text {'serve' }}:= \\
1 \\
2 \\
\vdots \\
N_{k}\left(\begin{array}{cccc}
0 & 1 & \ldots & N_{k} \\
1 & 0 & 0 & 0 \\
\mu_{k, 1} & \widetilde{\mu}_{k, 1} q_{k, 1} & \ldots & \widetilde{\mu}_{k, 1} q_{k, N_{k}} \\
\mu_{k, 2} & \widetilde{\mu}_{k, 2} q_{k, 1} & \ldots & \widetilde{\mu}_{k, 2} q_{k, N_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{k, N_{k}} & \widetilde{\mu}_{k, N_{k}} q_{k, 1} & \ldots & \widetilde{\mu}_{k, N_{k}} q_{k, N_{k}}
\end{array}\right) .
\end{gathered}
$$

JSP with ifd Time-Varying Service Rates

- Potential improvement (opportunistic) index
- Under discounted criterion:

$$
\nu_{k, n}^{\mathrm{PI}}=\frac{c_{k} \mu_{k, n}}{(1-\beta)+\beta \sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)}
$$

- Under time-average criterion:

$$
\nu_{k, n}^{\mathrm{PI}}=\frac{c_{k} \mu_{k, n}}{\sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)} \text { for } n \neq N_{k}, \quad \nu_{k, N_{k}}^{\mathrm{PI}}=\infty
$$

\triangleright tie-breaking if in the best state: $c_{k} \mu_{k, N_{k}}$

- Ayesta, Erausquin \& J. (2010), IFIP Performance

JSP with ifd Time-Varying Service Rates

- Varied λ_{1} so that ϱ varies from 0.5 to 1

with Markov Time-Varying Service Rates

- Job/user $k \in \mathcal{K}$ is defined by
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright q_{k, n, m}=$ probability to move from condition n to m
$\triangleright \mu_{k, n}=$ completion probability for job k under condition n (ordered: $\mu_{k, n} \leq \mu_{k, n+1}$)
- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
- Gilbert-Elliot conditions: bad (B), good (G)
- $\mathcal{N}_{k}:=\{0, B, G\}, \mathcal{A}:=\{$ 'wait', 'serve' $\}$
- $0=$ 'completed' $; n=$ 'waiting' and condition is n

with Markov Time-Varying Service Rates

- Expected one-period reward

$$
\begin{aligned}
R_{k, 0}^{\text {serve' }}:=0, & R_{k, n}^{\text {serve' }^{\text {sen }}}:=-c_{k}\left(1-\mu_{k, n}\right), \\
R_{k, 0}^{\text {'wait' }}:=0, & R_{k, n}^{\text {wwait' }}:=-c_{k} ;
\end{aligned}
$$

- One-period transition probability matrices

$$
\boldsymbol{P}_{k}^{\text {'serve' }}:=\begin{gathered}
0 \\
0 \\
B \\
G
\end{gathered}\left(\begin{array}{ccc}
1 & 0 & G \\
\mu_{k, B} & \widetilde{\mu}_{k, B} q_{k, B, B} & \widetilde{\mu}_{k, B} q_{k, B, G} \\
\mu_{k, G} & \widetilde{\mu}_{k, G} q_{k, G, B} & \widetilde{\mu}_{k, G} q_{k, G, G}
\end{array}\right)
$$

with Markov Time-Varying Service Rates

- Generalized Potential improvement index
- Under discounted criterion:

$$
\begin{gathered}
\nu_{k, G}^{*}=\frac{c_{k} \mu_{k, G}}{(1-\beta)}, \quad \nu_{k, B}^{*}=\frac{c_{k} \mu_{k, B}}{(1-\beta)+\beta q_{k, B, G}^{*}\left(\mu_{k, G}-\mu_{k, B}\right)} \\
q_{k, B, G}^{*}:=\frac{1}{\frac{1-\beta\left(1-\mu_{k, G}\right)}{q_{k, B, G}}+\frac{\beta\left(1-\mu_{k, G}\right)}{q_{k, G}^{S S}}}
\end{gathered}
$$

