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Neoclassical Economics

• Standard problem of neoclassical economics:

. maximize aggregate utility w.r.t. budget constraint

• Standard assumptions (among others):

. goods/services are continuously-divisible

. budget (money) is continuously-divisible

. goods/services do not change over time

• Standard solution:

. marginal utility per unit of money spent must be

equal for each good
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Motivation

• Resource allocation when the assumptions do not hold:

. telecommunications (routing, congestion control)

. robotics (tracking, ranking)

. marketing (assortment, pricing)

. labor economics (job search)

. clinical trials (treatment selection)

• Can we still apply marginalism ideas?

• What policies are optimal?

• What policies are simple to implement?
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Talk Outline

• Resource allocation problem

• Framework

• Approach and adaptive greedy rules

• Known results

• Challenges
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Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There are a number of independent competitors

• Constraint: resource capacity at every moment

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This is a model of learning by doing!
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Questions to Answer

• [Economic] For a given joint goal, is it possible to

define dynamic quantities for each competitor that can

be interpreted as prices? And if yes,

• [Algorithmic] How to calculate such prices quickly?

• [Mathematical] Under what conditions is there a greedy

rule that achieves optimal resource capacity allocation?

• [Experimental] If greedy rules are not optimal, how

close to optimality do they come? And how do they

compare to alternative rules?
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Static RAP: Knapsack Problem
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Stochastic Programming Framework

• Stochastic programming = Markov Decision Processes

• Discrete time model (t = 0, 1, 2, . . . )

• Competitor k ∈ K is defined by

. state space Nk, action space A

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided
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Example: Job Sequencing Problem

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

. ck = cost of waiting for jobs k

. µk = service rate for jobs k

• Nk := {‘completed’, ‘waiting’}, Ak := {‘serve’, ‘wait’}

• expected one-period capacity consumption

W ‘serve’
k,‘completed’ := 1, W ‘serve’

k,‘waiting’ := 1,

W ‘wait’
k,‘completed’ := 0, W ‘wait’

k,‘waiting’ := 0;
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Example: Job Sequencing Problem

• expected one-period reward

R‘serve’
k,‘completed’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed’ := 0, R‘wait’

k,‘waiting’ := −ck;

• one-period transition probability matrices

P ‘serve’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk

,

P ‘wait’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1

.
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) ≤W, for all t = 0, 1, 2, . . .

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Whittle’s Relaxation

• Fill the capacity in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]

subject to
∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
≤

∞∑
t=0

βtW

• Provides an upper bound for RAP
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Lagrangian Relaxation

• Pay cost λ for using the capacity

. the constraint is moved into the objective

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− λ

∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]

• Also provides an upper bound for RAP

• Decomposes due to competitor’s independence into

single-competitor parametric subproblems

. solved by identifying the efficiency frontier
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Dynamic Prices

• We will assign each competitor a dynamic price

• They arise in the solution of the parametric subproblem

. optimal policy: use capacity iff price lower than λ

• Prices are values of λ when optimal solution changes

• They define an indifference curve

• However, such prices may not exist!

• Price computation:

. in general, by parametric simplex method

. after math, sometimes obtained in a closed form
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Adaptive Greedy Rules

• We are concerned with the following rule

. at each moment be greedy:

prefer competitors with higher current prices

• It is adaptive because the prices are dynamic

• Experiments and simulations suggest that it gives a

nearly-optimal solution to RAP

• In some simple problems, it is optimal
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Optimality of Adaptive Greedy Rules

• Often in problems with symmetric competitors

• E.g.: in routing to parallel queues, route to:

. the Shortest Queue (if min. delays)

• E.g.: sequencing of customers to service:

. the Shortest Service Time (if min. waiting time)

. the Least Empty Buffer Space (if min. losses)

. the Shortest Queue (if min. delays)

• These values are the “dynamic prices”



