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a b s t r a c t

We introduce a comprehensive modeling framework for the problem of scheduling a
finite number of finite-length jobs where the available service rate is time-varying. The
main motivation comes from wireless data networks where the service rate of each
user varies randomly due to fading. We employ recent advances on the restless bandit
problem that allow us to obtain an opportunistic scheduling rule for the system without
arrivals. When the objective is to minimize the mean number of users in the system
or to minimize the mean waiting time, we obtain a priority-based policy which we call
the ‘‘Potential Improvement’’ (PI) rule, since the priority index equals the ratio between
the current available service rate and the expected potential improvement of the service
rate. We also show that for certain objective functions, the index rule takes the form of
known opportunistic scheduling rules like ‘‘Relatively Best’’ (RB) or ‘‘Proportionally Best’’
(PB). Thus our model provides a formal justification for the deployment of opportunistic
scheduling rules in order to improve the flow-level performance in the presence of time-
varying capacities. We further analyze the performance of the PI rule in the presence
of randomly arriving users. When the service rates are constant, PI is equivalent to the
cµ-rule, which is known to be optimal with any distribution of arrivals. Using a recent
characterization for the stability region of flow-level scheduling rules under random
arrivals, we show that PI achieves the maximum stability region. We perform numerical
experiments in a wide range of scenarios and compare the performance of PI with other
popular disciplines like RB, PB, Score-Based (SB) and the cµ-rule. Our results show that
RB, PB, SB or the cµ-rule might outperform the others depending on the scenario, but
regardless of this, the performance of PI is always superior or equivalent to the best of
these opportunistic rules.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we are interested in studying the problem of optimal flow-level scheduling in time-varying systems. The
main motivation comes from a downlink wireless data network where the download rate of each user fluctuates over time
due to fading. Scheduling in such a time-varying system has received a lot of attention in recent years. Broadly speaking,
researchers have explored this problem by studying packet-level and flow-level models. In packet-level formulations it is
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typically assumed that the scheduler can keep track of the number of packets in the queue and the objective is typically
to minimize the queue length of the various users/classes. We refer for example to [1–7] for this line of research. Other
researchers have analyzed the performance of scheduling disciplines at the flow level in order to better capture the
performance perceived by users, see for example [8–12]. In this line of work the objective becomes to minimize the number
of jobs in the system. For a review on flow-level modeling we refer to [13,14].

The Proportionally Fair scheduler (with its variant which we call the Relatively Best scheduler) is one of the most known
scheduling disciplines in this time-varying context (see for example [15,9,2,11]). The Proportionally Fair (PF) scheduler is
implemented in several time-slotted networks and at every time slot serves the user with the highest ratio of the current
service rate and the obtained time-average throughput, while the Relatively Best (RB) scheduler serves the user with the
highest ratio of the current service rate and the time-average expected service rate, and is broadly analyzed in the literature.
It was shown in [11] that the two schedulers are roughly equivalent under certain system conditions. [15] showed that the
Proportionally Fair scheduler maximizes the aggregate logarithmic utility of obtained throughput in a fixed population of
permanent users.

Flow-level models with time-varying service rates are extremely difficult to solve for optimality. There are several
important works (see for example [11]) that show that so-called ‘‘opportunistic schedulers’’ performwell, but to the best of
our knowledge there is no mathematical model that shows that opportunistic schedulers are (even asymptotically) optimal
in the context of users with finite-length jobs. A rule is called opportunistic (or channel-aware) if it takes advantage of the
channel fluctuations by serving a user whose channel condition is ‘‘good’’ in some sense with respect to its own statistical
behavior. The main objective of this paper is to develop a mathematical model that shows that opportunistic schedulers are
optimal for the flow-level scheduling of users in a time-varying system.

The general problem statement is as follows. We wish to schedule a finite number of users. The available service rate
of each user in a slot is an independent and identically distributed (i.i.d.) user-dependent random variable. The common
resource can be preemptively allocated to at most one user in every time slot and the selected user may complete the
service and depart from the system with a probability that depends on the current channel condition. Every user in the
system incurs a cost per slot (which may depend on the class and on whether the user is selected or not) and the objective
is to minimize the expected total discounted or undiscounted cost. We formulate the problem as a Markov Decision Process
(MDP). The state of each user is a two dimensional random variable. One dimension captures whether service has been
completed or not, and the other one is the current available service rate of the user. A crucial aspect of our model is that the
cost of a user k depends on a parameter γk which allows us to model a wide variety of cost functions.

This formulation can be seen as a generalization of the job sequencing problem with geometrically distributed service
times solved in [16]. It falls within the class known as multi-armed restless bandit problems, an optimization problem
extremely difficult and PSPACE-hard even in its deterministic variant [17], and is typically attributed to suffer from the
curse of dimensionality. The term ‘‘restless’’ refers to the fact that the state of all users in the system varies in time regardless
of whether they are served or not. Restless problems can be solved analytically only in a few cases (typically with largely
restricted dynamics), and this explains to some extent why the results on scheduling in time-varying scenarios are so scarce
in queueing theory.

In order to tackle our restless bandit formulationwe follow the approach ofWhittle [18] that allows us to derive a nearly-
optimal heuristic scheduling rule by computing an index policy as described in [19,20]. The main idea is to relax the sample
path constraint (that imposes that only one user is served at a time) by letting the average discounted number of users
served in a slot to be one. This relaxation simplifies significantly the problem since it allows to decompose it into single-user
subproblems. The optimal policy of the relaxed formulation becomes nowof index type (as in themulti-armed classic bandit
problem), that is, under certain conditions, we can calculate for each user a certain index value called price (that depends
only on the current state and generalizes the Gittins index) such that the optimal scheduler serves the users in every slot
with an actual price higher than a threshold (the value of the threshold ensures that the average discounted number of users
served in a slot is precisely one). The optimal policy for the relaxed problem need not be feasible for the original problem,
but allows us to construct a heuristic index policy for the original problem by serving the user with the currently highest
price. This heuristic rule is feasible (only one user is served at a time) and is typically reported to have an extremely good
performance [19]. In addition, it was shown in [21] that index policies approach optimality as the number of users grows to
infinity (if certain additional assumptions hold).

As our main contribution we design a scheduling rule as an index policy for the problem at hand which depends on the
vector of parameters γk. In the important case γk = 1 for all users k then every user in the system incurs a holding cost
per slot while present in the system, thus, the objective becomes to minimize the average discounted holding cost. Then,
the time-average (i.e., undiscounted) limit of the index rule has a very appealing form and is equal to the ratio between the
current available service rate multiplied by the holding cost and the expected potential improvement of the service rate.
We call this (opportunistic) index policy the Potential Improvement (PI) rule. If the available rate for each user is constant,
PI is equivalent to the cµ-rule, which is known to be optimal in this setting. When the γk equals the inverse of the expected
service rate of user k and the discount factor is not too large, then the indexpolicy approximately selects the userwith highest
ratio between the instantaneous rate and the expected rate, the policy RB defined above. When γk equals the inverse of the
maximum transmission rate of user k and the discount factor is not too large, then the index policy selects approximately
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Table 1
The transmission rates and the corresponding channel condition probabilities in the CDMA 1xEV-DOwireless network, as reported in [24], and values used
in the simulation study for the two classes in Scenarios 1 & 2.

