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Abstract
In this paper we briefly present a novel dynamic and stochastic model

of resource allocation that generalizes a variety of problems addressed in
the literature and we outline a unified methodology for designing adaptive
greedy rules. Such rules are important in practice, since they may provide
an easy-to-interpret and easy-to-implement solution to problems that are
intractable for optimal solution due to the curse of dimensionality, or they
embody an elegant optimal solution in some problems with simpler struc-
ture. We bridge the methodological gap between static/deterministic opti-
mization and dynamic/stochastic optimization by stressing the connection
between the classic knapsack problem and a group of related problems in
management and stochastic scheduling unified by our model.

1 Introduction

Consider a collection of competitors with resource capacity demands that in
aggregate are, at least at some time instants, beyond the available resource
capacity. Suppose that to each competitor we can assign a price, independent
of other competitors, that measures the efficiency of attaining a joint goal if a
particular amount of resource capacity is allocated to her at a given moment.
We are interested in designing and evaluating rules based on these prices and
the resource capacity demands which accomplish the goal of good resource
capacity allocation, whatever the “good” may mean.

In the special case when the competitors and the resource capacity are static
(and therefore deterministic), this becomes the well-known knapsack problem.
Indeed, this is the problem of determining the most valuable knapsack capac-
ity allocation to a collection of competing items with given prices and knapsack
capacity demands (weights). The knapsack problem is NP-hard to solve opti-
mally, but a simple greedy rule was proposed by Dantzig (1957):
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Price/demand rule: Allocate the capacity to the items with the highest price/demand
ratios.

In the special case when these competing items have equal capacity de-
mands, the price/demand rule is optimal and reduces to:

Price rule: Allocate the capacity to the items with the highest prices.

In this work we allow for dynamically and stochastically evolving competi-
tors. Therefore, we shift our focus to greedy rules that are adaptive, i.e., to rules
which generalize the price/demand rule that is static. Several questions must
be addressed in such a setting:

(i) [Economic question] For a given joint goal, is it possible to define dy-
namic quantities for each competitor that can be interpreted as prices?
And if yes,

(ii) [Algorithmic question] How to calculate such prices quickly?

(iii) [Mathematical question] Under what conditions is there a greedy rule
that achieves optimal resource capacity allocation?

(iv) [Experimental question] If greedy rules are not optimal, how close to op-
timality do they come? And how do they compare to alternative rules?

When the competitors are dynamic (even if they are non-stochastic), such
a problem is PSPACE-hard (Papadimitriou and Tsitsiklis, 1999). This curse of
dimensionality justifies the interest in greedy rules, since optimal solutions for
high-dimensional problems appearing in the real world are unlikely to be ob-
tained. In addition, this result implies that we can expect that optimality of
greedy rules will occur only in problems with largely restricted dynamics.
Such is, as the following example illustrates, the case with the cµ-rule when
several customers are competing for a single server.

Example 1 (Job Sequencing Problem: Statement). Consider K − 1 ≥ 1 cus-
tomers (jobs) waiting for service at a server that can serve one customer at a
time. Let 1/µk > 0 be the expected service time of job k and let ck > 0 be the
holding cost per period incurred for customer k waiting. The server can also
be left idle, denoting this option by k = K, or allocated to a customer with a
completed job. Thus, these K options are competitors and the task is to decide
to which option the server should be allocated.

The joint goal is to minimize the aggregate expected holding cost over an in-
finite horizon. It turns out that, in several model variants, the following greedy
rule applied while there are waiting customers attains such a goal:

cµ-rule: Allocate the server to the waiting customer with the highest value ckµk.

Such a quantity measures the expected savings on holding costs per ex-
pected service time, or the efficiency of attaining the goal, if customer k is
served. Thus, the cµ-rule allocates the server to the customer who contributes
most efficiently to minimization of the aggregate expected holding cost.

• • •
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From this example we can learn several properties we can expect when con-
sidering more complex problems in the framework of Markov decision pro-
cesses (MDPs). In general, the price, if exists, is state- and action-dependent
and it may not be defined for some state/action combinations (here, the price is
undefined for the jobs already completed). The concept of “state” must contain
all the information relevant for the resource capacity allocation decision (for in-
stance, whether the customer is still waiting). Further, whenever defined, the
price measures the opportunity cost of two allowable levels of resource capac-
ity allocation, which is a well-known result in economics. Indeed, a “correct”
price must take into account both the value of the best action and the value of
the second-best action. Finally, in order to be comparable across competitors,
the prices must be in the same units; the price is calculated per unit of expected
resource capacity consumption.

