A Modeling Framework for Optimizing the
 Flow-Level Scheduling with Time-Varying Channels

Peter Jacko*
joint work with Urtzi Ayesta and Martin Erausquin

Performance 2010, November 17
*BCAM - Basque Center for Applied Mathematics, Spain

Motivation: Wireless Downlink

- Channel conditions vary due to fading
- Exponential-length jobs
- Channel conditions independent across users
- i.i.d. channel conditions from slot to slot

- Base station can serve 1 user per slot

Talk Outline

- Resource allocation problem (restless bandit extension)
- MDP framework
- Threshold policies and indexability
- Potential improvement (index) rule
- Application in wireless networks
- Performance evaluation by simulations
- Work in progress

Resource Allocation Problem (RAP)

- Stochastic and dynamic
- There are a number of independent users
- Constraint: resource capacity at every moment
- Objective: maximize expected "reward"
- Captures the exploitation vs. exploration trade-off \triangleright always exploiting (being myopic) is not optimal \triangleright always exploring (being utopic) is not optimal
- This is a model of learning by doing!

Adaptive Greedy Rules

- Assign a dynamic price (index value) to each user
- We are concerned with the following rule
\triangleright given the situation at each moment, be greedy: serve job with highest current price
- Experiments and simulations suggest that it gives a nearly-optimal solution to RAP
- In some problems it is optimal
$\triangleright c \mu$-rule (Cox \& Smith '61): job sequencing
\triangleright Gittins index rule ('72): multi-armed bandit problem
\triangleright Klimov index rule ('74): $M / G / 1$ model w/feedback

MDP Framework

- Markov Decision Processes
- Discrete time model $(t=0,1,2, \ldots)$
- Job $k \in \mathcal{K}$ is defined by
\triangleright state space \mathcal{N}_{k}, action space \mathcal{A}
\triangleright expected one-period capacity consumption W_{k}^{a}
\triangleright expected one-period reward \boldsymbol{R}_{k}^{a}
\triangleright one-period transition probability matrix \boldsymbol{P}_{k}^{a}
- State process $X_{k}(t) \in \mathcal{N}_{k}$
- Action process $a_{k}(t) \in \mathcal{A}$ - to be decided

Time-Varying Job Sequencing Problem

- Job/user/channel $k \in \mathcal{K}$ is defined by
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright q_{k, n}=$ probability to move to channel condition n
(steady-state distribution)
$\triangleright \mu_{k, n}=$ completion probability for job k under condition n (ordered: $\mu_{k, n} \leq \mu_{k, n+1}$)
- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
- $\mathcal{N}_{k}:=\left\{0,1,2, \ldots, N_{k}\right\}, \mathcal{A}_{k}:=\{$ 'serve', 'wait' $\}$
- $0=$ 'completed' $; n=$ 'waiting' and condition is n

Time-Varying Job Sequencing Problem

- Expected one-period reward

$$
\begin{aligned}
R_{k, 0}^{\text {serve' }}:=0, & R_{k, n}^{\text {serve' }^{\prime}}:=-c_{k}\left(1-\mu_{k, n}\right), \\
R_{k, 0}^{\text {wadit' }^{\prime}}:=0, & R_{k, n}^{\text {wait' }^{\prime}}:=-c_{k} ;
\end{aligned}
$$

- One-period transition probability matrices

$$
\left.\boldsymbol{P}_{k}^{\text {sesrve' }^{\prime}}:=\begin{array}{c}
\\
0 \\
1 \\
2 \\
\vdots \\
N_{k}
\end{array} \begin{array}{cccc}
0 & 1 & \ldots & N_{k} \\
1 & 0 & 0 & 0 \\
\mu_{k, 1} & \widetilde{\mu}_{k, 1} q_{k, 1} & \ldots & \widetilde{\mu}_{k, 1} q_{k, N_{k}} \\
\mu_{k, 2} & \widetilde{\mu}_{k, 2} q_{k, 1} & \ldots & \widetilde{\mu}_{k, 2} q_{k, N_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\mu_{k, N_{k}} & \widetilde{\mu}_{k, N_{k}} q_{k, 1} & \ldots & \widetilde{\mu}_{k, N_{k}} q_{k, N_{k}}
\end{array}\right) .
$$

Resource Allocation Problem

- Formulation under the β-discounted criterion:

$$
\begin{aligned}
& \max _{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)}\right] \\
& \text { to } \quad \sum_{k \in \mathcal{K}} W_{k, X_{k}(t)}^{a_{k}(t)}=W, \quad \text { for all } t=0,1,2, \ldots
\end{aligned}
$$

subject to

- Analogously under the time-average criterion
- This problem is PSPACE-hard
\triangleright intractable to solve exactly by Dynamic Programming \triangleright instead, we relax and decompose the problem

