
Nearly-Optimal Index Rules for
Some Non-work-conserving Systems

Peter Jacko∗

joint work with Urtzi Ayesta

INFORMS APS 2011, July 7

∗BCAM — Basque Center for Applied Mathematics, Spain

1

Talk Outline

• Resource allocation MDP framework

• Decomposition and indexability

• Index rules for multi-class −/Geo/M queues

. cµ-rule

. c(µ− θ)/θ-rule (for abandonments)

. potential improvement rule (for time-varying rates)

. a new rule (for time-varying and abandonments)

• Performance evaluation in systems with arrivals

2

Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There is a number of independent competitors

• Constraint: resource capacity M at any time

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This is a model of learning by doing!

3

MDP Framework

• Markov Decision Processes / restless bandits

• Discrete time model (t = 0, 1, 2, . . .)

• Job k ∈ K is defined by

. states Nk, actions A := {0, 1} = {‘wait’, ‘serve’}

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided

4

Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) = W, for all t = 0, 1, 2, . . .

• Analogously under the time-average criterion

• This problem is PSPACE-hard (Papad. & Tsits. 1999)

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem

5

Relaxations and Decomposition

• 1. Whittle’s (1988): Serve W jobs in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

• 2. Lagrangian: Pay cost ν for using the server

. the constraint is moved into the objective

• Decomposes due to user independence into single-user

parametric subproblems

. solved by identifying the efficiency frontier

. indexability ≈ threshold policies are optimal

. math + art = characterize index values

6

Index Rules

• Assign an index value to each state of each user

• We are concerned with the following rule

. at each time, be greedy:

serve jobs with highest current index values

• In some problems it is optimal

. cµ-rule (Cox & Smith ’61): job sequencing

. Gittins index rule (’72): multi-armed bandit problem

. Klimov index rule (’74): M/G/1 model w/ feedback

• Experiments and simulations suggest that it gives a

nearly-optimal solution to RAP

7

Warm-up: Job Sequencing Problem

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

. ck = cost of waiting for job k

. µk = completion probability for job k

• Nk := {‘completed’, ‘waiting’}, A := {‘serve’, ‘wait’}

• Expected one-period capacity consumption

W ‘serve’
k,‘completed’ := 1, W ‘serve’

k,‘waiting’ := 1,

W ‘wait’
k,‘completed’ := 0, W ‘wait’

k,‘waiting’ := 0;

8

Warm-up: Job Sequencing Problem

• Expected one-period reward

R‘serve’
k,‘completed’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed’ := 0, R‘wait’

k,‘waiting’ := −ck;

• One-period transition probability matrices

P ‘serve’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk



P ‘wait’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1



9

JSP with Abandonments

• Find a serving sequence minimizing the total cost of

waiting and abandonment penalties of jobs k ∈ K

. ck = cost of waiting for job k

. µk = completion probability for job k

. dk = abandonment penalty for job k

. θk = abandonment probability for job k

• Nk := {‘completed or abandoned’, ‘waiting’}

• A := {‘wait’, ‘serve’}

• Expected one-period capacity consumption ...

10

JSP with Abandonments

• Expected one-period reward

R‘serve’
k,‘completed or abandoned’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed or abandoned’ := 0, R‘wait’

k,‘waiting’ := −ck(1− θk)− dkθk;

• One-period transition probability matrices

P ‘serve’
k :=


‘compl. or ab.’ ‘waiting’

‘compl. or ab.’ 1 0

‘waiting’ µk 1− µk



P ‘wait’
k :=


‘compl. or ab.’ ‘waiting’

‘compl. or ab.’ 1 0

‘waiting’ θk 1− θk



11

JSP with Abandonments

• Under discounted criterion:

νAJN
k,‘waiting’ =

ck(µk − θk) + dkθk(1− β + βµk)
1− β + βθk

νAJN
k,‘completed or abandoned’ = 0

• Under time-average criterion:

νAJN
k,‘waiting’ =

ck(µk − θk) + dkµkθk
θk

νAJN
k,‘completed or abandoned’ = 0

• Ayesta, J. & Novak (2011), IEEE INFOCOM

12

JSP with Abandonments

• Two classes: µ1 = 0.4 , µ2 = 0.22 , θ1 = 0.1, θ2 = 0.2
and c1 = d1 = d2 = λ1 = λ2 = 1

13

JSP with iid Time-Varying Service Rates

• Job/user k ∈ K is defined by

. ck = cost of waiting for job k

. qk,n = probability to move to condition n

. µk,n = completion probability for job k under

condition n (ordered: µk,n ≤ µk,n+1)

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

• Nk := {0, 1, 2, . . . , Nk}, A := {‘wait’, ‘serve’}

• 0 = ‘completed’ ; n = ‘waiting’ and condition is n

14

JSP with iid Time-Varying Service Rates

• Expected one-period reward

R‘serve’
k,0 := 0, R‘serve’

k,n := −ck(1− µk,n),

R‘wait’
k,0 := 0, R‘wait’

k,n := −ck;

• One-period transition probability matrices

P ‘serve’
k :=



0 1 . . . Nk

0 1 0 0 0

1 µk,1 µ̃k,1qk,1 . . . µ̃k,1qk,Nk

2 µk,2 µ̃k,2qk,1 . . . µ̃k,2qk,Nk

...

