Adaptive Greedy Rules Based on Dynamic Prices

Peter Jacko*

BEM June 26, 2010

*Basque Center for Applied Mathematics, Spain

Neoclassical Economics

- Standard problem of neoclassical economics:
 maximize aggregate utility w.r.t. budget constraint
- Standard assumptions (among others):
 - goods/services are continuously-divisible
 budget (money) is continuously-divisible
 goods/services do not change over time
- Standard solution:
 - marginal utility per unit of money spent must be equal for each good

Motivation

• Resource allocation when the assumptions do not hold:

- telecommunications (routing, congestion control)
- robotics (tracking, ranking)
- > marketing (assortment, pricing)
- Iabor economics (job search)
- > clinical trials (treatment selection)
- Can we still apply marginalism ideas?
- What policies are optimal?
- What policies are simple to implement?

Talk Outline

- Resource allocation problem
- Framework
- Approach and adaptive greedy rules
- Known results
- Challenges

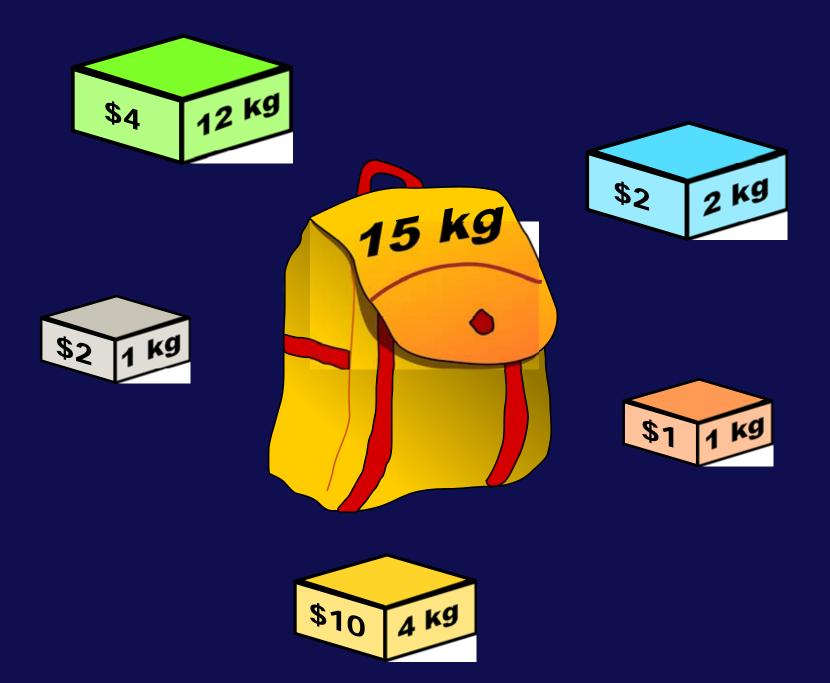
Resource Allocation Problem (RAP)

- Stochastic and dynamic
- There are a number of independent competitors
- Constraint: resource capacity at every moment
- Objective: maximize expected "reward"
- Captures the exploitation vs. exploration trade-off
 always exploiting (being myopic) is not optimal
 always exploring (being utopic) is not optimal
- This is a model of learning by doing!

Questions to Answer

- [Economic] For a given joint goal, is it possible to define dynamic quantities for each competitor that can be interpreted as prices? And if yes,
- [Algorithmic] How to calculate such prices quickly?
- [Mathematical] Under what conditions is there a greedy rule that achieves optimal resource capacity allocation?
- [Experimental] If greedy rules are not optimal, how close to optimality do they come? And how do they compare to alternative rules?

Static RAP: Knapsack Problem



Stochastic Programming Framework

- Stochastic programming = Markov Decision Processes
- Discrete time model (t = 0, 1, 2, ...)
- Competitor $k \in \mathcal{K}$ is defined by
 - \triangleright state space \mathcal{N}_k , action space \mathcal{A}
 - \triangleright expected one-period capacity consumption $oldsymbol{W}_k^a$
 - \triangleright expected one-period reward $oldsymbol{R}_k^a$
 - \triangleright one-period transition probability matrix $oldsymbol{P}_k^a$
- State process $X_k(t) \in \mathcal{N}_k$
- Action process $a_k(t) \in \mathcal{A}$ to be decided

