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Abstract. This survey focuses on the job scheduling problem at a pre-
emptive server, and on its extensions. We present a generic problem
formulation within the framework of restless bandits and a unifying ap-
proach for designing the Whittle index rule. For the classic job scheduling
problem at a preemptive server we show that this index rule is equivalent
to the cµ-rule, known to be the optimal solution. We further briefly dis-
cuss appealing Whittle index rules recently designed for the extensions
of the job scheduling problem with abandonment and with time-varying
service rate, which were computationally shown to achieve exceptionally
good performance. Finally we list some open problems and possible fu-
ture research directions.
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1 Introduction

In this paper we present a restless bandits framework for the job scheduling
problem and its extensions. The framework provides a powerful modeling set-
ting, together with a unifying approach to the design of index rules proposed by
Whittle [26]. This is based on establishing optimality of threshold policies and
indexability of particular jobs. The resulting index rule for scheduling of mul-
tiple jobs is of high computational interest because it is separable across jobs
(or classes of jobs) and often leads to simple appealing formulae that elucidate
structural properties of the problem under the hard sample-path constraint of
assigning a single server in every period. Index rules are usually significantly
easier to implement than more complex cross-depending policies, and optimal
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solutions are often intractable (i.e., uncomputable in a reasonable time) or too
complex to be implementable in real-world systems.

In some systems (with a rather restricted dynamics), index rules provide an
elegant optimal solution, such as the cµ-rule for the job scheduling problem [23]
and for the multi-class G/Geo/1 queue [7], or the Gittins index rule for the multi-
armed (classic) bandit problem [11] and for its analogue with Poisson arrivals
[25]. In more complex systems, which admit the restless bandit formulation, the
Whittle index rule is typically reported to achieve a nearly-optimal performance,
both in systems without and with arrivals. Such solution is in many models very
appreciated, since the restless bandit problem was proven pspace-hard even in
its deterministic version [21]. Due to their intractability, these problems are often
alternatively addressed in some limiting regimes, such as fluid limit, diffusion
limit, heavy traffic, or under the myopic criterion. However, an increasing body
of literature on index rules, partly surveyed in this paper and partly in [20],
suggests that such alternative solutions are usually systematically outperformed
by the Whittle index rule.

2 Restless Bandits Framework for Job Scheduling

In this section we present a discrete-time MDP framework of the multi-armed
restless bandit problem as it applies to job scheduling. In particular, a generic
job is defined as a special case of the restless bandit. This extends the setting of
the multi-armed (classic) bandit problem surveyed in [10], and is a special case
of the dynamic and stochastic resource capacity allocation problem introduced
in [12].

Consider the time slotted into time epochs t ∈ T := {0, 1, 2, . . . } at which
decisions are made. Time epoch t corresponds to the beginning of time period t.
Suppose that there are K jobs labeled k ∈ K′ := {1, 2, . . . ,K} awaiting service
at time epoch 0 at a preemptive server. At every time epoch, jobs are competing
for a server that decides at every time epoch which job to serve during that
period. The server can serve at most one job at a time. We will denote the idling
option by k = 0, and define K := {0} ∪ K′. In the following we will present
a generic problem formulation under the myopic, discounted, and time-average
criterion over an infinite horizon.

2.1 Jobs

Since the capacity of the server is to serve one job at a time, every job can be
allocated either zero or one server’s capacity units. We denote by A := {0, 1} the
action space, i.e., the set of allowable levels of capacity allocation. This action
space is the same for every job k.

Each job k is defined independently of other jobs as the tuple(
Nk, (W a

k)a∈A , (R
a
k)a∈A , (P

a
k)a∈A

)
,

where
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– Nk := {0}∪N ′k is the state space composed of state 0 representing completed
job and of a finite set of possible states that non-completed job k can occupy;

– W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the expected one-period capacity con-

sumption, or work required by job k at state n if action a is decided at the
beginning of a period;

– Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-period reward earned

by job k at state n if action a is decided at the beginning of a period;
– P a

k :=
(
pak,n,m

)
n,m∈Nk

is the job-k stationary one-period state-transition

probability matrix if action a is decided at the beginning of a period, i.e., the
(n,m)-element of the matrix, pak,n,m, is the probability of moving to state m
from state n under action a.

This definition of a restless bandit is the most general definition considered
in the literature on finite-state-space models. In the discrete-time setting for
job scheduling it is, however, natural to restrict the model by the binary-work
assumption W a

k,n := a, i.e., the job consumes all the capacity allocated.
The dynamics of job k is captured by the state process Xk(·) and the action

process ak(·), which correspond to state Xk(t) ∈ Nk and action ak(t) ∈ A at
all time epochs t ∈ T . As a result of deciding action ak(t) in state Xk(t) at
time epoch t, the job k consumes the allocated capacity, earns the reward, and
evolves its state for the time epoch t + 1. To avoid technical difficulties we will
also assume that Rak,n is bounded.

2.2 Idling Option

It is useful to assume that job k = 0 is the static κ-priced job, with a single state
(therefore static) and obtaining reward κ if being allocated to the server, repre-
senting idling of the server. I.e., such a job k is defined by Nk := {0},W a

k,0 :=
a,Rak,0 := κa, pak,0,0 := 1 for all a ∈ A. The role of this job is to cut-off capacity
allocation to jobs whenever they are priced below κ and could represent also an
alternative task, such as battery recharging.