In the following section we present an MDP formulation of the Dynamic
and Stochastic Resource Capacity Allocation Problem (DSRCAP). This novel gen-
eral problem builds on several special cases of increasing complexity that have
been addressed in the literature since 1950’s, such as the job sequencing prob-
lem, the multi-armed bandit problem, the multi-armed restless bandit prob-
lem, and a large number of their special cases and extensions. For description
of these problems and their applications see, for instance, Gittins (1989); Jun
(2004); Sundaram (2005); Niño-Mora (2007); McCall and McCall (2007); Hero
et al. (2008); Jacko (2009).

In this paper we strongly digress from the jargon existing in the literature,
which seems to become abundant and confusing with the increasing number
of extensions and variants of the problem. Instead, we use terminology which
is expected to be found natural and intuitive by practitioners and researchers
in the areas of business and economics, thus providing a way for an effective
application of the methodology described in the following sections. This is an
abridged version of a survey article in preparation.

2 DSRCAP: MDP Formulation

In this section we present a discrete-time MDP formulation of the dynamic and
stochastic resource capacity allocation problem.1 Consider the time slotted into
time epochs t ∈ T := {0, 1, 2, . . . } at which decisions can be made. Time epoch
t corresponds to the beginning of time period t. We consider the problem over
an infinite horizon, as this may cover also a finite horizon problem if properly
defined.

Suppose that there are K ≥ 1 (integer) competitors, labeled by k ∈ K,
competing for a resource divisible into W ≥ 1 (integer) units. We call W the
resource capacity. We assume that the resource is fully regenerative, i.e., its full
capacity is repetitively available at every time epoch t. The capacity not used
at a given epoch is lost, i.e., the resource capacity is nonmarketable.

1A continuous time model is also possible. However, for the continuous-time MDP (i.e., when
all the inter-decision times are exponentially distributed) and the semi-Markov decision processes
formulations, the standard uniformization technique (see Puterman, 2005, Chapter 11) can be used
to reformulate it as a discrete-time MDP model covered by our setting.
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2.1 Competitors

Every competitor can be allocated any non-negative integer number of capac-
ity units not exceeding the given resource capacity W . We denote by A :=
{0, 1, . . . ,W} the action space, i.e., the set of allowable levels of capacity alloca-
tion. This action space is the same for every competitor k.

Each competitor k is defined independently of other competitors as the tu-
ple (

Nk, (W a
k)a∈A , (R

a
k)a∈A , (P

a
k)a∈A

)
,

where

• Nk is the state space, i.e., a finite set of possible states competitor k can
occupy;

• W a
k :=

(
W a
k,n

)
n∈Nk

, where W a
k,n is the expected one-period capacity

consumption, or work required by competitor k at state n if action a is
decided at the beginning of a period;

• Ra
k :=

(
Rak,n

)
n∈Nk

, where Rak,n is the expected one-period reward earned

by competitor k at state n if action a is decided at the beginning of a
period;

• P a
k :=

(
pak,n,m

)
n,m∈Nk

is the competitor-k stationary one-period state-

transition probability matrix if action a is decided at the beginning of a
period, i.e., pak,n,m is the probability of moving to state m from state n
under action a.

The dynamics of competitor k is thus captured by the state process Xk(·)
and the action process ak(·), which correspond to state Xk(t) ∈ Nk and action
ak(t) ∈ A, respectively, at all time epochs t ∈ T . As a result of deciding action
ak(t) in state Xk(t) at time epoch t, competitor k consumes (possibly a part
of) the allocated capacity, earns the reward, and evolves its state for the time
epoch t + 1. It is natural to require that the capacity consumed is nonnegative
and not greater than the capacity allocated, therefore we assume 0 ≤W a

k,n ≤ a.
To avoid technical difficulties we will also assume that Rak,n is bounded.

Note that we have the same action space A available at every state, which
assures a technically useful property that W a

k,R
a
k,P

a
k are defined in the same

dimensions under any a ∈ A. Though this may appear at first glance as a
limitation on the applicability of the model, in fact the opposite is true. Notice
that in order to effectively restrict the number of allowable actions at certain
states we can define some of the actions as duplicates by having the same one-
period consequences, i.e. actions a and b are duplicates at state n of competitor
k if and only if W a

k,n = W b
k,n, R

a
k,n = Rbk,n, and pak,n,m = pbk,n,m for all m. We

will usually define non-useful actions as duplicates of the action a = 0.
LetAk,n := A\{a : W a

k,n = W 0
k,n, R

a
k,n = R0

k,n, and pak,n,m = p0
k,n,m for all m ∈

Nk} be the set of all the positive allowable capacity allocations for competitor
k and its state n ∈ Nk. That is, in Ak,n we have removed the zero capacity
allocation (i.e., action a = 0) and all its duplicates from the action set of state
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n. If a /∈ Ak,n, then we say that competitor k at its state n ∈ Nk is uncontrol-
lable by action a. Further, we say that competitor k at its state n ∈ Nk is totally
uncontrollable, if it is uncontrollable by all actions a ∈ A (i.e., if all the actions
1, 2, . . . ,W are defined as duplicates of the zero capacity allocation 0, and thus
Ak,n = ∅).