Example: Job Sequencing Problem

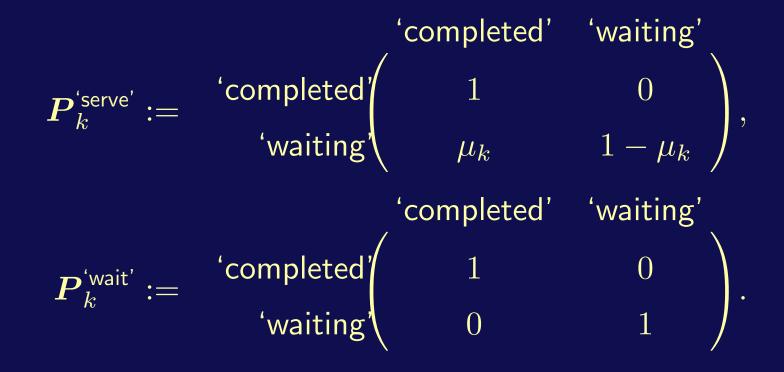
- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
 - $\triangleright c_k = \text{cost of waiting for jobs } k$
 - $\triangleright \mu_k =$ service rate for jobs k
- $\mathcal{N}_k := \{\text{`completed', `waiting'}, \mathcal{A}_k := \{\text{`serve', `wait'}\}$
- expected one-period capacity consumption
 - $$\begin{split} W^{\text{`serve'}}_{k,\text{`completed'}} &:= 1, & W^{\text{`serve'}}_{k,\text{`waiting'}} &:= 1, \\ W^{\text{`wait'}}_{k,\text{`completed'}} &:= 0, & W^{\text{`wait'}}_{k,\text{`waiting'}} &:= 0; \end{split}$$

Example: Job Sequencing Problem

expected one-period reward

$$\begin{array}{ll} R_{k,\text{`completed'}}^{\text{`serve'}} := 0, & R_{k,\text{`waiting'}}^{\text{`serve'}} := -c_k(1 - \mu_k), \\ R_{k,\text{`completed'}}^{\text{`wait'}} := 0, & R_{k,\text{`waiting'}}^{\text{`wait'}} := -c_k; \end{array}$$

one-period transition probability matrices



Resource Allocation Problem

• Formulation under the β -discounted criterion:

$$\begin{split} \max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k,X_{k}(t)}^{a_{k}(t)} \right] \\ \text{subject to} \quad \sum_{k \in \mathcal{K}} W_{k,X_{k}(t)}^{a_{k}(t)} \leq W, \quad \text{ for all } t = 0, 1, 2, \dots \end{split}$$

• This problem is PSPACE-hard

intractable to solve exactly by Dynamic Programming
 instead, we relax and decompose the problem

Whittle's Relaxation

• Fill the capacity in expectation

infinite number of constraints is replaced by one
 sort of perfect market assumption

$$\begin{split} \max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)} \right] \\ \text{subject to} \quad \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} W_{k, X_{k}(t)}^{a_{k}(t)} \right] \leq \sum_{t=0}^{\infty} \beta^{t} W \end{split}$$

• Provides an upper bound for RAP

Lagrangian Relaxation

• Pay cost λ for using the capacity

▷ the constraint is moved into the objective

$$\max_{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} R_{k,X_{k}(t)}^{a_{k}(t)} \right] - \frac{\lambda}{k \in \mathcal{K}} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} W_{k,X_{k}(t)}^{a_{k}(t)} \right]$$

Also provides an upper bound for RAP

 Decomposes due to competitor's independence into single-competitor parametric subproblems

solved by identifying the efficiency frontier

Dynamic Prices

- We will assign each competitor a dynamic price
- They arise in the solution of the parametric subproblem
 ▷ optimal policy: use capacity iff price lower than λ
- Prices are values of λ when optimal solution changes
- They define an indifference curve
- However, such prices may not exist!
- Price computation:
 - ▷ in general, by parametric simplex method
 - ▷ after math, sometimes obtained in a closed form

Adaptive Greedy Rules

- We are concerned with the following rule
 - at each moment be greedy: prefer competitors with higher current prices
- It is adaptive because the prices are dynamic
- Experiments and simulations suggest that it gives a nearly-optimal solution to RAP
- In some simple problems, it is optimal

Optimality of Adaptive Greedy Rules

- Often in problems with symmetric competitors
- E.g.: in routing to parallel queues, route to:
 - ▷ the Shortest Queue (if min. delays)
- E.g.: sequencing of customers to service:
 - the Shortest Service Time (if min. waiting time)
 the Least Empty Buffer Space (if min. losses)
 the Shortest Queue (if min. delays)
- These values are the "dynamic prices"

Optimality of Adaptive Greedy Rules

- Also in asymmetric problems with simple dynamics
- *c*μ-rule (Cox & Smith '61) for job sequencing
 - \triangleright assigning priority to the job k with largest $c_k \mu_k$
- Gittins index rule ('72) for multi-armed bandit problem
 big surprise: many people believed it was insolvable
- Klimov index rule ('74) for M/G/1 model with feedback