Transmission rate (kb/s) 38.4 76.8 102.6 153.6 204.8 307.2 614.4 921.6 1228.8 1843.2 2457.6

Probabilities in CDMA 0.00 0.01 0.04 0.08 0.15 0.24 0.18 0.09 0.12 0.05 0.04
Probabilities for class 1 0 0 0.05 0 0.23 0 0.42 0 0.21 0 0.09
Probabilities for class 2 0 0 0.15 0 0.33 0 0.52 0 0 0 0

the user with the highest ratio between the instantaneous rate and the maximum rate, a policy known as Proportionally
Best (PB) [22]. Finally, when γk = 0, then the problem is to determine the policy that maximizes the flow-level throughput,
andwe show that if the discount factor is not too large, then the discounted variant of the PI rule is the index solution for this
case. However, our results suggest that opportunistic rules may not be appropriate in some situations in the time-average
case.

We performnumerical experiments to assess the performance of PI in the presence of randomly arriving users. For awide
range of parameter values we compare the performance of PI with RB [11], PB [22], Score-Based (SB) [9] and the cµ-rule. As
performance criterion we take the mean number of users in the system. Our results show that depending on the scenario
and on the load in the system, RB, PB, SB or the cµ-rule might outperform the others, but interestingly the performance of
PI is always comparable or superior to the best of the opportunistic rules. Our simulations indicate that in many scenarios PI
outperforms the other policies in a stochastic ordering sense, and not only in the mean. We also investigate stability issues.
The results of [22,23] imply that PI is stable under themaximum stability region, while SB and PB are such only if these rules
are independent of the holding costs. Our simulations (in which the holding costs are set to 1) show that indeed depending
on the scenario, RB or cµ fail to achieve maximum stability, whereas PI and SB always do.

The rest of the paper is organized as follows. In Section 2 we present the problem description. Section 3 formulates the
problemas aMarkovDecision Process. Section 4 contains themain contribution of this paper, that is, the analytical resolution
of the relaxed problem and the heuristic opportunistic rule for the original stochastic optimization formulation. In Section 5
we discuss the PI scheduling rule and its relation to alternative known rules. Section 6 presents several properties of PI
in systems with random arrivals and Section 7 presents the numerical simulations. For the sake of readability, proofs are
postponed to the Appendix.

2. Problem description

In this section we consider the discrete-time job sequencing problem (without arrivals), in which we allow for time-
varying service rate due to the variation in the users’ wireless channel quality. Consider K − 1 jobs waiting for service at a
base station that can serve one job at a time by transmitting a data flow through a dedicated channel to the corresponding
user. There is a 1: 1: 1 correspondence between jobs, users, and channels, so we use these terms interchangeably, and we
also use the expression job-channel-user triple. Let ck > 0 be the holding cost per period incurred for user k waiting while
the job transmission is not completed. Suppose that channel k can take quality conditions from a non-empty finite set
N ′

k := {1, 2, . . . ,Nk} so that condition n ∈ N ′

k happens in a certain period with probability qk,n, having
∑

n∈N ′
k
qk,n = 1. The

transmission quality condition of each channel evolves randomly and independently of the other channels, of the decisions
of the base station, and of the channel quality evolution history. Thus, the probabilities qk,n can be seen as the steady-state
distribution of the channel conditions.

Further, under channel condition n, the probability that the service of job k is completed within one period if being
transmitted is µk,n. Without loss of generality we assume that the channel condition labels are ordered so that 0 ≤ µk,1 ≤

µk,2 ≤ · · · ≤ µk,Nk ≤ 1. To ensure that eventually all users leave the system we assume that for every user k, qk,nµk,n ≠ 0
for some channel condition n ∈ N ′

k . Thus, the job-channel-user triples are independent of each other and compete for the
bandwidth of the base station.

If the base station is allocated to a user whose job has already been completed, then no transmission occurs. We
incorporate the following parameter to make the problem extensively flexible to incorporate additional conditions or
options. It is allowed to allocate the base station resources to an alternative task (such as battery recharging or service
maintenance), for which we obtain an alternative-task reward κ per period. For instance, the role of this alternative task
with a positive κ could be to turn off the base station allocation when all the users have very bad channel conditions. On the
other hand, by setting this parameter to a negative value we may force the base station to be non-idling (whenever there
are waiting jobs), or it can be simply set to zero narrowing the focus to the traditional problem.

The server is assumed to be preemptive (i.e., the service of a job or the alternative task can be interrupted at the beginning
of any time period even if not completed). Thus, the base station decides at the beginning of every period to which user (or
to the alternative task) it should be allocated during that period.

Remark 1 (Modeling of aWireless DataNetwork).Assumea time-slotted system (with slot duration denoted by tc = 1.67ms)
as the CDMA 1xEV-DO [24]. The available service rate of each user fluctuates due to fading, and as a consequence, it
varies from one slot to another in an independent fashion. In the particular case of the CDMA 1xEV-DO system the service
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rates that are available are presented in Table 1 (the probabilities are only informative). Let the service requirement (in
bits) of user k be a geometrically distributed random variable denoted by Bk, and let E[Bk] denote its expectation. Let ∆

denote the amount of bits transferred in one slot under the current channel condition. Note that in practice ∆ will vary
from slot to slot depending on the channel condition. Then the probability that a user leaves the system is approximately
P(b ≤ Bk ≤ b+∆|Bk > b) ≈ ∆/E[Bk], which does not depend on the attained service b (memoryless property of geometric
distribution). This expression becomes asymptotically exact as the ratio ∆/E[Bk] becomes small, that is, when the mean
service requirement (in bits) of a user is much larger than the amount of bits that can be served in one slot. Let sk,n denote
the service rate (in bits per second) of user k while in channel condition n, and let qk,n be probability that the channel is
in condition n in a slot. We can then conclude that in a wireless data network with geometric service requirements the
departure probability of a class-k user under channel condition n can be approximated by

µk,n :=
sk,n · tc
E[Bk]

. (1)

2.1. γ -parameterized objective

In order to provide a comprehensive modeling framework for opportunistic scheduling rules, we introduce a
parameterized objective function. We suppose that there is a parameter γk ≥ 0 associated with each job k, see definitions
in Section 3. The joint goal is to minimize the expected aggregate γ -parameterized holding cost minus the alternative-task
reward, over an infinite horizon.

The problem with γk = 1 for all k corresponds to minimization of the mean waiting time and minimization of the mean
number of jobs in the system. Interestingly, γk = 0 for all k leads to throughput maximization. Moreover, PB and RB rules
can be approximately recovered as prices (i.e., index-based solutions) to the problem for other values of γ . We leave the
more detailed discussion to Section 5.

