
A Nearly-Optimal Index Rule for Scheduling of Users
with Abandonment

Vladimir Novak∗,‡

joint work with Urtzi Ayesta∗,† and Peter Jacko∗

∗BCAM - Basque Center for Applied Mathematics, Bilbao, Spain

†IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

‡Faculty of Mathematics, Physics and Informatics.
Comenius University in Bratislava, Slovakia

IEEE INFOCOM 2011, Shanghai, China

Abandonments is a ubiquitous phenomenon

Abandonment happens in multitude of systems

Customers waiting too long in queue

User’s with too slow Internet connection

Very negative impact on system performance

Users consider that the system is poorly managed

Waste of resources

Scheduling of impatient users is not completely understood, because
of its complexity

Motivation

Main focus: Design a scheduling rule to minimize the total discounted
or time-average cost

Methodology: Recent developments on restless bandits

Talk Outline

1 Problem Description

2 MDP Formulation

3 Analytical solution - special cases

4 Index policies - general case

5 Computational Experiments

Problem Description

Problem Description

Fixed number of jobs waiting for service

Server

serves one job at a time
preemptive
regularly decides to which user (if any) it should be allocated

Job k:

completed with probability µk > 0
abandoned with probability θk ≥ 0
holding cost ck > 0
abandonment penalty dk > 0, if user abandons the system without
having the job completed

User in service cannot abandon

It is allowed to idle the server even if there are users waiting

MDP Formulation

MDP Formulation

The time slotted into epochs t ∈ T := {0, 1, 2, . . . }

User k is defined by

action space {0, 1} = {”do not serve”, ”serve”}
state space {0, 1} = {”departed”, ”waiting”}
expected one-period server utilization

W 1
k,n := 1, W 0

k,n := 0;

expected one-period reward

R1
k,0 := 0, R1

k,1 := −ck · (1− µk) + 0 · µk,

R0
k,0 := 0, R0

k,1 := −ck · (1− θk)− dk · θk;

MDP Formulation

MDP Formulation

one-period transition probability matrix

P 1
k :=

(0 1

0 1 0

1 µk 1− µk

)
, P 0

k :=

(0 1

0 1 0

1 θk 1− θk

)

State process Xk(t) and action process ak(t)

Infinite- horizon β-average quantity:

Bπ0
[
Q
a(·)
X(·), β

]
β = 1 expected time-average quantity
0 < β < 1 expected total β-discounted quantity
β = 0 myopic quantity

MDP Formulation

MDP Formulation - Optimization Problem

Formulation under the β-average criterion

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P)

subject to
∑
k∈K

W
ak(t)
k,Xk(t) = 1, for all t ∈ T

intractable to solve exactly by Dynamic Programming

a restless bandit problem → PSPACE-hard
(Papadimitriou and Tsitsiklis, 1999)

Analytical solution - special cases

Special Cases - 1U index

Case of single user competing with idling the server

1U index:

ν1U
k := ck(µk − θk) + dkθk(1− β + βµk).

Proposition:

1 If ν1U
k ≥ 0, then it is optimal to serve the user;

2 If ν1U
k ≤ 0, then it is optimal to idle.

Analytical solution - special cases

Special Cases - 2U index

Case of two users competing among themselves (β = 1)

2U index:

ν2U
k :=

ck(µk − θk) + dkθkµk
µk[1− (1− µ3−k)(1− θk)]

.

Proposition: Suppose ν1U
k ≥ 0

1 If ν2U
1 ≥ ν2U

2 , then it is optimal to serve user 1;

2 If ν2U
1 ≤ ν2U

2 , then it is optimal to serve user 2.

3 It is optimal to idle if and only if ν1U1 = ν1U2 = 0

For more users too technical to be solved

Index policies - general case

Whittle’s Relaxation (1988)

Relax the sample path constraint: serve 1 user on β-average

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1⇒ Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1

We obtain the relaxed problem:

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]

subject to Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1.

Index policies - general case

Lagrangian relaxation and decomposition

Following Lagrange relaxation with multiplier ν

max
π∈ΠX,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·) − ν

∑
k∈K

W
ak(·)
k,Xk(·)

]
+ ν.

Decomposing into k-User Subproblem due to independence

max
π̃k∈ΠX,ak

Bπ̃k0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
.

Index policies - general case

Solution - AJN index

For user k, νAJN
k,0 := 0 and

νAJN
k,1 :=

ck(µk − θk) + dkθk(1− β + βµk)

1− β + βθk
,

and for idling, νAJN
K,0 := 0.

Proposition: Suppose ν1U
k

if ν ≤ νAJN
k,1 , then it is optimal to serve waiting user k;

if ν ≥ νAJN
k,1 , then it is optimal not to serve waiting user k;

Index policies - general case

AJN Rule for Original problem

Feasible policy for the original problem constructed by optimal solution
of the relaxed problem

AJN rule: allocates service at time t to job k∗(t) such that:

k∗(t) ∈ argmax
k∈K

νAJNk,Xk(t)

Heuristic rule

Not necessarily optimal for the original problem

Index policies - general case

Limiting cases of AJN index

If θk = 0 reduces to cµ-rule

νAJN
k,1 :=

ckµk
1− β

,

Time-average version of the AJN index (β = 1):

νAJN
k,1 :=

ck(µk − θk) + dkθkµk
θk

,

Myopic version of the AJN index (β = 0):

νAJN
k,1 := ck(µk − θk) + dkθk.

Computational Experiments

Computational Experiments - Setting

For higher relevance in applications:

investigating time-average performance
continuous-time model

Two classes, each characterized by:

exponential rates: µ, θ and Poisson arrivals λ
costs: c and d

Comparing rules: AJN, cµ/θ, cµ and 2U

cµ

θ
:=

ckµk + dkθkµk
θk

(Atar et al. 2010)

We investigated a wide range of settings for the parameters in around
200 scenarios

Computational Experiments

Computational Experiments - Scenario 1

Setting: µ1 = 0.7 , µ2 = 0.3 , θ2 = 0.2 and
c1 = c2 = d1 = d2 = λ1 = λ2 = 1

Computational Experiments

Computational Experiments - Scenario 2

Setting: µ1 = 0.4 , µ2 = 0.59 , θ2 = 4 and
c1 = c2 = d1 = d2 = λ1 = λ2 = 1

Computational Experiments

Computational Experiments - Scenario 3

Setting: µ1 = 0.4 , µ2 = 0.22 , θ1 = 0.1, θ2 = 0.2 and
c1 = d1 = d2 = λ1 = λ2 = 1

Computational Experiments

Conclusion
We investigated the problem of job scheduling with user abandonments

For the problem with one or two users, we obtained optimal solutions
(indices: 1U and 2U)

AJN index - optimal solution of relaxed problem

AJN-rule performance:

AJN is often optimal, if not - suboptimality small

In most cases the AJN-rule outperforms the cµ/θ and cµ

AJN’s biggest improvement is when it is optimal to idle

Further work

Determine under what conditions the AJN-rule is optimal

Thank you for your attention

Acknowledgement

"ZA EFM" Alumni association

Czechoslovakia section of IEEE

Literary fund of Slovakia

Research partially supported by grant MTM2010-17405 of the MICINN
(Spain) and grant PI2010-2 of the Department of Education and
Research (Basque Government).

	Problem Description
	MDP Formulation
	Analytical solution - special cases
	Index policies - general case
	Computational Experiments
	