Whittle's Relaxation

- Serve W jobs in expectation
\triangleright infinite number of constraints is replaced by one \triangleright sort of perfect market assumption

$$
\begin{aligned}
& \max _{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)}\right] \\
& \text { subject to } \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} W_{k, X_{k}(t)}^{a_{k}(t)}\right]=\sum_{t=0}^{\infty} \beta^{t} W
\end{aligned}
$$

- Provides an upper bound for RAP

Lagrangian Relaxation

- Pay cost ν for using the server
\triangleright the constraint is moved into the objective

$$
\max _{\pi \in \Pi} \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} R_{k, X_{k}(t)}^{a_{k}(t)}\right]-\nu \sum_{k \in \mathcal{K}} \mathbb{E}^{\pi}\left[\sum_{t=0}^{\infty} \beta^{t} W_{k, X_{k}(t)}^{a_{k}(t)}\right]
$$

- Also provides an upper bound for RAP
- Decomposes due to user independence into single-user parametric subproblems
\triangleright solved by identifying the efficiency frontier

Optimal Solution to Subproblems

- Theorem 1: Threshold policy is optimal \triangleright serve if the channel condition is above a threshold
\triangleright wait if the channel condition is below a threshold
- Theorem 2: Problem is indexable, which implies
\triangleright if $\nu \leq \nu_{k, n}^{\mathrm{PI}}$, then it is optimal to serve in the channel condition n
\triangleright if $\nu \geq \nu_{k, n}^{\mathrm{Pl}}$, then it it optimal to wait in the channel condition n
- $\nu_{k, n}^{\mathrm{PI}}$ is the dynamic price (index value)
- This gives rise to opportunistic policy

Potential Improvement Index

- Under discounted criterion:

$$
\nu_{k, n}^{\mathrm{PI}}=\frac{c_{k} \mu_{k, n}}{(1-\beta)+\beta \sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)}
$$

- Under time-average criterion:

$$
\nu_{k, n}^{\mathrm{PI}}=\frac{c_{k} \mu_{k, n}}{\sum_{m>n} q_{k, m}\left(\mu_{k, m}-\mu_{k, n}\right)} \text { for } n \neq N_{k}, \quad \nu_{k, N_{k}}^{\mathrm{PI}}=\infty
$$

\triangleright tie-breaking if in the best state: $c_{k} \mu_{k, N_{k}}$

- Rule: serve the job with highest actual PI index

Wireless Data Network

- CDMA 1xEV-DO: Slot duration $t_{c}=1.67 \mathrm{~ms}$
- Let job length B_{k} be exponentially distributed \triangleright Probability of departure if served Δ bits in slot is

$$
\mathbb{P}\left[b \leq B_{k} \leq b+\Delta \mid B_{k}>b\right] \approx \Delta / \mathbb{E}\left[B_{k}\right]
$$

- Let $s_{k, n}$ be service rate (bps) in condition n, then

$$
\mu_{k, n}: \approx \frac{s_{k, n} \cdot t_{c}}{\mathbb{E}\left[B_{k}\right]}
$$

- PI rule is independent of $\mathbb{E}\left[B_{k}\right]$
\triangleright only tie-breaking becomes: $c_{k} s_{k, N_{k}} / \mathbb{E}\left[B_{k}\right]$

Other Scheduling Disciplines

- Relatively Best (Qualcomm CDMA standard, 2000):

$$
\nu_{k, n}^{\mathrm{RB}}:=\frac{\mu_{k, n}}{\sum_{m=1}^{N_{k}} q_{k, m} \mu_{k, m}}
$$

$\triangleright \approx$ Proportionally Fair scheduler (Borst, 2005)

- Score Based (Bonald, 2004): $\nu_{k, n}^{\mathrm{SB}}:=\sum_{m=1}^{n} q_{k, m}$
- Proportionally Best: $\nu_{k, n}^{\mathrm{PB}}=\frac{\mu_{k, n}}{\mu_{k, N_{k}}}$
\triangleright maximum stability region (Aalto \& Lassila, 2010)

Systems with Random Arrivals

- PI rule has maximum stability region \triangleright the only rule under general c_{k} 's
- PI equivalent to RB in "symmetric" systems \triangleright performance characterized as processor sharing
- We evaluate performance in simulations
\triangleright consider 2 different classes of jobs
$\triangleright \lambda_{k}$: probability of arrival from class k