2.3 Unified Optimization Criterion

Before describing the problem we first define an averaging operator that will al-
low us to discuss the infinite-horizon problem under the traditional β-discounted
criterion and the time-average criterion in parallel.

Let the state process X(·), which corresponds to state X(t) at all time epochs
t ∈ T , be adapted to the filtration I := {I(t) : t ∈ T }, where I(t) is the set
of information known at time epoch t. Let ΠI,a be the set of all the policies
that for each time epoch t decide (possibly randomly) action a(t) based only on
the information set I(t) (i.e., non-anticipative). Let Eπτ denote the expectation
over the state process X(·) and over the action process a(·), conditioned on the
information set I(τ) and on policy π.
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Consider any expected one-period quantity Qa(t)X(t) that depends on state X(t)
and on action a(t) at any time epoch t. For any policy π ∈ ΠI,a, any initial time
epoch τ ∈ T , and any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon
β-average quantity1

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (1)

The β-average quantity recovers the traditionally considered quantities in
the following three cases:

– expected time-average quantity when β = 1.
– expected total β-discounted quantity, scaled by constant 1−β, when 0 < β <

1;
– myopic quantity when β = 0.

Thus, when β = 1, the problem is formulated under the time-average crite-
rion, whereas when 0 < β < 1 the problem is considered under the β-discounted
criterion. The remaining case when β = 0 reduces to a static problem and hence
is considered in order to define a myopic policy. In the following we consider the
discount factor β to be fixed and the horizon to be infinite, therefore we omit
them in the notation and write briefly Bπτ

[
Q
a(·)
X(·)

]
.

2.4 Optimization Problem

We now describe in more detail the problem we consider. Let us define the joint
information set as

I(t) := {Xk(0), ak(0), Xk(1), . . . , ak(t− 1), Xk(t) for each k ∈ K},

so that for each k ∈ K the state process Xk(·) is adapted to the joint filtration
I := {I(t) : t ∈ T }. Therefore also the joint state-process X(·) := (Xk(·))k∈K is
adapted to the filtration I. Let ΠI,a be the set of all the policies that for each
time epoch t decide (possibly randomized) joint action a(t) := (ak(t))k∈K based
only on the information set I(t) (i.e., non-anticipative), i.e., ΠI,a is the joint
policy space.

For any discount factor β, the problem is to find a joint policy π maximizing
the objective given by the β-average aggregate reward starting from the initial

1 For definiteness, we consider β0 = 1 for β = 0.
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time epoch 0 subject to the family of sample path allocation constraints, i.e.,

max
π∈ΠI,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(P)

subject to Eπt

[∑
k∈K

ak(t)

]
= 1, for all t ∈ T

Note that the constraint could equivalently be expressed by restricting ΠI,a
to policies that at every t ∈ T satisfy

∑
k∈K

ak(t) = 1 for any possible realization

of I(t).

3 Relaxations and Decomposition of the Problem

Problem (P) is difficult to solve due to the sample path constraint. We will relax
that constraint and show that the resulting problem can be decomposed into
single-job subproblems, which will be addressed in the next section.

3.1 Relaxations

For notational reasons we will use the fact that W ak(t)
k,Xk(t) = ak(t) (due to the

binary-work assumption) and instead of the allocation constraints in (P) we will
consider the sample path consumption constraints

Eπt

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1, for all t ∈ T . (2)

These constraints imply the epoch-t expected consumption constraints (eval-
uated at time epoch 0 instead of t),

Eπ0

[∑
k∈K

W
ak(t)
k,Xk(t)

]
= 1, for all t ∈ T (3)

requiring that the capacity be fully allocated at every time epoch if conditioned
on I(0). Finally, we may require this constraint to hold only on β-average, as
the β-average capacity consumption constraint

Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= Bπ0 [1] . (4)
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Using Bπ0 [1] = 1, we obtain the following relaxation of problem (P),

max
π∈ΠI,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·)

]
(PW)

subject to Bπ0

[∑
k∈K

W
ak(·)
k,Xk(·)

]
= 1.

Such a relaxation was introduced by Whittle in [26] for the multi-armed restless
bandit problem under the time-average criterion, and extended in [16] for the
discounted criterion. The above arguments thus provide a proof of the following
result.

Proposition 1. Problem (PW) is a relaxation of problem (P).

The Whittle relaxation (PW) can be approached by traditional Lagrangian
methods, introducing a real-valued Lagrangian parameter, say ν, to dualize the
constraint, obtaining thus the following Lagrangian relaxation,

max
π∈ΠI,a

Bπ0

[∑
k∈K

R
ak(·)
k,Xk(·) − ν

∑
k∈K

W
ak(·)
k,Xk(·)

]
+ ν. (PL

ν )

The Lagrangian parameter ν can be interpreted as a service cost and we
emphasize that (PL

ν ) is an unconstrained problem. The classic Lagrangian result
says the following:

Proposition 2. For any ν, problem (PL
ν ) is a relaxation of problem (PW), and

further a relaxation of problem (P).

Note finally that by the definition of relaxation, (PL
ν ) for every ν provides an

upper bound for the optimal value of both problem (PW) and problem (P).