3. MDP formulation

In this section we present an MDP formulation of the problem under the general γ -parameterized objective. The setting
fits the multi-armed restless bandit problem [18,25] and in this paper we follow the framework of its generalization called
the dynamic and stochastic resource capacity allocation problem introduced in [26].

Consider the time slotted into epochs t ∈ T := {0, 1, 2, . . .} at which decisions can be made. The time epoch t
corresponds to the beginning of the time period t . Suppose that at t = 0 there are K − 1 ≥ 1 users awaiting transmission
from the base station that at each epoch chooses (at most) one of the users to which it transmits a data stream through a
user-dedicated wireless channel. If no user is chosen, then the base station is allocated to the alternative task, i.e., there are
K competing options, labeled by k ∈ K . Thus, the base station is allocated to exactly one option at a time.

3.1. Jobs, channels, and users

Every user k = 1, 2, . . . , K − 1 can be allocated either zero or full capacity of the base station. We denote by A := {0, 1}
the action space, i.e., the set of allowable levels of capacity allocation. Here, action 0means allocating zero capacity (i.e., ‘‘not
serving’’), and action 1 means allocating full capacity (i.e., ‘‘serving’’). This action space is the same for every user k.

Each job-channel-user triple k is defined independently of other jobs, channels and users as the tuple

Nk,


W a

k


a∈A

,
Ra
k


a∈A

,

Pa
k


a∈A


, where

• Nk := {0} ∪ N ′

k is the state space, where state 0 represents a job already completed, and N ′

k := {1, . . . ,Nk} is the set of
possible quality conditions of channel k provided the job is uncompleted;

• W a
k :=


W a

k,n


n∈Nk

, where W a
k,n is the (expected) one-period capacity consumption, or work required by user k at state n

if action a is decided at the beginning of a period; in particular, for any n ∈ Nk,

W 1
k,n := 1, W 0

k,n := 0;

• Ra
k :=


Ra
k,n


n∈Nk

, where Ra
k,n is the expected one-period reward earned by user k at state n if action a is decided at the

beginning of a period; in particular, for any n ∈ N ′

k ,

R1
k,0 := 0, R1

k,n := −ck · (γk − µk,n), R0
k,0 := 0, R0

k,n := −ckγk;

• Pa
k :=


pak,n,m


n,m∈Nk

is the user-k stationary one-period state-transition probability matrix if action a is decided at the
beginning of a period, i.e., pak,n,m is the probability of moving to statem from state n under action a; in particular, denoting
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byµk,n := 1 − µk,n,

P1
k :=



0 1 ··· Nk

0 1 0 0 0
1 µk,1 µk,1qk,1 · · · µk,1qk,Nk
2 µk,2 µk,2qk,1 · · · µk,2qk,Nk
...

...
...

. . .
...

Nk µk,Nk µk,Nkqk,1 . . . µk,Nkqk,Nk

, P0
k :=



0 1 2 ··· Nk

0 1 0 0 0 0
1 0 qk,1 qk,2 · · · qk,Nk
2 0 qk,1 qk,2 · · · qk,Nk
... 0 qk,1 qk,2

. . . qk,Nk
Nk 0 qk,1 qk,2 · · · qk,Nk

.

The dynamics of user k is thus captured by the state process Xk(·) and the action process ak(·), which correspond to state
Xk(t) ∈ Nk and action ak(t) ∈ A at all time epochs t ∈ T . As a result of deciding action ak(t) in state Xk(t) at time epoch t ,
the user k consumes the allocated capacity, earns the reward, and evolves its state for the time epoch t + 1.

We have the same action space A available at every state, which assures a technically useful property that W a
k ,Ra

k , P
a
k

are defined in the same dimensions under any a ∈ A. Note that state 0 is absorbing.

3.2. Alternative task

We model the alternative task as a static user with a single state 0 and with reward κ if served. i.e., such a user k = K is
defined by NK := {0},W a

K ,0 := a, Ra
K ,0 := κa, paK ,0,0 := 1 for all a ∈ A.

3.3. A unified optimization criterion

Before describing the problem we first define an averaging operator that will allow us to discuss the infinite-horizon
problem under the traditional β-discounted criterion and the time-average criterion in parallel. Let ΠX,a be the set of all
the policies that for each time epoch t decide (possibly randomized) action a(t) based only on the state-process history
X(0), X(1), . . . , X(t) and on the action-process history a(0), a(1), . . . , a(t − 1) (i.e., non-anticipative). Let Eπ

τ denote
the expectation over the state process X(·) and over the action process a(·), conditioned on the state-process history
X(0), X(1), . . . , X(τ ) and on policy π .

Consider any expected one-period quantity Q a(t)
X(t) that depends on state X(t) and on action a(t) at any time epoch t . For

any policy π ∈ ΠX,a, any initial time epoch τ ∈ T , and any discount factor 0 ≤ β ≤ 1 we define the infinite-horizon
β-average quantity1

Bπ
τ


Q a(·)
X(·), β,∞


:= lim

T→∞

T−1∑
t=τ

β t−τ Eπ
τ


Q a(t)
X(t)


T−1∑
t=τ

β t−τ

. (2)

The β-average quantity recovers the traditionally considered quantities in the following three cases:

• expected time-average quantitywhen β = 1;
• expected total β-discounted quantity, scaled by constant 1 − β , when 0 < β < 1;
• myopic quantitywhen β = 0.

Thus, when β = 1, the problem is formulated under the time-average criterion, whereas when 0 < β < 1 the problem
is considered under the β-discounted criterion. The remaining case when β = 0 reduces to a static problem and hence is
considered in order to define amyopic policy. In the following we consider the discount factor β to be fixed and the horizon
to be infinite, therefore we omit them in the notation and write briefly Bπ

τ


Q a(·)
X(·)


.

3.4. Optimization problem

Now we describe in more detail the problem we consider and formulate it below. Let ΠX,a be the space of randomized
and non-anticipative policies depending on the joint state-process X(·) := (Xk(·))k∈K and deciding the joint action-process
a(·) := (ak(·))k∈K , i.e., ΠX,a is the joint policy space.

1 For definiteness, we consider β0
= 1 for β = 0.
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For any discount factorβ , the problem is to find a joint policyπmaximizing the objective given by theβ-average aggregate
reward starting from the initial time epoch 0 subject to the family of sample path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ
0

−
k∈K

Rak(·)
k,Xk(·)


(P)

subject to Eπ
t

−
k∈K

ak(t)


= 1, for all t ∈ T .

Note that the constraint could equivalently be expressed by restricting ΠX,a to policies satisfying
∑

k∈K ak(t) = 1 for
any possible joint state–process history X(0),X(1), . . . ,X(t), for all t ∈ T .