Numerical Simulations: Scenario 1

- Varied λ_{1} so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 1

- Varied λ_{1} so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 1

- Sample path of the number of users, $\varrho=0.95$

Numerical Simulations: Scenario 1

- Sample path of the number of users, $\varrho=0.95$

Numerical Simulations: Scenario 1

- Indifference curves for mean number of users

Numerical Simulations: Scenario 1

- Indifference curves for mean number of users

Numerical Simulations: Scenario 2

- Varied class- 1 job length so that ϱ varies from 0.5 to 1

Numerical Simulations: Scenario 2

- Varied class- 1 job length so that ϱ varies from 0.5 to 1

Numerical Simulations: Stoch. Dominance

- Typical picture of empirical CDFs

Simulations Summary

- PI consistently outperforms all the other rules
- Or its mean performance is equivalent to the best one
- Simulations strongly suggest stochastic dominance of PI over the other rules
- The stability region is the maximum for PI rule, while it is not for $c \mu$ and RB rules

Conclusion

- Framework to study opportunistic policies
\triangleright RB (PF), PB roughly recovered under other rewards
- Tractable framework to obtain a new PI policy
\triangleright asymptotically fluid-optimal (AEJV '10)
\triangleright the only maximally stable policy in general (AL '10)
\triangleright excellent performance in small-scale problems
- PI policy implies (roughly):
\triangleright in low load: be channel-opportunistic
\triangleright in high load: take into account job size $(c \mu)$

Future Research

- Work in progress
\triangleright heavy-traffic/overload analysis of PI
\triangleright PI with abandonments
\triangleright non-iid channel evolution (fading or mobility)
- Open problems
\triangleright optimal solution (structure)
\triangleright online learning of PI parameters
\triangleright theoretical justification of second-order index
\triangleright correlation among users' channels

Thank you for your attention

Example: Job Sequencing Problem

- Find a serving sequence minimizing the total cost of waiting of jobs $k \in \mathcal{K}$
$\triangleright c_{k}=$ cost of waiting for job k
$\triangleright \mu_{k}=$ completion probability for job k
- $\mathcal{N}_{k}:=\{$ 'completed', 'waiting' $\}, \mathcal{A}_{k}:=\{$ 'serve', 'wait' $\}$
- Expected one-period capacity consumption

$$
\begin{aligned}
& W_{k, \text { 'completed' }}^{\text {'serve' }}:=1, \\
& W_{k, \text { completed' }}^{\prime \text { 'wait' }}:=0, \\
& W_{k, \text { 'waiting' }}^{\text {'serve' }}:=1 \text {, } \\
& W_{k, \text { waiting' }}^{\prime \text { 'wait' }}:=0 \text {; }
\end{aligned}
$$

Example: Job Sequencing Problem

- Expected one-period reward

$$
\begin{aligned}
& R_{k, \text { 'completed' }}^{\text {'serve' }}:=0, \quad \quad R_{k, \text { 'waiting' }}^{\text {'serve' }}:=-c_{k}\left(1-\mu_{k}\right), \\
& R_{k, \text { 'completed }^{\prime}}^{\text {wasit }^{\prime}}:=0, \\
& R_{k, \text { 'waiting }^{\prime}}^{\text {'wait' }^{\prime}}:=-c_{k} ;
\end{aligned}
$$

- One-period transition probability matrices

Dynamic Prices (Index Values)

- We will assign a dynamic price to each user
- Arises in the solution of the parametric subproblem \triangleright optimal policy: use server iff price greater than ν
- Prices are values of ν when optimal solution changes
- However, such prices may not exist!
\triangleright indexability has to be proved
- Price computation (if they exist):
\triangleright in general, by parametric simplex method
\triangleright by analysis sometimes obtained in a closed form

Optimal Solution to Subproblems

- For finite-state finite-action MDPs there exists an optimal policy that is deterministic, stationary, and independent of the initial state
\triangleright we narrow our focus to those policies
\triangleright represent them via serving sets $\mathcal{S} \subseteq \mathcal{N}$
\triangleright policy \mathcal{S} prescribes to serve in states in \mathcal{S} and wait in states in $\mathcal{S}^{\mathrm{C}}:=\mathcal{N} \backslash \mathcal{S}$
- Combinatorial ν-cost problem: $\max _{\mathcal{S} \subseteq \mathcal{N}} \mathbb{R}_{n}^{\mathcal{S}}-\nu \mathbb{W}_{n}^{\mathcal{S}}$, where

$$
\mathbb{R}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} R_{X(t)}^{a(t)}\right], \quad \mathbb{W}_{n}^{\mathcal{S}}:=\mathbb{E}_{n}^{\mathcal{S}}\left[\sum_{t=0}^{\infty} \beta^{t} W_{X(t)}^{a(t)}\right]
$$

Geometric Interpretation

- $\left(\mathbb{W}_{n}^{\mathcal{S}}, \mathbb{R}_{n}^{\mathcal{S}}\right)$ gives rise to 2-dim. performance region
- Indexability means the performance region is convex
- Optimal (threshold) policies are extreme points of the upper boundary of the performance region
- Index values are slopes of the upper boundary
- Indexability is sort of a dual concept to threshold policies
\triangleright but not equivalent!

Performance Region

Performance Region