3.2 Decomposition into Single-User Subproblems

We now set out to decompose the optimization problem (PL
ν ) as it is standard

for Lagrangian relaxations, considering ν as a parameter. Notice that any joint
policy π ∈ ΠI,a defines a set of single-job policies π̃k for all k ∈ K, where π̃k
is a randomized policy adapted to the joint filtration I and deciding the job-k
action-process ak(·). We will write π̃k ∈ ΠI,ak

. We will therefore study the job-k
subproblem

maxeπk∈ΠI,ak

Beπk
0

[
R
ak(·)
k,Xk(·) − νW

ak(·)
k,Xk(·)

]
. (5)

4 Solution

In this section we will identify a set of optimal policies π̃∗k to (5) for all jobs k,
and using them we will construct a joint policy π feasible though not necessarily
optimal for problem (P).
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4.1 Optimal Solution to Single-User Subproblem

In this section we list some known approaches to the solution of problem (5). We
will be interested in two related structural properties of the problem, which are
optimality of threshold policies and indexability, formally defined below. These
have to be established (often under additional problem-specific assumptions) for
every particular model, since neither is true in general.

Definition 1 (Optimality of Threshold Policies). We say that problem (5)
is optimally solvable by threshold policies, if for every real-valued ν there exists
n ∈ Nk ∪ {−1} such that threshold policy serving in states SNk−n := {m ∈ Nk :
m > n} and not serving otherwise is optimal for problem (5).

We note that for practical purposes it may be interesting to have the above
property hold even for a subset of values of ν (for instance, ν = 0), but we require
it to hold for all real-valued ν in order to show its relationship with indexability.
Further, other types of threshold policies may be relevant in some models, for
instance {m ∈ Nk : m < n}, but such models can be transformed into our setting
by re-labeling the states, so the above definition is of full generality while keeping
the notational complexity low.

Although one could define indices in a wide variety of ad hoc ways based
on the peculiarities of and researcher’s intuition for the model in hand, of our
interest will be the index proposed by Whittle in [26], that provides a unifying
approach to the design of index rules of a remarkably general modeling validity.
Moreover, this index often furnishes a nearly-optimal solution, and typically
recovers the optimal index rule if such exists.

Definition 2 (Indexability). We say that ν-parameter problem (5) is index-
able, if there exist unique values −∞ ≤ νk,n ≤ ∞ for all n ∈ Nk such that the
following holds for every state n ∈ Nk:

1. if νk,n ≥ ν, then it is optimal to serve job k in state n, and
2. if νk,n ≤ ν, then it is optimal not to serve job k in state n.

The function n 7→ νk,n is called the (Whittle) index, and νk,n’s are called the
(Whittle) index values.

We note that this definition generalizes the definitions of indexability in [26]
and in [20] (see also the references therein), since here we allow the index values
to take also values −∞ and∞. An immediate consequence of the two definitions
is formulated in the following theorem.

Theorem 1. If problem (5) is indexable and the index is non-decreasing, i.e.,
νk,0 ≤ νk,1 ≤ · · · ≤ νk,Nk

, then problem (5) is optimally solvable by threshold
policies. Moreover, for a given ν the optimal threshold policy is SNk−n∗ with n∗ ∈
Nk∪{−1} such that νk,n∗ ≤ ν ≤ νk,n∗+1 (defining νk,−1 := −∞, νk,Nk+1 :=∞).

However, for sufficient conditions of indexability (including conditions for the
opposite implication of the above theorem) we will need a more careful analysis,
presented next.
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4.2 Indexability and Index Evaluation under Discounted Criterion

We will next focus on the case β < 1, i.e., the problem under the discounted
criterion. The results presented in this subsection were mostly introduced in
[16, 19] and were also surveyed in [20]. We adapt them as they apply to the
framework of this paper.

Problem (5) is a standard stationary MDP problem, for which it is well known
that there is an optimal policy which is deterministic (i.e., non-randomized),
stationary (i.e., Markovian), and independent of the initial state [22, Chapter
6]. In particular, this implies that there exists an optimal policy based only on
the job-k information sets

Ik(t) := {Xk(0), ak(0), Xk(1), . . . , ak(t− 1), Xk(t)}.

Indeed, policy π̃k ∈ ΠI,ak
that depends on the joint information sets I(t) can

be seen as a randomized policy, since the job-l state-process Xl(·) for l 6= k is
not influenced by the job-k action-process ak(·) prescribed by π̃k.

Therefore, in order to find an optimal policy to problem (5) it is enough to
concentrate on policies πk ∈ ΠIk,ak

that are stationary. Every such policy can be
represented in terms of a serving set S ⊆ Nk, which prescribes to serve whenever
the job is in state n ∈ S and not to serve whenever the job is in state n /∈ S.
Thus, an optimal policy to problem (5) can be obtained by solving

max
S⊆Nk

BS0
[
R
ak(·)
k,Xk(·)

]
− ν BS0

[
W

ak(·)
k,Xk(·)

]
. (6)

Notice that (6) is a parametric bi-objective optimization problem and every
policy (i.e., serving set) S is associated with a bi-dimensional point BS0

[
W

ak(·)
k,Xk(·)

]
,

BS0
[
R
ak(·)
k,Xk(·)

]
. If depicted in a plane with works on the x-axis and rewards on

the y-axis, then the optimal policies to (6) lie on the upper boundary of such
a region, since the parameter ν gives the slope of the supporting hyperplane (a
line in this case) defining an optimum point (i.e., an optimal policy).

