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Motivation

e Perishable product

> deteriorating product with associated deadline after
which it becomes worthless, if not sold

> arises in food industry (“best before” date), fashion
industry (seasonal goods), etc.

e How to select perishable products to be promoted?

> cannot ignore time to go!
> likely to be PSPACE-hard

e Similar problems in task management, project selection



Perishable Products

e With “increasing” demand

> utility obtained at or after the deadline

> e.g., transportation tickets, concert tickets, trips

> promoted at early periods, to stimulate later demand
> promoted at very final periods (last-minute)

e With “decreasing” demand

> utility obtained before the deadline

> e.g., grocery items, seasonal goods

> promoted at final periods, to correct for wrong
planning and pricing



Modeling Outline
e Single-item case: Optimal Dynamic Promotion

> marginal productivity indices (MPI)
> promote iff MPI is larger than promotion cost

e Inventory case
> MPI policy: calculate MPI of each unit and promote
iff MPI is larger than promotion cost

e Network case: Knapsack Problem for Perishable Items

> MPI policy: calculate MPI of each unit and solve a
knapsack problem with MPls as item values



Characterization of a Perishable ltem

e Decision moments: s =TT —1,...,1

> OCCuples space w
> if promoted, it remains unsold with probability p
> if not promoted, it remains unsold with probability

s > P
> once sold, it never resurrects

e Deadline: s =0

> pay cost ¢ > 0 if not sold ( “bad” state)
> no cost if sold (“good” state)
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Perishable Item as Markov Decision Chain

e States:
>t € {T,T —1,...,1}: unsold and t periods before
deadline
— actions to choose: promote/don’t promote
— no cost

> 0: unsold and perishing (exactly at deadline)
— no action to choose

— cost ¢

> ): sold or perished (terminal state)

— no action to choose

— no cost
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The Problem

e Consider promotion cost v per period if promoting

e Minimize the expected total 3-discounted cost:
) _ _
minEL | —B81r(0) + v Z BPw (T — s)
" i s=0 i
or simply min — Ry + vWr

e r(0) is the deadline reward (—c if unsold, O if sold)

e w(s) is the “work” at time s (1 if promoting, 0 if not)



Intuitive Solution

e Expected properties of optimal solution:

> if optimally promoted for v,

then optimally promoted for v/ < v
> if optimally promoted at ¢,

then optimally promoted at ¢t — 1

e Aim: To each state t assign priority index v; so that it
Is optimal to promote at state ¢ whenever v, > v

o We expect v; < 141 (increasing as deadline approaches)
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Marginal Productivity Index (MPI)
e Stationary policy @ = promotion set S C 7T

e MPI v, for state ¢ must satisty: if v = v,
both promoting and not promoting are optimal

e So, there is a promotion set S; for state ¢ such that

CRSM |y, S RS, s

e Therefore, if denominator is nonzero,
RStU{t} _ th\{t}

t

WtStU{t} _ WtSt\{t}

Uy = for some S;



Interpretation of MPI
e Marginal rate of substitution for promoting

e Marginal productivity rate of promoting with respect to
not promoting

e Expected marginal reward divided by marginal work

e Evolution of indices:

> cpu-rule (1960s); Gittins' index (1970s)
> Whittle's index (1988)
> MPI: Nino-Mora (2000s)
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MPI1 for Perishable Item

e Under a regularity condition for (gs), p, 5 we have

St:{t,t—l,...,l}

e So we have

Vt —
VVtSt ‘Iftst—l

e After some algebra, closed-form formula:

,, — _Bla=p)(Bp)
1 — 5(% — P)l_f%_l
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MPI Properties (under Regularity Cond.)

e Positive and proportional to deadline cost ¢

e Increasing in ¢;

e Depends only on ¢, not on whole sequence (gs)
e Increasing as deadline approaches: v; < v;_4

e Extends to undiscounted case (6 = 1)



Regularity Condition

e Regularity condition: for all s € {1, T —1,...,2},

e Holds if

> G
> G

> G

€mand
€mand

€mand

Bqs—1 — Bp = (Bqs — Bp)Bqs—1

is constant over time (¢ 's are constant)
is nonincreasing over time (¢s < ¢s_1)
Is moderately increasing over time
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Inventory of Perishable ltems

e Consider J units of a perishable product
e Common demand (e.g., Poisson)

e Denote by
> d(j) = P{# customers < j}

e Q: How many units should we promote?