4. Solution

Problem (P) can be relaxed as proposed in [18], which is further approached by the Lagrangian methods and can be
decomposed into a parameterized (bi-criteria) optimization problem as we describe next (for more details see [26]). Notice
that any joint policy π ∈ ΠX,a defines a set of single-user policies πk for all k ∈ K , where πk is a randomized and non-
anticipative policy depending on the joint state-process X(·) and deciding the user-k action-process ak(·). We will writeπk ∈ ΠX,ak . We will therefore study the user-k subproblem

maxπk∈ΠX,ak

Bπk
0


Rak(·)
k,Xk(·)

− νW ak(·)
k,Xk(·)


. (3)

Themain idea of our approach is to identify a set of optimal policiesπ∗

k for (3) for each k ∈ K , and using them to construct
a joint policy π, feasible though not necessarily optimal for problem (P).

4.1. Optimal solution to single-user subproblem via prices

Problem (3) falls into the framework of restless bandits and can be optimally solved by assigning a set of prices νk,n to
each state n ∈ Nk under the so-called indexability condition [19,20].

Let us denote for channel condition n ∈ N ′

k of user k ≤ K − 1,

νk,n :=
ckµk,n (1 − β + βγk)

(1 − β) + β
∑
m>n

qk,m(µk,m − µk,n)
, νk,0 := 0, (4)

and for the alternative task k = K , νK ,0 := κ . The following are the main results of this paper.

Proposition 1 (Optimality of Threshold Policies).

(i) If ν > 0, then there exists n ∈ Nk ∪ {−1} such that threshold policy transmitting in channel conditions SN−n := {m ∈ Nk :

m > n} and not transmitting otherwise is optimal for problem (3).
(ii) If γk ≥ µk,N or β ≤ 1/(1 + µk,N − γk) holds for user k ≤ K − 1, then for every real-valued ν there exists n ∈ Nk ∪ {−1}

such that threshold policy transmitting in channel conditions SN−n := {m ∈ Nk : m > n} and not transmitting otherwise is
optimal for problem (3).

Proposition 2 (Indexability). Suppose that γk ≥ µk,N or β ≤ 1/(1 + µk,N − γk) holds for user k ≤ K − 1. The following holds
for problem (3):

(i) if ν ≤ νk,n, then it is optimal to transmit under user’s k channel condition n ∈ N ′

k ;
(ii) if ν ≥ νk,n, then it is optimal not to transmit under user’s k channel condition n ∈ N ′

k ;
(iii) if ν ≤ νk,0, then it is optimal to transmit when the job k is already completed (i.e., when n = 0);
(iv) if ν ≥ νk,0, then it is optimal not to transmit when the job k is already completed (i.e., when n = 0);
(v) if ν ≤ νK ,0, then it is optimal to allocate the base station to the alternative task K;
(vi) if ν ≥ νK ,0, then it is optimal not to allocate the base station to the alternative task K .

4.2. Scheduling rule for original problem

Since the original problem requires to allocate the base station to exactly one option (to one of the users or to the
alternative task), then at any time epoch t we propose to allocate the base station to the option k∗(t) with the highest
actual price, i.e.,

k∗(t) := argmax
k∈K

νk,Xk(t).
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Notice that under the time-average criterion (i.e., β = 1, and therefore γk ≥ µk,N is required), users with their channel
in the best condition have an infinite price. Therefore, in addition we propose the following tie-breaking rule: If at least one
of the users’ channel is in its best state (i.e., Xk(t) = Nk for some k), then allocate the base station to the user

k∗(t) := argmax
k∈K

lim
β→1

(1 − β)νk,Xk(t).

Such a tie-breakingwould therefore be based on the second term of the Laurent expansion of νk,n at β = 1. This tie-breaking
may itself have ties; these are resolved arbitrarily.

5. γ-parameterized objective and relationships with scheduling rules

Notice in (4) that for user k under channel condition nwe can write νk,n = ckµk,nfk,n, where

fk,n :=
(1 − β) + βγk

(1 − β) + β
∑
m>n

qk,m(µk,m − µk,n)
.

Aquick inspection reveals that γk ≥ µk,N is a sufficient condition for fk,n ≥ 1,which implies νk,n ≥ ckµk,n. On the other hand,
under β = 0 we have fk,n = 1, i.e., the above-defined scheduling rule is themyopic cµ-rule, in which µ is the instantaneous
job completion probability under the actual channel conditions, which is well-known to be optimal in that case.When there
is a single available channel condition (i.e., Nk = 1) for every user k and if γk is the same for all k, then the above-defined
scheduling rule is equivalent to the cµ-rule (only scaled by a constant for a given β), which is optimal in that case [16].

5.1. Potential improvement rule

Problem (P) with γk = 1 for all k ≤ K − 1 corresponds to the problem of minimization of the β-average holding costs,
since Ra

k,n equals the expected holding cost paid at the end of the current slot if action a is decided at the beginning of the
slot. In the special case of ck = 1 for all k, problem (P) is equivalent to both minimization of the β-average number of users
in the system and minimization of the β-average waiting time.

Under the time-average criterion (β = 1), the prices in (4) simplify to what we call the Potential Improvement (PI) index:

νPI
k,n =

ckµk,n∑
m>n

qk,m(µk,m − µk,n)
for n ≠ Nk, νPI

k,Nk
= ∞,

and the tie-breaking quantity is

lim
β→1

(1 − β)νPI
k,n = 0 for n ≠ Nk, lim

β→1
(1 − β)νPI

k,Nk
= ckµk,Nk .

Thus, PI rule results in giving absolute priority to users whose actual channel’s quality is the best possible, i.e., the base
station can serve a userwith non-best channel quality only if there is no userwith best channel quality. The absolute priority
to the best channel quality users is the most distinguishing property of PI from the RB (PF) rule. Further, if there are several
users with absolute priority, PI prescribes to serve users according to the classic cµ-rule, where µ is the instantaneous job
completion probability (under the best channel condition). Finally, when no channel achieves its best quality, PI allocates the
bandwidth to the user with the highest ratio of the actual service rate with respect to the expected potential improvement
of the service rate.

Remark 2 (Application of PI in aWireless Data Network). In view of (1), the straightforward implementation of PI in awireless
network will be by using the index

νPI
k,n =

cksk,n∑
m>n

qk,m(sk,m − sk,n)
for n ≠ Nk, νPI

k,Nk
= ∞,

with arbitrary tie-breaking except if more than one user is in its best channel condition, in which case we select any one of
those with highest value cksk,Nk/E[Bk]. We note that the PI index only depends on the channel statistics, and that it depends
on the expected service requirement E[Bk] only for tie-breaking. If one uses PI with randomized tie-breaking or if all the
jobs have the same expected length, then PI would belong to the family of opportunistic schedulers like, for example, RB,
PB discussed in the next subsection.

5.2. Relatively best and proportionally best rules

For a given discount factor β , suppose that the job is long enough so that
∑

m>1 qk,m(µk,m − µk,1) ≪ (1 − β)/β
and suppose that (1 − β)/β ≪ γk. Then we have fk,n ≈ γkβ/(1 − β), so that the scheduling rule defined above is
approximately the rule selecting the job with the highest νk,n = ckµk,nγk. In the following we show that Relatively Best
(RB) and Proportionally Best (PB) rules can be recovered in this way in our modeling framework.
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When γk = 1/µk for all k, where µk :=
∑

m qmµk,m, then the scheduling rule recovers the well-studied RB rule, which
(with ck = 1 for all k) approximates the PF rule implemented in practice. When γk = 1/µk,N for all k, then the scheduling
rule recovers the PB rule introduced in [22].