In some cases it is useful to assume that competitor k = K is the static
κ-priced competitor, with a single state (therefore static) and with price κ per al-
located capacity unit. I.e., such a competitor k is defined byNk := {0},W a

k,0 :=
a,Rak,0 := κa, pak,0,0 := 1 for all a ∈ A. As we will see later, the role of this
competitor is to cut-off capacity allocation to competitors whenever they are
priced below κ.

Example 2 (Job Sequencing Problem: MDP Formulation). Consider the discrete-
time variant of the job sequencing problem described in Example 1, in which
µk is interpreted as the probability that the service of job k is completed within
one period. Recall that there are K − 1 customers with jobs waiting at the
beginning (i.e., at time epoch t = 0), and the idling option k = K.

If the server is preemptive (i.e., the service of a customer can be interrupted
at any time epoch even if not completed), then all its capacity W = 1 is avail-
able at every time epoch, and therefore it is fully regenerative. We have the
action space A := {0, 1}, where action 0 means allocating zero capacity (i.e.,
“not serving”), and action 1 means allocating full capacity (i.e., “serving”).

Thus, we define job k ≤ K − 1 with

• state space Nk := {‘completed’, ‘waiting’};

• expected one-period works

W 1
k,‘completed’ := 1, W 1

k,‘waiting’ := 1,

W 0
k,‘completed’ := 0, W 0

k,‘waiting’ := 0;

• expected one-period rewards, i.e., the negative of the holding cost ex-
pected to be paid at the next time epoch,

R1
k,‘completed’ := 0, R1

k,‘waiting’ := −ck · (1− µk)− 0 · µk,

R0
k,‘completed’ := 0, R0

k,‘waiting’ := −ck;

• one-period state-transition probability matrices

P 1
k :=

( ‘completed’ ‘waiting’

‘completed’ 1 0
‘waiting’ µk 1− µk

)
,

P 0
k :=

( ‘completed’ ‘waiting’

‘completed’ 1 0
‘waiting’ 0 1

)
.

Notice that when the server is allocated to customer k, its whole capacity
is allocated (a = 1 = W ). Further, all the states are controllable, since action 1
has different one-period consequences than action 0. The idling option k = K
is defined as the static 0-priced competitor.

• • •
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2.2 A Unified Optimization Criterion

Before describing the problem we first define an averaging operator that will
allow us to discuss the infinite-horizon problem under the traditional β-discounted
criterion and the time-average criterion in parallel. Let ΠX,a be the set of all
the policies that for each time epoch t decide (possibly randomized) action a(t)
based only on the state-process history X(0), X(1), . . . , X(t) and on the action-
process history a(0), a(1), . . . , a(t − 1) (i.e., non-anticipative). Let Eπτ denote the
expectation over the state process X(·) and over the action process a(·), condi-
tioned on the state-process history X(0), X(1), . . . , X(τ) and on policy π.

Consider any expected one-period quantity Q
a(t)
X(t) that depends on state

X(t) and on action a(t) at any time epoch t. For any policy π ∈ ΠX,a, any
initial time epoch τ ∈ T , and any discount factor 0 ≤ β ≤ 1 we define the
infinite-horizon β-average quantity as2

Bπτ
[
Q
a(·)
X(·), β,∞

]
:= lim

T→∞

T−1∑
t=τ

βt−τ Eπτ
[
Q
a(t)
X(t)

]
T−1∑
t=τ

βt−τ

. (1)

Thus, when β = 1, the problem is formulated under the time-average cri-
terion, whereas when 0 < β < 1, the problem is considered under the β-
discounted criterion (scaled by 1−β). The remaining case when β = 0 reduces to
a static problem and hence is considered in order to define a myopic policy. In
the following we consider the discount factor β to be fixed and the horizon to
be infinite, therefore we omit them in the notation and write briefly Bπτ

[
Q
a(·)
X(·)

]
.