We will next analyze scaled quantities BS0
[
R
ak(·)
k,Xk(·)

]
/(1− β), writing briefly

RSk,n if the initial state Xk(0) = n ∈ Nk. Analogously, we will write briefly WSk,n
and we denote the value function under policy S by VSk,n := RSk,n−νWSk,n. These
scaled quantities correspond to the usual quantities under the β-discounted cri-
terion.

Let us denote the optimal value function by V∗k,n, and an optimal stationary
policy by S∗. The Bellman equation for state n ∈ Nk is

V∗k,n = max
a∈A

{
Rak,n − νW a

k,n + β
∑
m∈Nk

pak,n,mV∗k,m

}
.

Let us denote

R〈a,S〉k,n := Rak,n + β
∑
m∈Nk

pak,n,mRSk,m, W〈a,S〉k,n := W a
k,n + β

∑
m∈Nk

pak,n,mWSk,m.
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That is, policy 〈a,S〉 is the policy that employs action a in the initial period
and then proceeds according to S. We will also consider the rates

νSk,n :=
R〈1,S〉k,n − R〈0,S〉k,n

W〈1,S〉k,n −W〈0,S〉k,n

. (7)

The following theorem characterizes the index values if problem is indexable.

Theorem 2. If problem (5) is indexable, then either νk,n ∈ {−∞,∞}, or there
is a policy S such that νk,n = νSk,n.

Proof. If index value νk,n for n ∈ Nk is finite, then both serving and not serving
is optimal in state n if ν = νk,n. The Bellman equation implies

R0
k,n − νk,nW 0

k,n + β
∑
m∈Nk

p0
k,n,mVS

∗

k,m = R1
k,n − νk,nW 1

k,n + β
∑
m∈Nk

p1
k,n,mVS

∗

k,m

and using VS∗k,n := RS∗k,n − νWS∗k,n we obtain

R〈0,S
∗〉

k,n − νk,nW〈0,S
∗〉

k,n = R〈1,S
∗〉

k,n − νk,nW〈1,S
∗〉

k,n ,

If index value νk,n for n ∈ Nk is finite, then W〈1,S
∗〉

k,n −W〈0,S
∗〉

k,n 6= 0 (otherwise
both serving and not serving would be optimal for all values of ν, so νk,n would
not be unique), therefore we have νk,n = νS

∗

k,n. ut

Next we present two definitions that, as we will see later, lead to a more
specific characterization of the index values, which is of great practical inter-
est for deriving closed-form formulae or a fast algorithmic evaluation of index
values. The first definition arises from a parametric linear programming (LP) ap-
proach in [19], and the second one from a polyhedral approach based on partial
conservation laws (PCL) in [16].

Definition 3 (LP Conditions for Indexability). We say that problem (5)
is LP-indexable with respect to threshold policies SNk−n for n ∈ Nk ∪ {−1}, if
the following conditions hold:

1. W〈1,∅〉k,n −W〈0,∅〉k,n > 0 and W〈1,N〉k,n −W〈0,N〉k,n > 0 for all n ∈ Nk;

2. W〈1,SNk−n〉
k,n −W〈0,SNk−n〉

k,n > 0 and W〈1,SNk−n〉
k,n+1 −W〈0,SNk−n〉

k,n+1 > 0 for each
n ∈ Nk \ {Nk};

3. problem (5) is optimally solvable by threshold policies.

Definition 4 (PCL Conditions for Indexability). We say that problem (5)
is PCL-indexable with respect to threshold policies SNk−n for n ∈ Nk ∪ {−1},
if the following conditions hold:

1. W〈1,SNk−n〉
k,m −W〈0,SNk−n〉

k,m > 0 for each n ∈ Nk ∪ {−1}} and for all m ∈ Nk;

2. ν
SNk−0

k,0 ≤ νSNk−1

k,1 ≤ · · · ≤ νSNk−Nk

k,Nk
.
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The relationship between these two sets of conditions and indexability is
given next.

Theorem 3.

1. If problem (5) is PCL-indexable, then it is LP-indexable.
2. If problem (5) is LP-indexable, then it is indexable, the index is non-decreasing,

and the index values satisfy νk,n = ν
SNk−n

k,n = ν
SNk−(n−1)

k,n .

This theorem shows under what conditions optimality of threshold policies
implies indexability. We also note that it can be shown that if a job is indexable
with finite index values, then it is LP-indexable with respect to some type of
threshold policies (not necessarily of type SNk−n), hence it provides a sufficient
and necessary condition for indexability in this general sense (under finite index
values). See [20] for a comprehensive survey on this topic.

4.3 Indexability and Index Evaluation under Time-Average
Criterion

It was shown in [17, Section 6.5] that under suitable ergodicity conditions index-
ability of the problem under the discounted criterion extends to the time-average
criterion, and the index values for the time-average criterion can be computed
by simply taking the limit β → 1 of the index values for the discounted cri-
terion. However, the jobs we consider in this paper are typically not ergodic
since state 0 (representing completed job) would typically be absorbing. Such
an approach is therefore not theoretically validated for non-ergodic jobs, but the
modeling experience (for instance, index values obtained from fluid limit models
or by the interchange argument) and the exceptionally good performance of the
undiscounted indices in computational experiments suggest its plausibility and
relevance.