We remark that we have not been able to find a convincing interpretation of the objective function that gives rise to RB
and PB rules. RB optimizes the ‘‘naturalmetrics’’ (which are themean number of customers andmeanwaiting time, obtained
when γk = 1) only if the jobs are so short that they can be completed within a slot even under the worst channel condition
(i.e., µk = 1). Note that this assumption in fact leads to a no-channel variation case, in which RB is equivalent to cµ-rule
and therefore optimal.

PB optimizes the natural metrics only if the jobs are rather short and can be completed within a slot under the best chan-
nel condition (i.e.,µk,N = 1). In this case, however, the values of the discount factor must bemoderate in order to satisfy the
approximation conditions from the beginning of this subsection. Hence the time-average case is not achievable with this
approximation and we are not able to draw any conclusions about the time-average performance of the PB rule.

5.3. On priority-based rule for throughput maximization

Notice that the case with γk = 0 for all k corresponds to maximizing the β-average throughput, weighted by the holding
costs ck. The results from the previous section thus apply if β ≤ 1/(1+µk,N) for all k ≤ K −1, which is system-independent
only ifβ ≤ 1/2. Under these conditions, the scheduling rule given by the prices in (4) is the same as the rule under the natural
metrics, since it is only scaled by the constant 1 − β . However, we were unable to extend the result to the time-average
case, and we believe that there might be cases in which threshold policies are not a sufficient class for optimality. Notice
that if β = 1, then the price for the best channel is cµ, while being 0 for all the other channels. This suggests (though does
not prove) that there is no opportunistic rule that could maximize throughput even in an asymptotic sense.

6. Performance of PI in systems with random arrivals

In this sectionwe investigate the performance of the PI rule in the presence of random arrivals. We assume that users are
grouped in K classes. The channel of a class-k user can be in Nk conditions, and condition n ∈ Nk happens with probability
qk,n. Users of the same class are thus characterized by having the same channel statistics, but it still holds that the channel
condition of every user evolves independently of other channels. Let λk be the probability that a new class-k user arrives
during a slot to the system; thus, several users are allowed to arrive during the same slot provided they belong to different
classes.

The optimal scheduling rule could be calculated numerically when 2 jobs are in the system and no new jobs arrive. The
numerical experiments (not reported here) indicate that in this case the suboptimality gap of PI is rather small. Unfortunately
the curse of dimensionality makes it impossible to compute the optimal policy for a larger number of users, or for the case
of randomly arriving users. Thus we cannot draw any conclusion on how far from the true optimal policy PI is.

Existing literature gives strong evidence to support the claim that the optimal policy to schedule a fixed number of users,
may also perform very well in the presence of new arrivals, particularly if the arrival process is Bernoulli or Poisson. In fact it
has been shown in a wide variety of models that the optimal scheduling policy with a fixed number of users is also optimal
in the case of arrivals (see for example [27] and [28, Theorem 3.28] for the M/G/1 queue, [29–31] for the cµ-rule, [32] for
a single server queue with feedback and [33,28,34] for the multi-armed bandit problem). This gives hope that the PI rule
should perform well with arrivals. The rest of the paper is devoted to investigating this issue.

6.1. Stability of PI

Let ϱk := λk/µk,Nk and let ϱ :=
∑

k ϱk. Then it is known under the assumption of a time-scale separation (see [11]) that
the maximum stability region for our model is ϱ < 1, that is, no scheduling rule is stable if this inequality is not satisfied.
By stability we understand that the Markov chain is positive recurrent. It is known that a sufficient condition for a policy
to achieve the maximum stability region is that any user in its best channel condition will be preferred over any user in a
non-best channel condition (see, for example [22,23]). As we explained in Section 5 PI gives absolute priority to users whose
channel’s actual quality is the best possible, and thus, PI is stable under the maximum stability region.

We note that no other rule in its full generality achieves the maximum stability region and so each of them fails to be
stable in some stabilizable systems. PB and SB satisfy the above-mentioned condition only if ck = c for all k. The cµ-rule
satisfies it only if ckµk,Nk = c for all k. In an important result, [11] showed that for the so-called ‘‘symmetric’’ system (see
below) the necessary stability condition is also sufficient for RB (and PF). Our numerical simulations nevertheless indicate
that in asymmetric scenarios (even if ck = 1 for all k), the stability region under RB and cµ is strictly smaller than the
maximal one, whereas PI always provides maximum stability.

6.2. Flow-level performance of PI in symmetric system

Suppose that all users have the same set of possible channel conditions N ′
:= {1, . . . ,N} and ck = 1, for all k. Let Y

denote a discrete random variable such that P(Y = yn) = qn, n ∈ N ′. Assume that, as before, in every slot a class-k channel
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(a) When 0.51 ≤ ϱ ≤ 0.99. (b) Zoomed in when 0.51 ≤ ϱ ≤ 0.75.

Fig. 1. Mean number of users in the system in Scenario 1.

is in condition nwith probability qk,n = qn (independently of other users) and thatµk,n = rkyn, where rk is a class dependent
constant and it holds µk,n < 1, ∀(k, n). In [11] this system is referred to as ‘‘symmetric’’, because it models the situation in
which the relative fluctuations of the various users around rk are identical. As shown in [11] (see also [14]), in the symmetric
system RB behaves roughly as PF. We will show now that under this condition, PI and RB are equivalent.

In this system the PI index becomes

νk,n =
yn∑

m>n
qm(ym − yn)

for n ≠ Nk, νk,Nk = ∞, (5)

and it does not depend anymore on k. It then holds that a class-k user in channel condition n will be preferred over a class-
j user in channel condition l if and only if νk,n > νj,l, i.e., if and only if n > l. Thus the channel condition characterizes
completely the policy (independently of the class the user belongs to).

RB chooses the user with the highest µk,n∑
m qmµk,m

=
yn∑

m qmym
, and thus a user in state n will be preferred over a user in

state l if and only if n > l, that is, RB and PI are the same policy. This in particular implies that the analysis carried out in [11,
Section 3] to investigate the performance of RB with randomly arriving users can be readily applied to PI. From this analysis
we conclude that the performance of PI at the flow level can be characterized by a state-dependent Processor Sharing queue.

7. Simulation study in systems with random arrivals

In this section we report numerical simulations to compare the performance of PI with other popular scheduling rules
proposed in the literature. Time is slotted. In every slot a new class-k user arrives to the system with probability λk. At the
beginning of each time slot, we simulate the current transmission rate for the users and then depending on the rule we
select which user to serve. This in turn determines the probability that the user departs from the system during the slot.
We fix the following parameters for all our simulations: κ = 0 and ck := 1, for all k; with these values the objective is to
minimize themean number of users in the system. The statistics of the number of users are collected by invoking the GASTA
property (Geometric Arrivals See Time Averages) of Geometric arrivals [35].