16

Optimality of Adaptive Greedy Rules

• Also in asymmetric problems with simple dynamics

• cµ-rule (Cox & Smith ’61) for job sequencing

. assigning priority to the job k with largest ckµk

• Gittins index rule (’72) for multi-armed bandit problem

. big surprise: many people believed it was insolvable

• Klimov index rule (’74) for M/G/1 model with

feedback
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Priority Rules in More Complex Problems

• Telecommunications

. several variants of routing to parallel queues

. congestion control for Internet connections

. time sharing in 3G wireless systems

• Marketing

. dynamic assortment for “fast-fashion” companies

. dynamic promotion for supermarkets
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Example: Performance of a Priority Rule
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Challenges

• Modeling

. ...if modeling were as easy as mathematics...

• Proving (near-)optimality of greedy rules

. asymptotic optimality proved for symmetric case, as

number of competitors and resource capacity grow

• Incorporation of risk aversion, etc.
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Thank you for your attention
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Resource Allocation in Telecommunications

• Congestion control

. maximize throughput (choose preferred flows)

• Routing

. minimize packet losses (choose preferred paths)

• Admission control

. minimize delays (choose preferred packets)

• Fairness

. maximize users’ utilities (choose preferred users)
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Resource Allocation in Robotics

• Arises within reinforcement learning

• Behavior coordination & navigation in animats

. maximize utility (choose preferred behavior)

• Ranking in web search robots

. minimize searching time (choose preferred document)

• Multi-target tracking & environment mapping

. maximize map correctness (choose preferred object)
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Problems in Telecommunications

• Fall into resource allocation problems

• Advantages:

. decentralized control

. natural for creating priority tables

. dynamic prices yield structural results

. nearly-optimal (optimal in expectation)

• Disadvantages

. prices may not exist
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Problems in Telecommunications

• However, dynamic prices are scarcely used

. Niño-Mora ’02, ’06

. Raissi-Dehkordi & Baras ’02

. Goyal et al. ’06

. Jacko ’09

• Optimality of ad-hoc priority rules is usually analyzed

. Glazebrook et al. ’04, ’04, ’07

. Ehsan & Liu ’04, ’05, ’06, ’07
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Problems in Telecommunications

• Niño-Mora ’02:

. queues with finite buffers

. consider a rejection cost as the wage

. assume concave nondecreasing service rates

. assume convex nondecreasing holding costs

. price-based characterization of optimal threshold

policy

. as rejection cost grows, start rejecting customers

under longer queue

. priority rule heuristic for routing to parallel queues
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Problems in Telecommunications

• Niño-Mora ’06:

. queues with finite buffers

. analyzes loss-sensitive and delay-sensitive queues

. rejecting cost vs. discounted holding-forever cost

. loss-sensitive: fewest-empty-buffer-spaces rule

. delay-sensitive: shorter-queue rule

. both converge to cµ rule for infinite buffers

. throughput maximization is special case
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Problems in Telecommunications

• Goyal, Kumar & Sharma ’06:

. transmissions over polled multiaccess fading channel

. voice � streaming media � files

. infinite buffers, delayed information

. poll-and-response system

• Raissi-Dehkordi & Baras ’02:

. pulling broadcast scheduling (teletext with feedback)

. minimize weighted average waiting time
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Problems in Telecommunications

• Glazebrook et al. ’04:

. server allocation to impatient (perishable) tasks

. reduces to Gittins indices in a special case

• Glazebrook & Kirkbride ’04:

. routing of background jobs in distributed PC systems

. ad-hoc prices (static policy improvement)

• Glazebrook & Kirkbride ’07:

. routing to heterogeneous unreliable servers

. ad-hoc prices (DP policy improvement)
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Problems in Telecommunications

• Ehsan & Liu ’04, ’05, ’06, ’07:

. wireless server allocation with delays

. minimize expected holding costs

. ad-hoc prices (myopic)

. give sufficient optimality conditions (special cases)