4.4 Some Useful Results for Establishing Indexability

The results we have presented so far indicate a close relationship (but not equiva-
lence) between optimality of threshold policies and indexability. While threshold
policies are important in single-job problems (such as (5)), indexability is useful
for designing index rules for multi-job problems (such as (P)). Moreover, the
above theorems provide a strong playground for designing efficient algorithms
for calculation of both index values and optimal thresholds.

Typically, much of the analysis must be done for each specific model, either
studying the Bellman equation and/or work and reward measures defined above
in order to establish the structural properties. Usefulness and importance of
LP-indexability is elevated by availability of results in a wide variety of models
showing optimality of threshold policies and also by existence of models that are
indexable but not PCL-indexable (at this moment two such models are known:
classic bandits with switching delays, as remarked in [20], and jobs with time-
varying service rate analyzed in [4]). On the other hand, PCL-indexability may
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be a good starting point for models for which no structural results are known,
since it may lead the researcher to identify and understand (rather general)
conditions under which index monotonicity holds.

Next we list some results we have found useful in analysis of specific models.
The first two lemmas are simple exercises, but they are of general validity within
the framework of this paper.

Lemma 1. Condition 1. of PCL-indexability implies conditions 1. and 2. of
LP-indexability.

Lemma 2. Condition 1. of LP-indexability is satisfied under the binary-work
assumption.

The following result is an adaptation to our setting of the fact that classic
bandits are indexable, which was in fact established by introducing the Gittins
index [11, 9], and later elucidated by [26] in the framework of restless bandits.
Note that its validity under the time-average case was established only under
the ergodicity assumption.

Lemma 3 ([26, Proposition 4]). If P 0
k = I (where I is an identity matrix),

then the job is indexable.

If the job has only two states, then indexability is guaranteed by the next
lemma. Again, its validity under the time-average case was established only
under the ergodicity assumption.

Lemma 4 ([16, Section 6.1]). If Nk = {0, 1}, then the job is indexable.

The following result implies that the myopic index (obtained when β = 0)
always exists, which may be of practical interest if the discounted and the time-
average index characterization is of prohibitive complexity that impedes its im-
plementation, or if the problem is not indexable for the desired values of the
discount factor.

Lemma 5 ([16, Corollary 5]). If the discount factor β is small enough, then
any job is indexable.

Finally, in order to prove the monotonicity required in condition 2. of PCL-
indexability, in some models it is easier to relate the rates νSk,n’s under the same
policy, and then to apply the following claim.

Lemma 6 ([17, Proposition 6.4(c)]). If condition 1. of PCL-indexability holds,
then ν

SNk−n

k,n ≤ νSNk−(n+1)

k,n+1 is equivalent to ν
SNk−n

k,n ≤ νSNk−n

k,n+1 .
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4.5 Optimal Solution to Relaxations

The vector of policies π∗ := (π̃∗k)k∈K identified by the indices of all the jobs is
formed by mutually independent single-job optimal policies, therefore this vector
is an optimal policy to the Lagrangian relaxation (PL

ν ).
Since a finite-state MDP admits an LP formulation using the standard state-

action frequency variables (as observed in [16]), strong LP duality implies that
there exists ν∗ (possibly depending on the joint initial state) such that the La-
grangian relaxation (PL

ν∗) achieves the same objective value as (PW). Further, if
ν∗ 6= 0, then LP complementary slackness ensures that the β-average capacity
constraint (4) is satisfied by any optimal solution to (PLν∗).

4.6 Solution to Original Problem

Since the original problem requires to allocate the server to exactly one option
(one of the jobs or idling), then at any time epoch t the index rule prescribes to
allocate the server to the job k∗(t) with the highest actual index value, i.e.,

k∗(t) := arg max
k∈K

νk,Xk(t).

Under β < 1, the ties are resolved arbitrarily.
Under the time-average criterion (i.e., β = 1), we will consider the tie-

breaking rule based on the second term of the Laurent expansion of the (first-
order) index value νk,n. This tie-breaking may itself have ties; these are resolved
arbitrarily.

Under the assumption frozen if not served, i.e., P 0
k = I for all k ∈ K (where

I is an identity matrix), the above index rules were shown optimal. [23] first
considered two-state jobs in the classic job scheduling problem and obtained the
cµ-rule, which was later extended to the multi-armed bandit problem under the
discounted [11] and the time-average criterion [15, 14], respectively.

If this assumption does not hold, then the above rules are not optimal in
general, but are typically reported a nearly-optimal performance [20]. In fact,
already Whittle [26] conjectured a form of asymptotic optimality of the (first-
order) index rule, which was proved in [24] for symmetric jobs under certain
technical conditions. It has been observed in computational experiments for sev-
eral models that under the time-average criterion the implementation of the
second-order index as a tie-breaking rule when the (first-order) index values of
different jobs are equal is crucial and may significantly improve system’s perfor-
mance (in comparison to random tie-breaking). For a particular restless bandit
problem in continuous time, the tie-breaking based on the Maclaurin expansion
was first proposed in [18].