We consider the policies PI, RB, PB, SB, and cµ-rule. All these policies are priority-based, i.e., they serve the user with
the highest index in the system. The expression for the indices PI, RB and PB were explained in Section 5. The remaining
indices are ν

cµ
k,n := ckµk,n and νSB

k,n := ck
∑n

m=1 qk,m, for n ∈ Nk. We simulate RB, and not PF, because simulating PF would
be very time consuming as it requires to keep track of the history of the process. We have a similar situation with SB.
In [9] SB calculates the score depending on the past measurements of the channel fluctuations. This scheme is very time-
consuming to simulate, and we have therefore used this alternative definition that makes the process Markovian. Under
the assumption that the channel quality evolves over time in an i.i.d. fashion, we expect both definitions to be very close
to each other. In addition to these rules, we also simulate the policy that is optimal for the simpler scheduling problem in
which there is only one user of each class and no new users arrive. This rule is obtained by solving numerically the dynamic
programming equation and we denote it as the NA rule (No Arrivals rule). We emphasize that the curse of dimensionality
makes it unfeasible to numerically find an optimal solution in much more complex scenarios. If there are more than one
user with the highest index value in a certain moment, then in RB, SB and PB we allocate the slot to a randomly chosen user,
as proposed in [36,9,22] respectively.

Our main conclusions are the following:
(i) Depending on the value of the parameters, RB, SB, PB or cµ might outperform the others.
(ii) PI consistently outperforms all the other policies (or is equivalent to the best one) with respect to the mean, and in

many cases even stochastically.
(iii) The stability region of RB, cµ and NA is strictly smaller than the maximal one (ϱ < 1).
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(a) For 230,000 user arrivals. (b) Zoomed for 5000 user arrivals.

Fig. 2. Sample path of the number of users in the system in Scenario 1 when ϱ = 0.95.

Numerical experiments in the symmetric system (see Section 6.2) show that PI, SB, PB and RB are equivalent,
outperforming NA and cµ rules, while all these rules are stable in the maximum stability region. Next we describe in more
detail the results we have obtained for a variety of asymmetric scenarios.

7.1. Scenario 1

In the first family of simulations we consider a set of five transmission rates for users of class 1 and a set of three
transmission rates for users of class 2. These transmission rates are adopted from the CDMA1xEV-DO systemand the channel
condition probabilities are given in Table 1.We set λ2 := 0.005, and choose 102.57 kb as the expected length of both class-1
and class-2 jobs. In view of (1) we have ϱ2 = 0.5. We consider a range of values for class-1 arrival probability λ1 such that
ϱ varies from 0.51 to 0.99.

In Fig. 1(a) we plot themean number of users in the system versus ϱ under different rules. NA and RB rules are equivalent
in this setting, i.e., they both take the same scheduling decision (and therefore NA is omitted in the figures). Although SB
and PB are not completely equivalent (they take different decisions in some of the cases when no users are in their best
states), they show a very similar performance. We observe that instability of the cµ-rule arises with ϱ ≥ 0.79 and that of
RB and NA with ϱ ≥ 0.84. SB, PB and PI are stable in the whole range of ϱ, nevertheless we note that the performance of
PI is always superior to that of SB and PB. In Fig. 1(b) we show the same data zoomed in when 0.51 ≤ ϱ ≤ 0.75. All the
rules show similar performance when ϱ = 0.55, but we can observe that the mean number of users in the system under PI
becomes significantly smaller than under other rules as ϱ grows. On the other hand, the cµ rule becomes increasing worse
as ϱ grows. Fig. 2 depicts the sample path evolution of the number of users in the systemwhen ϱ = 0.95 and indicates that
RB (and therefore also NA), and cµ are unstable, whereas the system is stable under PI, SB and PB.

For better understanding of the performance, we further plot in Fig. 3(a) the indifference map (well-known in the
microeconomic theory) for this scenario, where the points at the same indifference curve (or isoline) correspond to the
same value of ϱ. When the objective is to minimize the aggregate number of users in the system, then theminimizer among
the plotted rules always coincides with PI. This is because of the shape of the indifference curves and the fact that PI keeps
the number of users of different classes fairly balanced. Notice that cµ and RB tend to keep a small number of class-1 users,
causing the number of class-2 users to skyrocket as ϱ increases. Conversely, SB and PB maintain a small number of users of
class-2, while class 1 grows steadily.

7.2. Scenario 2

We consider the same transmission rates and channel condition probabilities as in Scenario 1.We set the expected length
of class-2 jobs to 102.57 kb and let λ1 = λ2 := 0.005 for both classes. With these values we obtain ϱ2 = 0.5. We vary the
expected length of class 1 users so that ϱ varies between 0.51 and 0.99. Note that changing the expected job lengthmodifies
the departure probabilities (see (1)), which in turn implies that cµ and NA might differ for different values of ϱ.

Fig. 4(a) plots the mean number of users in the system versus ϱ. We can observe that RB is unstable for ϱ ≥ 0.83. Again,
SB and PB show a very similar performance although they are not equivalent. On the other hand, PI, SB, NA and cµ rules
remain stable for all values of ϱ ≤ 0.99. In Fig. 4(b) we zoom in on the data when 0.51 ≤ ϱ ≤ 0.80 and can observe that PI
dominates other rules increasingly more as ϱ grows, whereas RB and NA become increasingly more dominated. However,
notice in Fig. 4(a) that on the interval 0.77 ≤ ϱ ≤ 0.99 the performance of PI, cµ and NA is quite similar and slightly
outperforming the SB and PB rules. For ϱ ≤ 0.76 the performance of NA deteriorates similarly to the unstable RB, but then
there is an abrupt improvement in the performance. This is caused by the change in the priorities given by NA; indeed, for
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(a) Indifference map for Scenario 1. (b) Distribution functions of scheduling rules.

Fig. 3. Further comparisons of opportunistic rules.

(a) When 0.51 ≤ ϱ ≤ 0.99. (b) When 0.51 ≤ ϱ ≤ 0.80.

Fig. 4. Mean number of users in the system in Scenario 2.

ϱ ≥ 0.77 any user in his best channel is given priority over all the users that are in a non-best channel condition, while for
ϱ ≤ 0.76 this is not true.

7.3. Other scenarios

We have studied more scenarios, changing available transmission rates and the corresponding channel condition prob-
abilities. In general, we have obtained similar qualitative conclusions as in scenarios 1 and 2: PI, PB and SB rules are stable
in all the scenarios whenever ϱ < 1, showing that PI performs strictly better than PB and SB almost in every simulation. On
the other hand, RB, NA and cµ rules have more irregular performance and show instability problems in some scenarios.

