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Motivation: Wireless Downlink

• Channel conditions vary

due to fading

• Exponential-length jobs

• Channel conditions

independent across users

• i.i.d. channel conditions

from slot to slot

• Base station can serve 1 user per slot
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Talk Outline

• Resource allocation problem (restless bandit extension)

• MDP framework

• Threshold policies and indexability

• Potential improvement (index) rule

• Application in wireless networks

• Performance evaluation by simulations

• Work in progress
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Resource Allocation Problem (RAP)

• Stochastic and dynamic

• There are a number of independent users

• Constraint: resource capacity at every moment

• Objective: maximize expected “reward”

• Captures the exploitation vs. exploration trade-off

. always exploiting (being myopic) is not optimal

. always exploring (being utopic) is not optimal

• This is a model of learning by doing!
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Adaptive Greedy Rules

• Assign a dynamic price (index value) to each user

• We are concerned with the following rule

. given the situation at each moment, be greedy:

serve job with highest current price

• Experiments and simulations suggest that it gives a

nearly-optimal solution to RAP

• In some problems it is optimal

. cµ-rule (Cox & Smith ’61): job sequencing

. Gittins index rule (’72): multi-armed bandit problem

. Klimov index rule (’74): M/G/1 model w/ feedback
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MDP Framework

• Markov Decision Processes

• Discrete time model (t = 0, 1, 2, . . . )

• Job k ∈ K is defined by

. state space Nk, action space A

. expected one-period capacity consumption W a
k

. expected one-period reward Ra
k

. one-period transition probability matrix P a
k

• State process Xk(t) ∈ Nk

• Action process ak(t) ∈ A – to be decided
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Time-Varying Job Sequencing Problem

• Job/user/channel k ∈ K is defined by

. ck = cost of waiting for job k

. qk,n = probability to move to channel condition n

(steady-state distribution)

. µk,n = completion probability for job k under

condition n (ordered: µk,n ≤ µk,n+1)

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

• Nk := {0, 1, 2, . . . , Nk}, Ak := {‘serve’, ‘wait’}

• 0 = ‘completed’ ; n = ‘waiting’ and condition is n
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Time-Varying Job Sequencing Problem

• Expected one-period reward

R‘serve’
k,0 := 0, R‘serve’

k,n := −ck(1− µk,n),

R‘wait’
k,0 := 0, R‘wait’

k,n := −ck;

• One-period transition probability matrices

P ‘serve’
k :=



0 1 . . . Nk

0 1 0 0 0

1 µk,1 µ̃k,1qk,1 . . . µ̃k,1qk,Nk

2 µk,2 µ̃k,2qk,1 . . . µ̃k,2qk,Nk

... ... ... . . . ...

Nk µk,Nk
µ̃k,Nk

qk,1 . . . µ̃k,Nk
qk,Nk


.
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Resource Allocation Problem

• Formulation under the β-discounted criterion:

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
subject to

∑
k∈K

W
ak(t)
k,Xk(t) = W, for all t = 0, 1, 2, . . .

• Analogously under the time-average criterion

• This problem is PSPACE-hard

. intractable to solve exactly by Dynamic Programming

. instead, we relax and decompose the problem
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Whittle’s Relaxation

• Serve W jobs in expectation

. infinite number of constraints is replaced by one

. sort of perfect market assumption

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]

subject to
∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
=

∞∑
t=0

βtW

• Provides an upper bound for RAP
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Lagrangian Relaxation

• Pay cost ν for using the server

. the constraint is moved into the objective

max
π∈Π

∑
k∈K

Eπ
[ ∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
− ν

∑
k∈K

Eπ
[ ∞∑
t=0

βtW
ak(t)
k,Xk(t)

]

• Also provides an upper bound for RAP

• Decomposes due to user independence into single-user

parametric subproblems

. solved by identifying the efficiency frontier
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Optimal Solution to Subproblems

• Theorem 1: Threshold policy is optimal

. serve if the channel condition is above a threshold

. wait if the channel condition is below a threshold

• Theorem 2: Problem is indexable, which implies

. if ν ≤ νPI
k,n, then it is optimal to serve in the channel

condition n

. if ν ≥ νPI
k,n, then it it optimal to wait in the channel

condition n

• νPI
k,n is the dynamic price (index value)

• This gives rise to opportunistic policy
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Potential Improvement Index

• Under discounted criterion:

νPI
k,n =

ckµk,n
(1− β) + β

∑
m>n

qk,m(µk,m − µk,n)

• Under time-average criterion:

νPI
k,n =

ckµk,n∑
m>n

qk,m(µk,m − µk,n)
for n 6= Nk, νPI

k,Nk
=∞

. tie-breaking if in the best state: ckµk,Nk

• Rule: serve the job with highest actual PI index
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Wireless Data Network

• CDMA 1xEV-DO: Slot duration tc = 1.67ms

• Let job length Bk be exponentially distributed

. Probability of departure if served ∆ bits in slot is

P [b ≤ Bk ≤ b+ ∆|Bk > b] ≈ ∆/ E[Bk]