Priority Rules in More Complex Problems

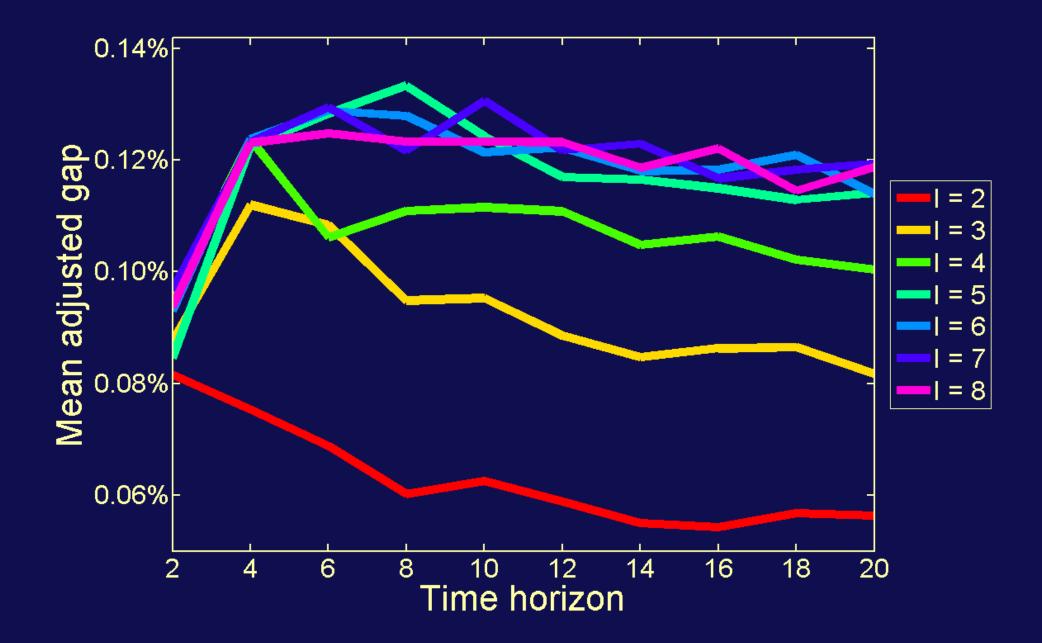
Telecommunications

several variants of routing to parallel queues
 congestion control for Internet connections
 time sharing in 3G wireless systems

Marketing

dynamic assortment for "fast-fashion" companies
 dynamic promotion for supermarkets

Example: Performance of a Priority Rule



Challenges

- Modeling
 - ...if modeling were as easy as mathematics...
- Proving (near-)optimality of greedy rules
 - asymptotic optimality proved for symmetric case, as number of competitors and resource capacity grow
- Incorporation of risk aversion, etc.

Thank you for your attention

Resource Allocation in Telecommunications

- Congestion control
 - > maximize throughput (choose preferred flows)
- Routing
 - minimize packet losses (choose preferred paths)
- Admission control
 - > minimize delays (choose preferred packets)
- Fairness
 - maximize users' utilities (choose preferred users)

Resource Allocation in Robotics

- Arises within reinforcement learning
- Behavior coordination & navigation in animats
 maximize utility (choose preferred behavior)
- Ranking in web search robots
 minimize searching time (choose preferred document)
- Multi-target tracking & environment mapping
 maximize map correctness (choose preferred object)

- Fall into resource allocation problems
- Advantages:
 - decentralized control
 - natural for creating priority tables
 - > dynamic prices yield structural results
 - > nearly-optimal (optimal in expectation)
- Disadvantages
 - prices may not exist

However, dynamic prices are scarcely used

- ▷ Niño-Mora '02, '06
- Raissi-Dehkordi & Baras '02
- ⊳ Goyal et al. '06
- ⊳ Jacko '09

Optimality of ad-hoc priority rules is usually analyzed

- ▷ Glazebrook et al. '04, '04, '07
- ▷ Ehsan & Liu '04, '05, '06, '07

• Niño-Mora '02:

- > queues with finite buffers
- consider a rejection cost as the wage
- > assume concave nondecreasing service rates
- > assume convex nondecreasing holding costs
- price-based characterization of optimal threshold policy
- as rejection cost grows, start rejecting customers under longer queue
- priority rule heuristic for routing to parallel queues

• Niño-Mora '06:

- ▷ queues with finite buffers
- > analyzes loss-sensitive and delay-sensitive queues
- rejecting cost vs. discounted holding-forever cost
- Ioss-sensitive: fewest-empty-buffer-spaces rule
- b delay-sensitive: shorter-queue rule
- \triangleright both converge to $c\mu$ rule for infinite buffers
- b throughput maximization is special case

- Goyal, Kumar & Sharma '06:
 - transmissions over polled multiaccess fading channel
 - \triangleright voice \succ streaming media \succ files
 - infinite buffers, delayed information
 - poll-and-response system
- Raissi-Dehkordi & Baras '02:
 - pulling broadcast scheduling (teletext with feedback)
 minimize weighted average waiting time

• Glazebrook et al. '04:

server allocation to impatient (perishable) tasks
 reduces to Gittins indices in a special case

- Glazebrook & Kirkbride '04:
 - routing of background jobs in distributed PC systems
 ad-hoc prices (static policy improvement)
- Glazebrook & Kirkbride '07:

routing to heterogeneous unreliable servers
 ad-hoc prices (DP policy improvement)

- Ehsan & Liu '04, '05, '06, '07:
 - wireless server allocation with delays
 - > minimize expected holding costs
 - > ad-hoc prices (myopic)
 - b give sufficient optimality conditions (special cases)