A Nearly-Optimal Index Rule for Scheduling of Users with Abandonment

joint work with Urtzi Ayesta*^{,†} and Peter Jacko*

*BCAM - Basque Center for Applied Mathematics, Bilbao, Spain

[†]IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

[‡]Faculty of Mathematics, Physics and Informatics. Comenius University in Bratislava, Slovakia

IEEE INFOCOM 2011, Shanghai, China

Abandonments is a ubiquitous phenomenon

- Abandonment happens in multitude of systems
 - Customers waiting too long in queue
 - User's with too slow Internet connection
- Very negative impact on system performance
 - Users consider that the system is poorly managed
 - Waste of resources
- Scheduling of impatient users is not completely understood, because of its complexity

• *Main focus*: Design a scheduling rule to minimize the total discounted or time-average cost

• Methodology: Recent developments on restless bandits

Talk Outline

1 Problem Description

- 2 MDP Formulation
- 3 Analytical solution special cases
- Index policies general case
- **5** Computational Experiments

Problem Description

Problem Description

- Fixed number of jobs waiting for service
- Server
 - serves one job at a time
 - preemptive
 - regularly decides to which user (if any) it should be allocated
- Job *k*:
 - completed with probability $\mu_k > 0$
 - abandoned with probability $\theta_k \ge 0$
 - holding cost $c_k > 0$
 - abandonment penalty $d_k > 0$, if user abandons the system without having the job completed
- User in service cannot abandon
- It is allowed to idle the server even if there are users waiting

MDP Formulation

- The time slotted into epochs $t \in \mathcal{T} := \{0, 1, 2, \dots\}$
- User k is defined by
 - action space $\{0,1\} = \{$ "do not serve", "serve" $\}$
 - state space $\{0,1\} = \{$ "departed", "waiting" $\}$
 - expected one-period server utilization

$$W_{k,n}^1 := 1,$$
 $W_{k,n}^0 := 0;$

expected one-period reward

$$\begin{aligned} R_{k,0}^{1} &:= 0, & R_{k,1}^{1} &:= -c_{k} \cdot (1 - \mu_{k}) + 0 \cdot \mu_{k}, \\ R_{k,0}^{0} &:= 0, & R_{k,1}^{0} &:= -c_{k} \cdot (1 - \theta_{k}) - d_{k} \cdot \theta_{k}; \end{aligned}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

MDP Formulation

• one-period transition probability matrix

$$\boldsymbol{P}_{k}^{1} := \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 \\ \mu_{k} & 1 - \mu_{k} \end{pmatrix}, \quad \boldsymbol{P}_{k}^{0} := \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 \\ \theta_{k} & 1 - \theta_{k} \end{pmatrix}$$

• State process $X_k(t)$ and action process $a_k(t)$

• Infinite- horizon β -average quantity:

$$\mathbb{B}_0^{\pi}\left[Q_{X(\cdot)}^{a(\cdot)},\beta\right]$$

- $\beta=1$ expected time-average quantity
- $0<\beta<1$ expected total $\beta\text{-discounted}$ quantity
- $\beta = 0$ myopic quantity

MDP Formulation

MDP Formulation - Optimization Problem

• Formulation under the β -average criterion

$$\max_{\boldsymbol{\pi}\in\Pi_{X,\boldsymbol{a}}} \mathbb{B}_{0}^{\boldsymbol{\pi}} \left[\sum_{k\in\mathcal{K}} R_{k,X_{k}(\cdot)}^{a_{k}(\cdot)} \right]$$
subject to
$$\sum_{k\in\mathcal{K}} W_{k,X_{k}(t)}^{a_{k}(t)} = 1, \text{ for all } t \in \mathcal{T}$$
(P)

- intractable to solve exactly by Dynamic Programming
- a restless bandit problem → PSPACE-hard (Papadimitriou and Tsitsiklis, 1999)

Analytical solution - special cases

Special Cases - 1U index

- Case of single user competing with idling the server
- 1U index:

$$\nu_k^{1\mathbf{U}} := c_k(\mu_k - \theta_k) + d_k\theta_k(1 - \beta + \beta\mu_k).$$

- Proposition:
 - If $\nu_k^{1U} \ge 0$, then it is optimal to serve the user;
 - 2 If $\nu_k^{1U} \leq 0$, then it is optimal to idle.

Analytical solution - special cases

Special Cases - 2U index

- Case of two users competing among themselves (eta=1)
- 2U index:

$$\nu_k^{2\mathsf{U}} := \frac{c_k(\mu_k - \theta_k) + d_k\theta_k\mu_k}{\mu_k[1 - (1 - \mu_{3-k})(1 - \theta_k)]}$$

• Proposition: Suppose $\nu_k^{1U} \ge 0$

- If $\nu_1^{2U} \ge \nu_2^{2U}$, then it is optimal to serve user 1;
- 2 If $\nu_1^{2U} \le \nu_2^{2U}$, then it is optimal to serve user 2.
- 3 It is optimal to idle if and only if $\nu_1^{1U} = \nu_2^{1U} = 0$
- For more users too technical to be solved

Whittle's Relaxation (1988)

 \bullet Relax the sample path constraint: serve 1 user on $\beta\text{-average}$

$$\left[\sum_{k\in\mathcal{K}} W_{k,X_k(t)}^{a_k(t)}\right] = 1 \Rightarrow \mathbb{B}_0^{\pi} \left[\sum_{k\in\mathcal{K}} W_{k,X_k(\cdot)}^{a_k(\cdot)}\right] = 1$$