• Let sk,n be service rate (bps) in condition n, then

µk,n :≈ sk,n · tc
E[Bk]

• PI rule is independent of E[Bk]

. only tie-breaking becomes: cksk,Nk
/E[Bk]
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Other Scheduling Disciplines

• Relatively Best (Qualcomm CDMA standard, 2000):

νRB
k,n :=

µk,n
Nk∑
m=1

qk,mµk,m

. ≈ Proportionally Fair scheduler (Borst, 2005)

• Score Based (Bonald, 2004): νSB
k,n :=

n∑
m=1

qk,m

• Proportionally Best: νPB
k,n =

µk,n
µk,Nk

. maximum stability region (Aalto & Lassila, 2010)
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Systems with Random Arrivals

• PI rule has maximum stability region

. the only rule under general ck’s

• PI equivalent to RB in “symmetric” systems

. performance characterized as processor sharing

• We evaluate performance in simulations

. consider 2 different classes of jobs

. λk: probability of arrival from class k
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Numerical Simulations: Scenario 1

• Varied λ1 so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 1

• Varied λ1 so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 1

• Sample path of the number of users, % = 0.95
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Numerical Simulations: Scenario 1

• Sample path of the number of users, % = 0.95
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Numerical Simulations: Scenario 1

• Indifference curves for mean number of users
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Numerical Simulations: Scenario 1

• Indifference curves for mean number of users
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Numerical Simulations: Scenario 2

• Varied class-1 job length so that % varies from 0.5 to 1
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Numerical Simulations: Scenario 2

• Varied class-1 job length so that % varies from 0.5 to 1



24

Numerical Simulations: Stoch. Dominance

• Typical picture of empirical CDFs
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Simulations Summary

• PI consistently outperforms all the other rules

• Or its mean performance is equivalent to the best one

• Simulations strongly suggest stochastic dominance of

PI over the other rules

• The stability region is the maximum for PI rule, while

it is not for cµ and RB rules
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Conclusion

• Framework to study opportunistic policies

. RB (PF), PB roughly recovered under other rewards

• Tractable framework to obtain a new PI policy

. asymptotically fluid-optimal (AEJV ’10)

. the only maximally stable policy in general (AL ’10)

. excellent performance in small-scale problems

• PI policy implies (roughly):

. in low load: be channel-opportunistic

. in high load: take into account job size (cµ)
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Future Research

• Work in progress

. heavy-traffic/overload analysis of PI

. PI with abandonments

. non-iid channel evolution (fading or mobility)

• Open problems

. optimal solution (structure)

. online learning of PI parameters

. theoretical justification of second-order index

. correlation among users’ channels



28

Thank you for your attention



29

Example: Job Sequencing Problem

• Find a serving sequence minimizing the total cost of

waiting of jobs k ∈ K

. ck = cost of waiting for job k

. µk = completion probability for job k

• Nk := {‘completed’, ‘waiting’}, Ak := {‘serve’, ‘wait’}

• Expected one-period capacity consumption

W ‘serve’
k,‘completed’ := 1, W ‘serve’

k,‘waiting’ := 1,

W ‘wait’
k,‘completed’ := 0, W ‘wait’

k,‘waiting’ := 0;
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Example: Job Sequencing Problem

• Expected one-period reward

R‘serve’
k,‘completed’ := 0, R‘serve’

k,‘waiting’ := −ck(1− µk),

R‘wait’
k,‘completed’ := 0, R‘wait’

k,‘waiting’ := −ck;

• One-period transition probability matrices

P ‘serve’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk



P ‘wait’
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1
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Dynamic Prices (Index Values)

• We will assign a dynamic price to each user

• Arises in the solution of the parametric subproblem

. optimal policy: use server iff price greater than ν

• Prices are values of ν when optimal solution changes

• However, such prices may not exist!

. indexability has to be proved

• Price computation (if they exist):

. in general, by parametric simplex method

. by analysis sometimes obtained in a closed form
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Optimal Solution to Subproblems

• For finite-state finite-action MDPs there exists an

optimal policy that is deterministic, stationary, and

independent of the initial state

. we narrow our focus to those policies

. represent them via serving sets S ⊆ N

. policy S prescribes to serve in states in S and wait in

states in SC := N \ S

• Combinatorial ν-cost problem: max
S⊆N

RSn − νWSn, where

RSn := ESn

[ ∞∑
t=0

βtR
a(t)
X(t)

]
, WSn := ESn

[ ∞∑
t=0

βtW
a(t)
X(t)

]
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Geometric Interpretation

• (WSn,R
S
n) gives rise to 2-dim. performance region

• Indexability means the performance region is convex

• Optimal (threshold) policies are extreme points of the

upper boundary of the performance region

• Index values are slopes of the upper boundary

• Indexability is sort of a dual concept to threshold

policies

. but not equivalent!
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Performance Region
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