- J. (2011), IFIP Performance

with Markov Time-Varying Service Rates

- Varied $\mu_{1, B}$, while $\mu_{1, G}=1$

with iid Time-Varying and Abandonments

- Job/user $k \in \mathcal{K}$ is defined by
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright q_{k, n}=$ probability to move to condition n
$\triangleright \mu_{k, n}=$ completion prob. for job k under condition n
$\triangleright d_{k}=$ abandonment penalty for job k
$\triangleright \theta_{k}=$ abandonment probability for job k
- Find a serving sequence minimizing the total cost of waiting and abandonment penalties of jobs $k \in \mathcal{K}$
- $\mathcal{N}_{k}:=\left\{0,1,2, \ldots, N_{k}\right\}, \mathcal{A}:=\{$ 'wait', 'serve' $\}$
$\triangleright 0=$ 'completed or abandoned';
$n=$ 'waiting' and condition is n

with iid Time-Varying and Abandonments

- Expected one-period reward

$$
\begin{aligned}
R_{k, 0}^{\text {sserve' }}:=0, & R_{k, n}^{\text {serve' }^{\text {ser }}}:=-c_{k}\left(1-\mu_{k, n}\right), \\
R_{k, 0}^{\text {'wait' }}:=0, & R_{k, n}^{\text {wait' }}:=-c_{k}\left(1-\theta_{k}\right)-d_{k} \theta_{k} ;
\end{aligned}
$$

- One-period transition probability matrices

$$
\begin{gathered}
\\
\boldsymbol{P}_{k}^{\text {wait' }^{\prime}}:=\begin{array}{cccc}
0 & 1 & \ldots & N_{k} \\
1 \\
2 \\
\vdots \\
N_{k}
\end{array}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\theta_{k, 1} & \widetilde{\theta}_{k, 1} q_{k, 1} & \ldots & \widetilde{\theta}_{k, 1} q_{k, N_{k}} \\
\theta_{k, 2} & \widetilde{\theta}_{k, 2} q_{k, 1} & \ldots & \widetilde{\theta}_{k, 2} q_{k, N_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\theta_{k, N_{k}} & \widetilde{\theta}_{k, N_{k}} q_{k, 1} & \ldots & \widetilde{\theta}_{k, N_{k}} q_{k, N_{k}}
\end{array}\right)
\end{gathered}
$$

with iid Time-Varying and Abandonments

- A new (opportunistic) index
- Under time-average criterion:

$$
\nu_{k, n}^{\mathrm{PIA}}=\frac{c_{k}\left(\mu_{k, n}-\theta_{k}\right)+d_{k} \theta_{k}\left(\mu_{k, n}+\sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)\right)}{\theta_{k}+\sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)}
$$

- Recovers PI and AJN indices

with iid Time-Varying and Abandonments

- Varied λ_{1} so that ϱ varies from 0.5 to 0.75

Conclusion

- Rich framework to study scheduling problems
\triangleright obtain elegant index rules
\triangleright index policies optimal for relaxations
\triangleright suggests structure of (asymptotically) optimal policies
- Weakness
\triangleright no stability/optimality results
- Open problems
\triangleright non-geometric job sizes
\triangleright optimal solution (structure)
\triangleright correlation among users

Thank you for your attention

Dynamic Prices (Index Values)

- We will assign a dynamic price to each user
- Arises in the solution of the parametric subproblem \triangleright optimal policy: use server iff price greater than ν
- Prices are values of ν when optimal solution changes
- However, such prices may not exist!
\triangleright indexability has to be proved
- Price computation (if they exist):
\triangleright in general, by parametric simplex method
\triangleright by analysis sometimes obtained in a closed form

Optimal Solution to Subproblems

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
\triangleright we narrow our focus to those policies
\triangleright represent them via serving sets $\mathcal{S} \subseteq \mathcal{N}$
\triangleright policy \mathcal{S} prescribes to serve in states in \mathcal{S} and wait in states in $\mathcal{S}^{\mathrm{C}}:=\mathcal{N} \backslash \mathcal{S}$
- Combinatorial ν-cost problem: $\max _{\mathcal{S} \subseteq \mathcal{N}} \mathbb{R}_{n}^{\mathcal{S}}-\nu \mathbb{W}_{n}^{\mathcal{S}}$, where

$$
\mathbb{R}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} R_{X(t)}^{a(t)}\right], \quad \mathbb{W}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} W_{X(t)}^{a(t)}\right]
$$

Geometric Interpretation

- $\left(\mathbb{W}_{n}^{\mathcal{S}}, \mathbb{R}_{n}^{\mathcal{S}}\right)$ gives rise to 2-dim. performance region
- Indexability means the performance region is convex
- Optimal (threshold) policies are extreme points of the upper boundary of the performance region
- Index values are slopes of the upper boundary
- Indexability is sort of a dual concept to threshold policies
\triangleright but not equivalent!

Performance Region

Performance Region

\mathcal{N}