e Try to use the MPI derived for single-unit case
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Calculation of ¢’s
e How to transform demand function into ¢'s?
e Label the unitsas 1,2,...,J
e The j-th customer buys unit labeled 5 (WLOG)
o Obviously g7 = d(j)

e g;: Is the conditional probability that unit 5
Is unsold at ¢ — 1 given that it was unsold at ¢

o Therefore we have ¢;; > d(1) for all j,¢

18



MPI Policy for Inventory

e Units only differ in their ¢'s, and

q;+ > p for all 5, whenever d(1) > p

e So, we can assign MPI v, r to every unit j
o By properties of MPl we have v;r > v;_; 7
e Policy: Promote all units j with v; 7 > v

e If the Regularity Condition holds for each unit
then this policy is optimal

19



Knapsack Problem for Perishable ltems

e Consider I perishable products with inventories J;
e Each unit of product 7 occupies space w;

o Let W be the promotion space (knapsack)

e A dynamic and stochastic combinatorial problem

e Aim: Fill in the knapsack so that the expected aggregate
total B-discounted cost is minimized
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KPPl — KP Reduction

e KPPI reduces to Knapsack Problem
WhenTZ-:J,,;:qZ-:LpZ-:O, and C; = U;

e (KP) is NP-hard = KPPI is at least NP-hard

e In fact, KPPl seems to be PSPACE-hard
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Dynamic Programming Formulation

Dr(zr)= > 2T

ieI%

Ds(zs)= 2. CiZ(s5)F min+ > PYsims]Dgy1(z3 —mys)
Z'GIQ Ys<Zg mgs<zg
2. Wil(s,5)SW
€T
e Solving a system of an exponential number of equations
for an exponential number of vectors z, at every stage

> tractability problem: curse of dimensionality
> no Interpretation



MPI Policy for KPPI

e Solve 0-1 Knapsack Problem for items (i, j):

Hhax E :V@',j),Tﬂ?z‘j
(i.)

subject to Zwi:pij <W (KP)

(4,5)

z;; € {0,1} for all (i, j)

e Policy: Promote y;

J

x;; units of each product¢ € Z
j=1
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Simulation Study

e Randomly generated instances, ¢;, w; € [10, 50]

o Let T'= max{T;} be the time horizon

1 3
e Non-conservative inventory: 5)\2"1} < J; < 5)\{1}

and 1 < J, < J

e Knapsack volume W less than 30% of total volume
e Experiment 1: J =1 and I, T varying (10000 instances)
e Experiment 2: I = 2 and J, T varying (10000 instances)
o Experiment 3: I =5,J =9,T = 10 (20 instances)
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Mean adjusted gap

Performance of MPI Policy (J = 1)
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Mean adjusted gap

Performance of MPI Policy (J = 1)
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Performance of MPI Policy (I = 2)
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Performance of MPI Policy (I = 2)
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Relative Suboptimality Gap

o Takes values between 0 (achievable) and oo (?)
e For what values of rsg(7) is m a “good” policy?
o Generally accepted: below 5%

e Is it a good measure for bounded-from-above problems?

e What if rsg(max) = 10%? What if C™" =~ (7?
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Adjusted Relative Suboptimality Gap

B O — Cmin
N Cmax _ Cmin

arsg(m)

o Takes values between 0 and 1 (both achievable)
e Suitable if C™** can be calculated and is not oo

o 71 Is better than my following rsg =
7 Is better than my following arsg

o Interpretation: Fraction of absolute gap C™a* — C™in
that is not avoided



Other Heuristics

e EDF policy: Products with Earlier Deadline go First

> nalve benchmark policy

e GRE policy: Solving (KP) by greedy heuristic

> to be used when (KP) is computationally intractable
> based on Nino-Mora (2002)

e Define performance ratio of policy w

mean (arsg(m))

t] =
ratio() mean (arsg(MPI)
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Performance Ratio of EDF Policy (J = 1)
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Performance Ratio of EDF Policy (J = 1)
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Performance Ratio of EDF Policy (I = 2)

3.5

Ratio

1.51

0.5

N

9 13 17 21
Number of units

T=4

1 mmT =0

mm| =8

1|==T =10

T =12

| |m=T =14

T=16
T=18
T=20

34



35

Performance Ratio of EDF Policy (I = 2)
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EDF Policy Summary

o Experiment 3: I =5,J =9,T = 10 (20 instances)
> ratio(m) = 3.58

e Significantly inferior to MPI policy in all relevant cases
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Performance Ratio of GRE Policy (J = 1)

T=4
m=T=0
=T =3
J|m=T =10
T =12
=T =14

T=16

T=18

T=20

2 3 4 5 : 7 3
Number of products



Performance Ratio of GRE Policy (J = 1)
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Performance Ratio of GRE Policy (I = 2)
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Performance Ratio of GRE Policy (I = 2)
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GRE Policy Summary

o Experiment 3: I =5,J =9,T = 10 (20 instances)
> ratio(m) = 1.59

e Qutperformed by MPI policy in all cases

e Suggesting convergence to MPI policy
for large values of parameters
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e We have presented:

> a nontrivial prob

)

Summary

em with closed-form MPI

> an optimal policy for inventory of perishable items
> a new Index-policy heuristic achieving
nearly-optimal performance for KPPI
> applicable to a variety of ad-hoc restrictions
> new policy performance measure for bounded problems

e What to do: extensions and other applications



Thank you for your attention
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