2.3 Optimization Problem

Now we describe in more detail the problem we consider and formulate it
below. Let ΠX,a be the space of randomized and non-anticipative policies de-
pending on the joint state-process X(·) := (Xk(·))k∈K and deciding the joint
action-process a(·) := (ak(·))k∈K, i.e., ΠX,a is the joint policy space.

Suppose that the capacity W must be exhaustively allocated to competitors
inK at every time epoch.3 Suppose further that at every time epoch, apart from
earning the expected one-period rewards Rak,n for allocated capacity, we also
earn a reward ε per unit of the latent capacity, i.e., the capacity that is allocated
but not consumed by competitors in K. Note that this happens only when the
expected one-period capacity consumption is lower than the allocated capacity,
i.e., W a

k,n < a, since this implies that the (actual) one-period capacity consump-
tion is strictly lower than the allocated capacity with a probability greater than
zero.

2For definiteness, we consider β0 = 1 for β = 0.
3One could consider the problem variant in which the capacity is permitted to be allocated

partially, while we earn a reward κ per unit of the capacity that is not allocated to competitors
in K. However, we can easily transform this problem variant into the problem with exhaustive
capacity allocation, if we assume that competitor k = K is an artificially introduced static κ-priced
competitor, which represents idle capacity.
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For any discount factor β, the problem is to find a joint policy πmaximizing
the objective given by the β-average of the sum of aggregate reward and latent-
capacity reward starting from the initial time epoch 0, subject to the family of
sample path allocation constraints, i.e.,

max
π∈ΠX,a

Bπ0

[∑
k∈K

(
R
ak(·)
k,Xk(·) + ε

(
ak(·)−W ak(·)

k,Xk(·)

))]
, (2)

subject to Eπt

[∑
k∈K

ak(t)

]
= W, for all t ∈ T . (3)

Note that the sample-path constraint could equivalently be expressed as∑
k∈K

ak(t) = W for all t ∈ T under policy π and for any possible joint state-

process historyX(0),X(1), . . . ,X(t).

3 DSRCAP: Relaxations and Decomposition

We first reformulate problem (2)-(3) in a more comfortable way, defining

R̃ak,n := Rak,n + ε
(
a−W a

k,n

)
, (4)

W̃ a
k,n := W a

k,n +
(
a−W a

k,n

)
= a, (5)

which allows to rewrite the problem as

max
π∈ΠX,a

Bπ0

[∑
k∈K

R̃
ak(·)
k,Xk(·)

]
, (P)

subject to Eπt

[∑
k∈K

W̃
ak(t)
k,Xk(t)

]
= W, for all t ∈ T .

3.1 Relaxations

The epoch-t constraint in (P) is conditioned on information available at time t,
therefore it implies the epoch-t expected capacity consumption constraint,

Eπ0

[∑
k∈K

W̃
ak(t)
k,Xk(t)

]
= W, for all t ∈ T (6)

requiring that the capacity be consumed at every time epoch if conditioned on
information available at time 0.

Finally, as proposed in Whittle (1988), we may require this constraint to
hold only on β-average, as the β-average capacity consumption constraint

Bπ0

[∑
k∈K

W̃
ak(·)
k,Xk(·)

]
= Bπ0 [W ] . (7)
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Noticing that Bπ0 [W ] = W , we obtain the following Whittle relaxation of prob-
lem (P),

max
π∈ΠX,a

Bπ0

[∑
k∈K

R̃
ak(·)
k,Xk(·)

]
(PW)

subject to Bπ0

[∑
k∈K

W̃
ak(·)
k,Xk(·)

]
= W.

The Whittle relaxation (PW) can be approached by traditional Lagrangian
methods, introducing a Lagrangian parameter, say ν, to dualize the constraint,
obtaining thus the following Lagrangian relaxation,

max
π∈ΠX,a

Bπ0

[∑
k∈K

(
R̃
ak(·)
k,Xk(·) − νW̃

ak(·)
k,Xk(·)

)]
+ νW. (PL

ν)

Note finally that by the definition of relaxation, (PL
ν) for every ν provides an

upper bound for the optimal value of both problem (PW) and problem (P).