7.4. Stochastic ordering

In this section, our goal is to illustrate that, in fact, the number of users under different rules are often ordered in a
stochastic sense. Recall that two random variables X and Y are stochastically ordered if and only if P(X ≤ z) ≥ P(Y ≤ z), ∀z.
In particular, the stochastic ordering implies that E[X] ≤ E[Y ]. In Fig. 3(b) we represent the distribution functions for a
particular example (in Scenario 2 when ϱ = 0.75), but we emphasize that we have obtained similar pictures in almost all
our simulations. Our simulations strongly suggest that PI is stochastically better than the other rules.

8. Conclusion

Optimizing the flow-level performance in a system with time-varying service rates, random arrivals, and asymmetric
channel conditions remains a challenging task. We have proposed a comprehensive modeling framework for the problem
without arrivals and have exploited it to derive the Potential Improvement rule, which can be implemented in practice not
more costly than other popular opportunistic schedulers. Numerical results indicate that PI is superior or comparable to
the best of the existing scheduling rules under several scenarios. It would be desirable to investigate the performance of PI
in other scenarios, for example, by dropping the assumption that the channel quality is not a correlated process. It would
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also be interesting to evaluate the performance of PI with user mobility and to compare the performance of PI with PF in
real-world systems. The practical issue of efficient learning of the parameters of a particular user based on the history is
another important topic that deserves more research attention.

Appendix. Work-reward analysis and proofs

Wewill next focus on the caseβ < 1, i.e., the problemunder the discounted criterion. Problem (3) is a standard stationary
MDP problem, for which it is well known that there is an optimal policy which is deterministic (i.e., non-randomized),
stationary (i.e., Markovian), and independent of the initial state [37, Chapter 6]. In particular, this implies that there exists
an optimal policy which only depends on the user-k state-process Xk(·). Indeed, policyπk ∈ ΠX,ak that depends on the joint
state-process X(·) can be seen as a randomized policy, since the user-l state-process Xl(·) for l ≠ k is not influenced by the
user-k action-process ak(·) prescribed byπk.

Therefore, in order to find an optimal policy to problem (3) it is enough to concentrate on stationary policies πk ∈ ΠXk,ak .
Every such policy can be represented in terms of a serving set S ⊆ Nk, which prescribes to allocate the base station’s service
(i.e., to serve) whenever the user is in state n ∈ S and not to serve whenever the user is in state n ∉ S. Thus, an optimal
policy to problem (3) can be obtained by solving

max
S⊆Nk

BS
0


Rak(·)
k,Xk(·)


− νBS

0


W ak(·)

k,Xk(·)


. (A.1)

Notice that (A.1) is a parametric (bi-objective) optimization problem and every policy (i.e., serving set) S is associated
with a bi-dimensional point BS

0


W ak(·)

k,Xk(·)


, BS

0


Rak(·)
k,Xk(·)


. If depicted in a plane with works on the x-axis and rewards on the

y-axis, then the optimal policies to (A.1) lie on the upper boundary of such a region, since the parameter ν gives the slope
of the supporting hyperplane (a line in this case) defining an optimum point (i.e., an optimal policy).

We will next analyze scaled quantities BS
0


Rak(·)
k,Xk(·)


/(1 − β), writing briefly RS

n if the initial state Xk(0) = n ∈ Nk.

Analogously, we will write briefly WS
n and we denote the value function under policy S by VS

n := RS
n − νWS

n . These scaled
quantities correspond to the usual quantities under the β-discounted criterion. An optimal solution in terms of prices for
β = 1, i.e., under the time-average criterion, is obtained in the limit. In the rest of this sectionwewill omit the user subscript
k ≤ K − 1 to simplify the notation.

A.1. Proof of Proposition 1

Let us denote the optimal value function by V∗
n . An inspection of the Bellman equation leads to the following lemma.

Lemma 1. (i) Suppose that ν > 0 holds. Then, if it is optimal to transmit in state n ∈ N \ {N}, then it is optimal to transmit in
state n + 1.

(ii) Suppose that ν ≤ 0 and γ ≥ µN holds. Then it is optimal to transmit in any state n ∈ N .
(iii) Suppose that ν ≤ 0 and γ < µN and β ≤ 1/(1 + µN − γ ) holds. Then it is optimal to transmit in any state n ∈ N .

Proof. The Bellman equation for state n ∈ N is V∗
n = maxa∈A


Ra
n − νW a

n + β
∑

m∈N pan,mV∗
m


. After plugging the

definitions of the action-dependent parameters for state n ∈ N \ {0}, we obtain

V∗

n = max


R1
n − νW 1

n + β
−
m∈N ′

(1 − µn)qmV∗

m + βµnV∗

0 ; R0
n − νW 0

n + β
−
m∈N ′

qmV∗

m



= −cγ + β
−
m∈N ′

qmV∗

m + max


−ν + µn


c + βV∗

0 − β
−
m∈N ′

qmV∗

m


; 0


,

where the first term in the curly brackets corresponds to action 1 and the second one to action 0. Transmitting (i.e., action 1)
is optimal in state n ∈ N \ {0}, if the first term is greater than or equal to the second term. Let us denote by Z := c +

βV∗

0 − β
∑

m∈N ′ qmV∗
m.

(i) If ν > 0 and transmitting is optimal in state n ∈ N \ {0,N}, then µnZ ≥ ν > 0. Since µn+1 ≥ µn, we also have
−ν +µn+1Z ≥ 0, that is, transmitting is optimal in state n+1. Further, using the Bellman equation it is straightforward
to obtain that V∗

0 = 0 because action 1 is not optimal in state 0, and therefore the statement holds under ν > 0 for all
n ∈ N \ {N}.

(ii) If ν ≤ 0, then we proceed as follows. First, using the Bellman equation it is straightforward to obtain that V∗

0 =

−ν/(1 − β) because action 1 is optimal in state 0 and thus −ν is obtained in every period forever. Notice that the
one-period net reward, Ra

n − νW a
n , is for any state n ∈ N and any action a ∈ A upperbounded by −ν whenever

γ ≥ µN . Hence V∗
m ≤ −ν/(1 − β) = V∗

0 for any m ∈ N ′, and therefore (using c > 0) also Z > 0, and finally, for any
state n ∈ N \ {0}, −ν + µnZ > 0. That is, transmitting is optimal in any state n ∈ N .
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(iii) Similarly to (ii), the one-period net reward, Ra
n − νW a

n , is for any state n ∈ N and any action a ∈ A upperbounded by
−c(γ − µN) − ν whenever γ < µN . Hence V∗

m ≤ (−c(γ − µN) − ν)/(1 − β) = −c(γ − µN)/(1 − β) + V∗

0 for any
m ∈ N ′, and therefore also

Z ≥
c

1 − β
[1 − β + β(γ − µN)] .

The right-hand side is non-negative due to the assumption β ≤ 1/(1 + µN − γ ). So, similarly to (ii), transmitting is
optimal in any state n ∈ N . �

Note that analogously to Lemma 1(iii), one could also prove a sharper condition for β involving parameter ν, which is,
however, not useful for further discussion in this paper. Finally, Lemma 1 establishes optimality of threshold policies in
Proposition 1.