5 Particular Models

In this section we present several models that fall within the framework of section
2 and can be solved by the approach described in section 4. First we give a
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detailed account of the classic job scheduling problem showing that the Whittle
index rule is equivalent to the cµ-rule, known to be optimal. Then we survey
recently obtained results on extensions of the classic job scheduling problem that
give rise to more complex models, for which, however, the Whittle index rule was
computationally confirmed to perform exceptionally well, although not optimal
anymore.

It is interesting that the cµ-rule is optimal also when arrivals of new jobs are
allowed in the classic job scheduling problem, and for arbitrary arrival processes
[7]. One may therefore be prompted to evaluate the performance of the Whit-
tle index rules in more complex models with arrivals. It was actually found in
computational experiments for some models (detailed below) that also in such
systems its performance is nearly-optimal and typically outperforming solutions
derived by other methods or proposed in an ad hoc way.

5.1 Classic Job Scheduling

Consider K ≥ 1 jobs waiting for service at a server that can serve at most one job
at a time. The server is preemptive (i.e., the service of a job can be interrupted
at any time epoch even if not completed), so all its capacity is available at
every time epoch. We have the action space A := {0, 1}, where action 0 means
allocating zero capacity (i.e., “not serving”), and action 1 means allocating full
capacity (i.e., “serving”).

Let µk > 0 be the probability that the service of job k is completed within
one period (if served) and let ck > 0 be the holding cost per period incurred for
job k waiting. The server can also be left idle, denoting this option by k = 0, or
allocated to a customer with a completed job. Thus, there are K + 1 competing
options and the task is to decide to which option the server should be allocated.
The joint goal is to minimize the aggregate expected holding cost over an infinite
horizon.

Thus, the idling option k = 0 is defined as the static 0-priced competitor and
we define job 1 ≤ k ≤ K with

– state space Nk := {0, 1};
– expected one-period work

W 1
k,0 := 1, W 1

k,1 := 1,

W 0
k,0 := 0, W 0

k,1 := 0;

– expected one-period reward, i.e., the negative of the holding cost expected
to be paid at the next time epoch,

R1
k,0 := 0, R1

k,1 := −ck · (1− µk)− 0 · µk,
R0
k,0 := 0, R0

k,1 := −ck;
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– one-period state-transition probability matrices

P 1
k :=

( 0 1

0 1 0
1 µk 1− µk

)
, P 0

k :=

( 0 1

0 1 0
1 0 1

)
.

Since two-state jobs are indexable (see the previous section), the only task
to do is to evaluate the index. We will do it by showing that this problem is LP-
indexable. First, it is not a difficult exercise to establish conditions 1. and 2., and
then condition 3. holds because (i) if ν > 0, then it is not optimal to serve the job
in state 0, and (ii) if ν ≤ 0, then serving in both states is optimal. Therefore, we
can use that νk,n = ν

SNk−n

k,n , which can be obtained in a straightforward manner
giving

νk,1 =
ckµk
1− β

, νk,0 = 0.

Under the myopic criterion, we have νk,1 = ckµk and νk,0 = 0. Under the time-
average criterion, taking the limit β → 1 gives νk,1 = ∞, and the second-order
(tie-breaking) index for state 1 is ckµk, while it remains zero for state 0. For
idling option k = 0 we can obtain ν0,0 = 0.

Thus, under the myopic criterion, the discounted criterion, and the time-
average criterion, the Whittle index rule is equivalent to serving the uncompleted
job with highest value ckµk, which is known to be optimal both without arrivals
[23] and with arbitrary arrival processes [7].

5.2 Job Scheduling with Abandonment

Suppose now that jobs can abandon the system. Each job k abandons with
probability θk ≥ 0 within one period if it is not served and we have to pay aban-
donment penalty dk if this happens. The joint goal is to minimize the aggregate
expected holding cost and abandonment penalties over an infinite horizon.

Such jobs can be defined as in the classic problem, except for the following
modifications

– expected one-period reward, i.e., the negative of the holding cost and aban-
donment penalties expected to be paid at the next time epoch,

R1
k,0 := 0, R1

k,1 := −ck · (1− µk)− 0 · µk,
R0
k,0 := 0, R0

k,1 := −ck · (1− θk)− dk · θk;

– one-period state-transition probability matrices

P 1
k :=

( 0 1

0 1 0
1 µk 1− µk

)
, P 0

k :=

( 0 1

0 1 0
1 θk 1− θk

)
.
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It was announced in [6] that the Whittle index values under 0 ≤ β ≤ 1 for
this problem are

νk,1 =
ck(µk − θk) + dkθk(1− β + βµk)

1− β + βθk
, νk,0 = 0.

This index recovers the cµ index if the job has no abandonment (θk = 0).
We remark that optimality of threshold policies as defined in the previous

section is only accomplished if the numerator ck(µk−θk)+dkθk(1−β+βµk) ≥ 0,
which assures the monotonicity of the index values νk,0 ≤ νk,1. Otherwise, the
index value of state 1 is negative, and another type of threshold policies ({m ∈
Nk : m < n}) becomes optimal.