Nk µk,Nk
µ̃k,Nk

qk,1 . . . µ̃k,Nk
qk,Nk



15

JSP with iid Time-Varying Service Rates

• Potential improvement (opportunistic) index

• Under discounted criterion:

νPI
k,n =

ckµk,n
(1− β) + β

∑
m>n

qk,m(µk,m − µk,n)

• Under time-average criterion:

νPI
k,n =

ckµk,n∑
m>n

qk,m(µk,m − µk,n)
for n 6= Nk, νPI

k,Nk
=∞

. tie-breaking if in the best state: ckµk,Nk

• Ayesta, Erausquin & J. (2010), IFIP Performance

16

JSP with iid Time-Varying Service Rates

• Varied λ1 so that % varies from 0.5 to 1

17

with Markov Time-Varying Service Rates

• Job/user k ∈ K is defined by

. ck = cost of waiting for job k

. qk,n,m = probability to move from condition n to m

. µk,n = completion probability for job k under

condition n (ordered: µk,n ≤ µk,n+1)

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

• Gilbert-Elliot conditions: bad (B), good (G)

• Nk := {0, B,G}, A := {‘wait’, ‘serve’}

• 0 = ‘completed’ ; n = ‘waiting’ and condition is n

18

with Markov Time-Varying Service Rates

• Expected one-period reward

R‘serve’
k,0 := 0, R‘serve’

k,n := −ck(1− µk,n),
R‘wait’
k,0 := 0, R‘wait’

k,n := −ck;

• One-period transition probability matrices

P ‘serve’
k :=


0 B G

0 1 0 0

B µk,B µ̃k,Bqk,B,B µ̃k,Bqk,B,G

G µk,G µ̃k,Gqk,G,B µ̃k,Gqk,G,G



19

with Markov Time-Varying Service Rates

• Generalized Potential improvement index

• Under discounted criterion:

ν∗k,G =
ckµk,G

(1− β)
, ν∗k,B =

ckµk,B

(1− β) + βq∗k,B,G(µk,G − µk,B)

q∗k,B,G :=
1

1− β(1− µk,G)
qk,B,G

+
β(1− µk,G)

qSS
k,G

• J. (2011), IFIP Performance

20

with Markov Time-Varying Service Rates

• Varied µ1,B, while µ1,G = 1

0.05 0.1 0.15 0.2 0.25
0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

µ1B

R
el

at
iv

e
su

bo
pt

im
al

ity
 g

ap

MinCost
PI1cmu
PI1rnd
PISScmu
PISSrnd
PI*cmu
PI*rnd
SBcmu

21

with iid Time-Varying and Abandonments

• Job/user k ∈ K is defined by

. ck = cost of waiting for job k

. qk,n = probability to move to condition n

. µk,n = completion prob. for job k under condition n

. dk = abandonment penalty for job k

. θk = abandonment probability for job k

• Find a serving sequence minimizing the total cost of

waiting and abandonment penalties of jobs k ∈ K

• Nk := {0, 1, 2, . . . , Nk}, A := {‘wait’, ‘serve’}
. 0 = ‘completed or abandoned’;

n = ‘waiting’ and condition is n

22

with iid Time-Varying and Abandonments

• Expected one-period reward

R‘serve’
k,0 := 0, R‘serve’

k,n := −ck(1− µk,n),

R‘wait’
k,0 := 0, R‘wait’

k,n := −ck(1− θk)− dkθk;

• One-period transition probability matrices

P ‘wait’
k :=



0 1 . . . Nk

0 1 0 0 0

1 θk,1 θ̃k,1qk,1 . . . θ̃k,1qk,Nk

2 θk,2 θ̃k,2qk,1 . . . θ̃k,2qk,Nk

...

Nk θk,Nk
θ̃k,Nk

qk,1 . . . θ̃k,Nk
qk,Nk



23

with iid Time-Varying and Abandonments

• A new (opportunistic) index

• Under time-average criterion:

νPIA
k,n =

ck(µk,n − θk) + dkθk

(
µk,n +

∑
m>n

qk,m(µk,m − µk,n)
)

θk +
∑
m>n

qk,m(µk,m − µk,n)

• Recovers PI and AJN indices

24

with iid Time-Varying and Abandonments

• Varied λ1 so that % varies from 0.5 to 0.75

25

Conclusion

• Rich framework to study scheduling problems

. obtain elegant index rules

. index policies optimal for relaxations

. suggests structure of (asymptotically) optimal policies

• Weakness

. no stability/optimality results

• Open problems

. non-geometric job sizes

. optimal solution (structure)

. correlation among users

26

Thank you for your attention

27

Dynamic Prices (Index Values)

• We will assign a dynamic price to each user

• Arises in the solution of the parametric subproblem

. optimal policy: use server iff price greater than ν

• Prices are values of ν when optimal solution changes

• However, such prices may not exist!

. indexability has to be proved

• Price computation (if they exist):

. in general, by parametric simplex method

. by analysis sometimes obtained in a closed form

28

Optimal Solution to Subproblems

• For finite-state finite-action MDPs there exists an

optimal policy that is deterministic, stationary, and

independent of the initial state

. we narrow our focus to those policies

. represent them via serving sets S ⊆ N

. policy S prescribes to serve in states in S and wait in

states in SC := N \ S

• Combinatorial ν-cost problem: max
S⊆N

RSn − νWSn, where

RSn := ESn

[∞∑
t=0

βtR
a(t)
X(t)

]
, WSn := ESn

[∞∑
t=0

βtW
a(t)
X(t)

]

29

Geometric Interpretation

• (WSn,R
S
n) gives rise to 2-dim. performance region

• Indexability means the performance region is convex

• Optimal (threshold) policies are extreme points of the

upper boundary of the performance region

• Index values are slopes of the upper boundary

• Indexability is sort of a dual concept to threshold

policies

. but not equivalent!

30

Performance Region

RS

WS

•∅

31

Performance Region

RS

WS

•
{1}

32

Performance Region

RS

WS

•

33

Performance Region

RS

WS

•

34

Performance Region

RS

WS

•

35

Performance Region

RS

WS

• N