A.2. Proof of Proposition 2

In order to prove the existence of optimal prices νn in terms of properties (i) and (ii) of Proposition 2, we will establish
validity of a sufficient condition called LP-indexability introduced in [38, Definition 5.3], which will be stated after defining
some necessary concepts. The analysis in the following paragraphs also shows how to evaluate such prices provided they
exist. An immediate result are the balance equations given in the following lemma.

Lemma 2. For all states n ∈ N we have WN
n = 1/(1 − β), and under any policy 0 ∉ S we have

RS
n =


−c(γ − µn) + (1 − µn)β

−
m∈N ′

qmRS
m, if 0 ≠ n ∈ S,

−cγ + β
−
m∈N ′

qmRS
m, if 0 ≠ n ∉ S,

0, if n = 0.

WS
n =


1 + (1 − µn)β

−
m∈N ′

qmWS
m, if 0 ≠ n ∈ S,

β
−
m∈N ′

qmWS
m, if 0 ≠ n ∉ S,

0, if n = 0.

Proof. Directly from the definition of β-average reward and work, respectively, we have

RS
n = Rn∈S

n + β
−
m∈N

pn∈S
n,m RS

m,

WS
n = W n∈S

n + β
−
m∈N

pn∈S
n,m WS

m,

where n ∈ S equals 1 if true and 0 otherwise. Substituting the values of Rn∈S
n ,W n∈S

n and pn∈S
n,m given in the definition of the

job-channel-user triple, and simplifying, results in the above characterization. �

If price νn for n ∈ N ′ with the desired properties (i) and (ii) (and price ν0 for n = 0 with the desired properties (iii) and
(iv)) stated in Proposition 2 exists, then both transmitting and not transmitting is optimal if ν = νn. This means that there
is a policy, say S∗, such that both including state n in S∗ and not including it lead to the same objective value, i.e.,

RS∗
∪{n}

n − νnWS∗
∪{n}

n = RS∗
\{n}

n − νnWS∗
\{n}

n .

A straightforward consequence of this and of the balance equation is that changing the action only in the initial period must
also lead to the same objective values, i.e.,

R⟨0,S∗
⟩

n − νnW⟨0,S∗
⟩

n = R⟨1,S∗
⟩

n − νnW⟨1,S∗
⟩

n ,

where policy ⟨a, S∗
⟩ is the policy that employs action a in the initial period and then proceeds according to S∗. Then,

whenever W⟨1,S∗
⟩

n − W⟨0,S∗
⟩

n ≠ 0, we have

νn =
R⟨1,S∗

⟩

n − R⟨0,S∗
⟩

n

W⟨1,S∗⟩

n − W⟨0,S∗⟩

n

. (A.2)

We will therefore study νn under all policies S, defined as

νS
n :=

R⟨1,S⟩

n − R⟨0,S⟩

n

W⟨1,S⟩

n − W⟨0,S⟩

n
. (A.3)

From the balance equations we can obtain the following characterization of these quantities.
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Lemma 3. For any state n ∈ N ′ under any policy 0 ∉ S we have

νS
n = µn

c − β
∑

m∈N ′

qmRS
m

1 − µnβ
∑

m∈N ′

qmWS
m

, νS
0 = 0. (A.4)

Proof. Using the characterization of R⟨a,S⟩

n for a ∈ A from Lemma 2, we obtain that

R⟨1,S⟩

n − R⟨0,S⟩

n = µn


c − β

−
m∈N ′

qmRS
m


.

Similarly, we obtain that

W⟨1,S⟩

n − W⟨0,S⟩

n = 1 − µnβ
−
m∈N ′

qmWS
m. (A.5)

Then, the definition in (A.3) yields the stated characterization. Finally, νS
0 = 0 is obtained trivially. �

Since our objective is to find the optimal prices νn in terms of properties (i) and (ii) of Proposition 2, we postulate that

For all n ∈ N : νn = ν
SN−n
n for SN−n := {m ∈ N : m > n}. (A.6)

We will verify this postulate using a sufficient condition LP-indexability [38, Definition 5.3], which in our problem can be
simplified to the following.

Definition 1. Problem (3) is LP-indexable with prices νn given in (A.6), if the following conditions hold:

(i) W⟨1,∅⟩

n − W⟨0,∅⟩

n > 0 and W⟨1,N ⟩

n − W⟨0,N ⟩

n > 0 for all n ∈ N ;
(ii) W⟨1,SN−n⟩

n − W⟨0,SN−n⟩
n > 0 and W⟨1,SN−n⟩

n+1 − W⟨0,SN−n⟩
n+1 > 0 for each n ∈ N \ {N};

(iii) For every real-valued ν there exists n ∈ N ∪ {−1} such that the serving set SN−n is optimal.

We will first need to characterize the above quantities under SN−n for any n ∈ N . According to the balance equations in
Lemma 2, we have

WSN−n
l = 1 + (1 − µl)β

∑
m∈N ′

qmWSN−n
m , if l ∈ SN−n,

WSN−n
l = β

∑
m∈N ′

qmWSN−n
m , if l ∉ SN−n.

Denoting by

WSN−n
:= β

−
m∈N ′

qmWSN−n
m ,

we can solve such a system of linear equations obtaining

WSN−n
=

β
∑

m∈SN−n

qm

1 − β + β
∑

m∈SN−n

qmµm
. (A.7)

Analogously, we can obtain

RSN−n
=

c


−βγ + β

∑
m∈SN−n

qmµm


1 − β + β

∑
m∈SN−n

qmµm
.

Plugging these expressions into (A.4), we have

ν
SN−n
l =

cµl (1 − β + βγ )

1 − β + β
∑

m∈SN−n

qm(µm − µl)
. (A.8)

Next we establish that the LP-indexability holds under a mild condition.
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Lemma 4. Suppose that γ ≥ µN or β ≤ 1/(1 + µN − γ ) holds. Problem (3) is LP-indexable with prices νn given in (A.6).

Proof. (i) It is straightforward to obtain from Lemma 2 that W⟨1,∅⟩

n − W⟨0,∅⟩

n = W⟨1,N ⟩

n − W⟨0,N ⟩

n = 1 for all n ∈ N .
(ii) Using (A.5) and (A.7) we obtain

W⟨1,S⟩

l − W⟨0,S⟩

l = 1 −

β
∑

m∈SN−n

qmµl

1 − β + β
∑

m∈SN−n

qmµm
,

which is nonincreasing in l due to the monotonicity assumption upon µl’s. Hence, it is enough to prove W⟨1,SN−n⟩
n+1 −

W⟨0,SN−n⟩
n+1 > 0. By the same assumption we have µn+1 ≤ µm for all m ∈ SN−n, which together with β < 1 implies the

result.
(iii) This is established in Proposition 1. �

Notice that expression (4) with l := n is equivalent to (A.8). Therefore, since LP-indexability is a sufficient condition for
the properties (i) and (ii) (and (iii) and (iv)) of Proposition 2, we conclude its proof. Validity of the properties (v) and (vi) of
Proposition 2 can be derived analogously.
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