The above index value has a strong impact not only on the order in which
jobs are to be served, but also on the ultimate decision whether jobs should ever
be served. Since idling is always available as an option and its index value is
0, no job with negative index value for state 1 (i.e., negative numerator) will
be served, and so such jobs will eventually leave the system by abandoning.
Intuitively, this is beneficial for the system because such a job is more likely
to leave by abandoning than by being completed (µk < θk) and moreover the
abandonment penalty is not too high (relatively to its other parameters).

Under the time-average criterion, any job without abandonment receives ab-
solute priority (νk,1 = ∞) over any job with a positive probability of abandon-
ment. This may seem counterintuitive, because one could believe that it is worth
to prefer jobs that are likely to abandon, so that the abandonment penalty is
avoided. But notice that if a not abandoning job remains uncompleted forever,
then it would accrue (infinite) holding costs that would surely exceed the (finite)
abandonment penalties of all the other jobs, and the index rule assures that this
cannot happen. Moreover, among uncompleted and not abandoning jobs the rule
again chooses according to the cµ-rule.

The scheduling problem with abandonment, in which arrivals of jobs of mul-
tiple classes are allowed, is considered intractable, and optimal policy is known
only under certain extreme conditions in two-class problems [8]. Interestingly,
extensive computational experiments reported in [6] for the two-class problem
with Poisson arrivals indicate near-optimality of the above index rule and its
systematic dominance over the cµ-rule (which ignores abandonments), and over
an alternative cµ/θ-rule obtained from a fluid limit model in [3] and proved to
be asymptotically optimal in a multi-server system. The results further show
that the index rule is often equivalent or outperforming the policy obtained by
optimal ordering of two classes in the system with a single job of each class
(which is, however, a policy not enjoying index values separable across classes,
as it depends on the other job’s service rate, and therefore is not applicable in
systems with more than two classes).

5.3 Job Scheduling with Time-Varying Service Rates

An important job scheduling problem arises in the context of wireless data net-
works, where available service rate varies in time due to fading. We assume that
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such varying occurs in an i.i.d. manner between consecutive periods and indepen-
dently for different jobs, which represents the situation in which the steady-state
distribution of the service rate of each job (user) is known. We further suppose
that the available service rate for each job becomes known at the beginning of
every period so that it can be taken into account for the decision. This prob-
lem is known as the channel-aware flow-level scheduling of the downlink wireless
data network. Thus, several users are waiting to download finite amounts of
data available at the base station, which is in charge of deciding at every period
(typically of a very short duration) to which user its data should be sent.

One can then expect that the index rule would no longer be given by static
ordering of waiting jobs, but it would dynamically adapt to the actual available
service rate. It is suggested by some wireless network standards that the service
should be given to the job whose ratio of its actual service rate to its average
obtained throughput is highest. Thus, allocation is proposed to be done oppor-
tunistically, trying to exploit when the user’s available service rate is good with
respect to its own statistical behavior. One may expect that due to the very
short period durations, the users would not perceive any changes in their down-
loading rate, while the system may improve its performance with respect to a
round-robin scheduling. Performance evaluation of such a policy, known as the
Proportionally Fair scheduler, has attracted a considerable research attention in
the recent years, especially when approximated by its Markovian variant called
the Relatively Best (RB) scheduler, in which the service is given to the users
whose actual service rate divided by the mean service rate is highest.

As shown in [4], this problem fits the framework of this paper, and can be
naturally generalized to account for holding costs. Let ck > 0 be the holding cost
per period incurred for user k waiting while the job is not completed. Suppose
that job k can obtain service rates associated to channel conditions defined by
a non-empty finite set N ′k := {1, 2, . . . , Nk} so that condition n ∈ N ′k happens
in a certain period with probability qk,n, having

∑
n∈N ′k

qk,n = 1. Further, under

channel condition n, the probability that the service of job k is completed within
one period if being transmitted is µk,n. Without loss of generality we assume
that the channel condition labels are ordered so that 0 ≤ µk,1 ≤ µk,2 ≤ · · · ≤
µk,Nk

≤ 1. To ensure that eventually all users leave the system we assume that
for every user k, qk,nµk,n 6= 0 for some channel condition n ∈ N ′k.

Each job/channel/user k is defined independently of other jobs/channels/users
with

– state spaceNk := {0}∪N ′k, where state 0 represents a job already completed,
and N ′k := {1, . . . , Nk} is the set of possible service rates for job k provided
the job is uncompleted;

– expected one-period work for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;
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– expected one-period reward for any n ∈ N ′k,

R1
k,0 := 0, R1

k,n := −ck · (1− µk,n)− 0 · µk,n,
R0
k,0 := 0, R0

k,n := −ck;

– one-period state-transition probability matrix, denoting by µ̃k,n := 1−µk,n,

P 1
k :=



0 1 . . . Nk

0 1 0 0 0
1 µk,1 µ̃k,1qk,1 . . . µ̃k,1qk,Nk

2 µk,2 µ̃k,2qk,1 . . . µ̃k,2qk,Nk

...
...

...
. . .

...
Nk µk,Nk

µ̃k,Nk
qk,1 . . . µ̃k,Nk

qk,Nk


,

P 0
k :=



0 1 2 . . . Nk

0 1 0 0 0 0
1 0 qk,1 qk,2 . . . qk,Nk

2 0 qk,1 qk,2 . . . qk,Nk

... 0 qk,1 qk,2
. . . qk,Nk

Nk 0 qk,1 qk,2 . . . qk,Nk


.