• We obtain the relaxed problem:

$$\begin{split} & \max_{\boldsymbol{\pi} \in \Pi_{\boldsymbol{X}, \boldsymbol{a}}} \mathbb{B}_{0}^{\boldsymbol{\pi}} \left[\sum_{k \in \mathcal{K}} R_{k, X_{k}(\cdot)}^{a_{k}(\cdot)} \right] \\ & \text{subject to } \mathbb{B}_{0}^{\boldsymbol{\pi}} \left[\sum_{k \in \mathcal{K}} W_{k, X_{k}(\cdot)}^{a_{k}(\cdot)} \right] = 1 \end{split}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Lagrangian relaxation and decomposition

• Following Lagrange relaxation with multiplier ν

$$\max_{\boldsymbol{\pi}\in\Pi_{\boldsymbol{X},\boldsymbol{a}}} \mathbb{B}_{0}^{\boldsymbol{\pi}} \left[\sum_{k\in\mathcal{K}} R_{k,X_{k}(\cdot)}^{a_{k}(\cdot)} - \nu \sum_{k\in\mathcal{K}} W_{k,X_{k}(\cdot)}^{a_{k}(\cdot)} \right] + \nu.$$

• Decomposing into k-User Subproblem due to independence

$$\max_{\widetilde{\pi}_k \in \Pi_{\mathbf{X}, a_k}} \mathbb{B}_0^{\widetilde{\pi}_k} \left[R_{k, X_k(\cdot)}^{a_k(\cdot)} - \nu W_{k, X_k(\cdot)}^{a_k(\cdot)} \right].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solution - AJN index

• For user k,
$$\nu_{k,0}^{AJN} := 0$$
 and

$$\nu_{k,1}^{\mathsf{AJN}} := \frac{c_k(\mu_k - \theta_k) + d_k\theta_k(1 - \beta + \beta\mu_k)}{1 - \beta + \beta\theta_k},$$

and for idling, $\nu_{K,0}^{\text{AJN}} := 0.$

- Proposition: Suppose u_k^{1U}
 - if $\nu \leq \nu_{k,1}^{AJN}$, then it is optimal to serve waiting user k;
 - if $\nu \ge \nu_{k,1}^{\text{AJN}}$, then it is optimal not to serve waiting user k;

AJN Rule for Original problem

- Feasible policy for the original problem constructed by optimal solution of the relaxed problem
- AJN rule: allocates service at time t to job $k^*(t)$ such that:

$$k^*(t) \in \operatorname*{arg\,max}_{k \in \mathbf{K}} \nu^{AJN}_{k, X_k(t)}$$

- Heuristic rule
- Not necessarily optimal for the original problem

Limiting cases of AJN index

• If $\theta_k = 0$ reduces to $c\mu$ -rule

$$\nu_{k,1}^{\mathsf{AJN}} := \frac{c_k \mu_k}{1 - \beta},$$

• Time-average version of the AJN index ($\beta = 1$):

$$\nu_{k,1}^{\mathsf{AJN}} := \frac{c_k(\mu_k - \theta_k) + d_k \theta_k \mu_k}{\theta_k},$$

• Myopic version of the AJN index ($\beta = 0$):

$$\nu_{k,1}^{\mathsf{AJN}} := c_k(\mu_k - \theta_k) + d_k\theta_k.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんぐ

Computational Experiments - Setting

- For higher relevance in applications:
 - investigating time-average performance
 - continuous-time model
- Two classes, each characterized by:
 - exponential rates: μ , θ and Poisson arrivals λ
 - costs: c and d
- Comparing rules: AJN, $c\mu/\theta, c\mu$ and 2U

$$rac{c\mu}{ heta}:=rac{c_k\mu_k+d_k heta_k\mu_k}{ heta_k}$$
 (Atar et al. 2010)

• We investigated a wide range of settings for the parameters in around 200 scenarios

Computational Experiments - Scenario 1

Setting: $\mu_1=0.7$, $\mu_2=0.3$, $\theta_2=0.2$ and $c_1=c_2=d_1=d_2=\lambda_1=\lambda_2=1$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへ⊙

Computational Experiments - Scenario 2

Setting: $\mu_1=0.4$, $\mu_2=0.59$, $\theta_2=4$ and $c_1=c_2=d_1=d_2=\lambda_1=\lambda_2=1$

▲□▶ ▲圖▶ ▲注▶ ▲注▶ - 注: のへで

Computational Experiments - Scenario 3

Setting: $\mu_1=0.4$, $\mu_2=0.22$, $\theta_1=0.1,$ $\theta_2=0.2$ and $c_1=d_1=d_2=\lambda_1=\lambda_2=1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusion

- We investigated the problem of job scheduling with user abandonments
- For the problem with one or two users, we obtained optimal solutions (indices: 1U and 2U)
- AJN index optimal solution of relaxed problem
- AJN-rule performance:
 - AJN is often optimal, if not suboptimality small
 - $\bullet\,$ In most cases the AJN-rule outperforms the $c\mu/\theta$ and $c\mu$
 - AJN's biggest improvement is when it is optimal to idle
- Further work
 - Determine under what conditions the AJN-rule is optimal

Thank you for your attention

- Acknowledgement
 - "ZA EFM" Alumni association
 - Czechoslovakia section of IEEE
 - Literary fund of Slovakia
 - Research partially supported by grant MTM2010-17405 of the MICINN (Spain) and grant PI2010-2 of the Department of Education and Research (Basque Government).