3.2 Decomposition into Single-Competitor Subproblems

We now set out to decompose the optimization problem (PL
ν) as it is standard

for Lagrangian relaxations, considering ν as a parameter. Notice that any joint
policy π ∈ ΠX,a defines a set of single-competitor policies π̃k for all k ∈ K,
where π̃k is a randomized and non-anticipative policy depending on the joint
state-process X(·) and deciding the competitor-k action-process ak(·). We will
write π̃k ∈ ΠX,ak

. We will therefore study the competitor-k subproblem

maxeπk∈ΠX,ak

Beπk
0

[
R̃
ak(·)
k,Xk(·) − νW̃

ak(·)
k,Xk(·)

]
. (8)

4 DSRCAP: Solution via Prices and Greedy Rules

4.1 Prices and Solution to the Single-Competitor Subproblem

We now want to attach to each competitor k ∈ K a set of prices vak,n, indepen-
dent of other competitors, and defined for each state n ∈ Nk and each positive
allowable capacity allocation a ∈ Ak,n. We want price vak,n to measure the ef-
ficiency rate of attaining the joint goal of maximizing the aggregate β-average
reward in (P) if competitor k at its state n is allocated a capacity units at the
current time epoch.

The existence of prices and their efficient computation is a complex issue
and is left out of this paper due to the space restrictions. For problems in which
the only positive allowable capacity allocation is that of one capacity unit, i.e.,
Ak,n ⊆ {1} for all competitors k and all states n, the concept of price reduces
to that of the marginal productivity index, well developed in the framework of
restless bandits and surveyed in Niño-Mora (2007). The case when there is a
single positive allowable capacity allocation (but not necessarily that of one
capacity unit), i.e., |Ak,n| ≤ 1 for all competitors k and all states n, was treated
in Jacko (2009, Section 5), and is closely related to the classic knapsack problem.
For more general settings see Weber (2007); Niño-Mora (2008).
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4.2 Greedy Rules for DSRCAP

If all the prices exist, then at every time epoch t we need to solve the following
generalized knapsack problem, denoting the actual state of every competitor k
by nk := Xk(t):

max
z

∑
k∈K,a∈Ak,nk

vak,nk
zk,a

subject to
∑

k∈K,a∈Ak,nk

azk,a = W (GKP)

∑
a∈Ak,nk

zk,a ≤ 1 for all k ∈ K,

zk,a ∈ {0, 1} for all k ∈ K, a ∈ Ak,nk

where z := (zk,a)k∈K,a∈Ak,nk
is the (t-dependent) vector of binary decision

variables denoting whether competitor k is allocated amount a of capacity W .
The first constraint represents the exhaustive capacity allocation, and the sec-
ond one means that at most a unique level of positive allowable capacity allo-
cation must be decided for each competitor. Then, the resource capacity allo-
cation to competitor k at time epoch t is given by

ak(t) :=
∑

a∈Ak,nk

azk,a for all k ∈ K. (9)

Note that (9) together with the first constraint in (GKP) assure the sample path
capacity allocation constraint (3).

Here is where the greedy rules arise, since the price/demand rule for the
knapsack problem applies to the generalized knapsack problem as well; one
only needs to assure that a unique level of positive allowable capacity allo-
cation is chosen for every competitor. In our case, the capacity demands are
given by positive allowable actions a ∈ Ak,Xk(t), so that the following adaptive
greedy rule can be considered:

General rule: Allocate the capacity at time t to competitors with the highest value
max{vak,Xk(t)/a : a ∈ Ak,Xk(t)}.

This value represents the highest capacity allocation efficiency for a given
competitor. The above rule reduces to the index rule, well known in the restless
bandit literature, as described in the example below.

Index rule: Allocate the resource at time t to a competitor with the highest value
v1
k,Xk(t).

Example 3. In the special case with capacity W = 1, the set Ak,n has at most
one element (a = 1), so problem (GKP) reduces to the following capacity-1
knapsack problem to be solved at every time epoch t:

max
z

∑
k∈Kt

v1
k,nk

zk,1

subject to
∑
k∈Kt

zk,1 = 1 (1KP)

zk,1 ∈ {0, 1} for all k ∈ Kt
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where Kt := {k ∈ K : 1 ∈ Ak,nk
} is the (t-dependent) set of all competitors

whose actual state is not uncontrollable, and where z := (zk,1)k∈Kt
. Obviously,

all the competitors k ∈ Kt are of equal demands, and therefore problem (1KP)
is optimally solved by the price rule, known as the index rule in the restless
bandit literature.

• • •

We remark that solution (9), in general, provides a heuristic to the intractable
problem (P). Solution (9) was proven in the celebrated work of Gittins and
Jones (1974) optimal for the multi-armed bandit problem, in which W = 1,
W a
k,n = a for all k, n, a, P 0

k is an identity matrix, and the prices are defined
as the Gittins index values. Such an optimality result also holds if (symmetric)
competitors are allowed to appear randomly over time (Whittle, 1981). Finally,
notice that the job sequencing problem stated in Example 1 is a special case of
the multi-armed bandit problem, and therefore the cµ-rule inherits optimality
from the Gittins index rule.
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