We note that PCL-indexability does not hold for these jobs unless certain
restrictive assumptions are made. However, [4] showed that these jobs are LP-
indexable and derived the Whittle index under 0 ≤ β ≤ 1 for channel condition
n ∈ N ′k of user k,

νk,n =
ckµk,n

(1− β) + β
∑
m>n

qk,m(µk,m − µk,n)
, νk,0 = 0.

Special attention was given to the rule under the time-average criterion, when
the problem under ck = 1 corresponds to both the minimization of the mean
number of users in the system and the minimization of the mean waiting time.
In this case the rule was named the Potential Improvement (PI) rule, as the
index relates the available service to the expected potential improvement of the
service rate,

νPI
k,n =

ckµk,n∑
m>n

qk,m(µk,m − µk,n)
for n 6= Nk, νPI

k,Nk
=∞,

and the tie-breaking quantity is 0 for n 6= Nk, and ckµk,Nk
. Thus, PI rule results

in giving absolute priority to users whose actual service rate is the best possible
over all the users with a non-best service rate. Again, among the users with their
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best service rate we select according to the cµ-rule. When no channel achieves its
best quality, PI allocates service to the user with the highest ratio of the actual
service rate with respect to the expected potential improvement of the service
rate. The absolute priority to the users with their best service rates is the most
distinguishing property of PI from the RB rule.

Moreover, it was shown that a sufficient condition for a policy to achieve the
maximum stability region in systems with arrivals is that any user with its best
service rate will be preferred over any user with a non-best service rate (see, for
example [2, 5]), which is satisfied by the PI rule. It was also noted that no other
known rule in its full generality achieves the maximum stability region and so
each of them fails to be stable in some stabilizable systems. Finally, simulations
of a two-class system with Bernoulli arrivals reported in [4] indicate that PI is
superior or comparable to the best of the existing scheduling rules under several
scenarios, and suggest even a dominance in stochastic sense.

5.4 Job Scheduling with Time-Varying Service and Abandonment
Rates

It is not difficult to realize that it is possible to model in our framework also
the system with both time-varying service rates and time-varying abandonment
that happens with probability θk,n in state n ∈ N ′k. Then, the Whittle index in
state n ∈ N ′k is

νk,n =

ck(µk,n − θk,n) + dkµk,nβ
X
m≤n

qk,mθk,m + dkθk,n

 
1− β + β

X
m>n

qk,mµk,m

!
1− β + βθk,n + β

X
m>n

qk,m(µk,m − µk,n) + β
X
m≤n

qk,m(θk,m − θk,n)
.

This rule can be of a great practical interest in wireless systems since cur-
rently all the schedulers ignore possible user abandonment, which may lead to
wasted resources by allocating server to a user who leaves before its download-
ing is completed. Further, fully heterogeneous systems, say, including some job
classes that are time-varying (but not abandoning) and other that do abandon
(but are not time-varying) can be addressed using the above index rule. How-
ever, additional assumptions are needed for establishing indexability of such jobs,
which is a part of the author’s work in progress to be reported in future work.

5.5 Scheduling of Perishable Jobs

We finally remark that the framework of this paper covers also the case of jobs
perishable at a fixed deadline time epoch, as studied, for instance, in [13, Chapter
5] in the problem of optimal dynamic promotion of perishable products. That
work established PCL-indexability and derived the Whittle index for several
variants of perishable jobs.
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6 Open Problems

The palette of job scheduling problems arising in applications is extremely rich
and in this section we sample only some of them, strongly influenced by the
author’s research interests, that we believe could be of interest to analyze and
design the Whittle index. First, an important extension is to consider a non-
Markovian service rate, which can be modeled in our MDP setting by defining
the job state as the amount of data required (if the job length is known in
advance) or as the amount of service obtained (if the job length is random) and
properly defining the transition probability matrices. The result is known for the
classic (not changing state when not served) case in continuous state space to
be achieved by the Gittins index [10, 1], but the extension to abandonment or
time-varying service rate is still open.

Second, important for the applications but often scarce in theoretical work
is the notion of finite buffers. For instance, suppose in the wireless system that
each user’s data to be transmitted is received by the base station at a certain
rate and buffered, and whenever the buffer is full, the arriving data is dropped
and the user is lost or has to start the transmission anew. One can expect that
this setting requires an opportunistic solution with some level of load balancing.
Such extensions, however, lead to multidimensional state spaces and are therefore
more analytically demanding.

Third, different variants of the wireless system studied above are used in the
real-world systems. In some of them, the actual service rate is only known at
the end of the period, or is observed after a random delay. Moreover, the service
rate may not evolve in an i.i.d manner, but with a certain dependence on the
history or on the user’s mobility path.

Finally, several theoretical issues remain open, such as validity of the first-
and second-order index under the time-average criterion and rigorous justifica-
tion for the use of the Whittle index rule and its performance evaluation in
systems with arrivals (see [13, Chapter 6]) or with multiple servers. Regarding
the non-equivalence between optimality of threshold policies and indexability, it
would be interesting to find an example of a job solvable by threshold policies
but not indexable. To the best of author’s knowledge, no such job is known.
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