Optimal Dynamic Promotion and the Knapsack Problem for Perishable Items

Peter Jacko

INFORMS RMP, Montréal June 19, 2008

Motivation

- Perishable product
 - deteriorating product with associated deadline after which it becomes worthless, if not sold
 arises in food industry ("best before" date), fashion industry (seasonal goods), etc.
- How to select perishable products to be promoted?
 - > cannot ignore time to go!
 - ▷ likely to be PSPACE-hard
- Similar problems in task management, project selection

Perishable Products

- With "increasing" demand
 - utility obtained at or after the deadline
 - e.g., transportation tickets, concert tickets, trips
 - promoted at early periods, to stimulate later demand
 - promoted at very final periods (last-minute)
- With "decreasing" demand
 - utility obtained before the deadline
 - ▷ e.g., grocery items, seasonal goods
 - promoted at final periods, to correct for wrong planning and pricing

Modeling Outline

- Single-item case: Optimal Dynamic Promotion
 - marginal productivity indices (MPI)
 - promote iff MPI is larger than promotion cost
- Inventory case
 - MPI policy: calculate MPI of each unit and promote iff MPI is larger than promotion cost
- Network case: Knapsack Problem for Perishable Items
 MPI policy: calculate MPI of each unit and solve a knapsack problem with MPIs as item values

Characterization of a Perishable Item

- Decision moments: $s = T, T 1, \dots, 1$
 - \triangleright occupies space w
 - \triangleright if promoted, it remains unsold with probability p
 - ▷ if not promoted, it remains unsold with probability
 - $q_s > p$
 - once sold, it never resurrects
- Deadline: s = 0
 - \triangleright pay cost c > 0 if not sold ("bad" state)
 - ▷ no cost if sold ("good" state)

T

T-1 T-2 · · ·

0

T

T-1 T-2

• •

Perishable Item as Markov Decision Chain

• States:

- $ightarrow t \in \{T, T 1, \dots, 1\}$: unsold and t periods before deadline
 - actions to choose: promote/don't promote
 - no cost
- ▷ 0: unsold and perishing (exactly at deadline)
 - no action to choose
 - $-\cot c$
- $\triangleright \Omega$: sold or perished (terminal state)
 - no action to choose
 - no cost

The Problem

- Consider promotion cost ν per period if promoting
- Minimize the expected total β -discounted cost:

$$\min_{\pi} \mathbb{E}_T^{\pi} \left[-\beta^T r(0) + \nu \sum_{s=0}^{T-1} \beta^s w(T-s) \right]$$

or simply
$$\min_{\pi} -R_T^{\pi} + \nu W_T^{\pi}$$

• r(0) is the deadline reward (-c if unsold, 0 if sold)

• w(s) is the "work" at time s (1 if promoting, 0 if not)

Intuitive Solution

- Expected properties of optimal solution:
 - ▷ if optimally promoted for *ν*, then optimally promoted for *ν' < ν*▷ if optimally promoted at *t*, then optimally promoted at *t* − 1
- Aim: To each state t assign priority index ν_t so that it is optimal to promote at state t whenever $\nu_t > \nu$
- We expect $u_t <
 u_{t-1}$ (increasing as deadline approaches)

Marginal Productivity Index (MPI)

- Stationary policy $\pi \equiv \text{promotion set } S \subseteq T$
- MPI ν_t for state t must satisfy: if $\nu = \nu_t$, both promoting and not promoting are optimal
- So, there is a promotion set S_t for state t such that $-R_t^{S_t \cup \{t\}} + \nu_t W_t^{S_t \cup \{t\}} = -R_t^{S_t \setminus \{t\}} + \nu_t W_t^{S_t \setminus \{t\}}$
- Therefore, if denominator is nonzero,

$$\nu_t = \frac{R_t^{\mathcal{S}_t \cup \{t\}} - R_t^{\mathcal{S}_t \setminus \{t\}}}{W_t^{\mathcal{S}_t \cup \{t\}} - W_t^{\mathcal{S}_t \setminus \{t\}}} \quad \text{for some } \mathcal{S}_t$$

Interpretation of MPI

- Marginal rate of substitution for promoting
- Marginal productivity rate of promoting with respect to not promoting
- Expected marginal reward divided by marginal work
- Evolution of indices:

▷ *cµ*-rule (1960s); Gittins' index (1970s)
 ▷ Whittle's index (1988)
 ▷ MPI: Niño-Mora (2000s)

MPI for Perishable Item

• Under a regularity condition for $(q_s), p, \beta$ we have

$$\mathcal{S}_t = \{t, t-1, \dots, 1\}$$

So we have

$$\nu_t = \frac{R_t^{\mathcal{S}_t} - R_t^{\mathcal{S}_{t-1}}}{W_t^{\mathcal{S}_t} - W_t^{\mathcal{S}_{t-1}}}$$

• After some algebra, closed-form formula:

$$\nu_t = \frac{c\beta(q_t - p)(\beta p)^{t-1}}{1 - \beta(q_t - p)\frac{1 - (\beta p)^{t-1}}{1 - \beta p}}$$

MPI Properties (under Regularity Cond.)

- \bullet Positive and proportional to deadline cost c
- Increasing in q_t
- Depends only on q_t , not on whole sequence (q_s)
- Increasing as deadline approaches: $\nu_t < \nu_{t-1}$
- Extends to undiscounted case $(\beta = 1)$

Regularity Condition

• Regularity condition: for all $s \in \{T, T-1, \dots, 2\}$,

$$\beta q_{s-1} - \beta p \ge (\beta q_s - \beta p)\beta q_{s-1}$$

Holds if

▷ demand is constant over time (q_s's are constant)
 ▷ demand is nonincreasing over time (q_s ≤ q_{s-1})
 ▷ demand is moderately increasing over time

Inventory of Perishable Items

- Consider J units of a perishable product
- Common demand (e.g., Poisson)
- Denote by
 - $\triangleright d(j) = \mathbb{P}\{\# \text{ customers} < j\}$
- Q: How many units should we promote?
- Try to use the MPI derived for single-unit case

Calculation of q's

- How to transform demand function into q's?
- Label the units as $1, 2, \ldots, J$
- The j-th customer buys unit labeled j (WLOG)
- Obviously $q_{j,T} = d(j)$
- $q_{j,t}$ is the conditional probability that unit j is unsold at t-1 given that it was unsold at t
- Therefore we have $q_{j,t} \ge d(1)$ for all j, t

MPI Policy for Inventory

• Units only differ in their q's, and

 $q_{j,t} > p$ for all j, t whenever d(1) > p

- So, we can assign MPI $\nu_{j,T}$ to every unit j
- By properties of MPI we have $u_{j,T} \ge
 u_{j-1,T}$
- Policy: Promote all units j with $\nu_{j,T} > \nu$
- If the Regularity Condition holds for each unit then this policy is optimal

Knapsack Problem for Perishable Items

- Consider I perishable products with inventories J_i
- Each unit of product i occupies space w_i
- Let W be the promotion space (knapsack)
- A dynamic and stochastic combinatorial problem
- Aim: Fill in the knapsack so that the expected aggregate total β-discounted cost is minimized

$\mathsf{KPPI} \to \mathsf{KP}$ Reduction

• KPPI reduces to Knapsack Problem when $T_i = J_i = q_i = 1$, $p_i = 0$, and $c_i = v_i$

- (KP) is NP-hard \implies KPPI is at least NP-hard
- In fact, KPPI seems to be **PSPACE-hard**

Dynamic Programming Formulation

$$D_{T}(\boldsymbol{z}_{T}) = \sum_{i \in \mathcal{I}_{T}^{0}} c_{i} \boldsymbol{z}_{(T,i)}$$
$$D_{s}(\boldsymbol{z}_{s}) = \sum_{i \in \mathcal{I}_{S}^{0}} c_{i} \boldsymbol{z}_{(s,i)} + \min_{\substack{\boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \sum_{i \in \mathcal{I}_{s}^{+}} w_{i} \boldsymbol{y}_{(s,i)} \leq W}} \left\{ \sum_{\boldsymbol{m}_{s} \leq \boldsymbol{z}_{s}^{+}} \mathbb{P}^{\boldsymbol{y}_{s}}[\boldsymbol{m}_{s}] D_{s+1}(\boldsymbol{z}_{s}^{+} - \boldsymbol{m}_{s}) \right\}$$

- Solving a system of an exponential number of equations for an exponential number of vectors z_s at every stage
 tractability problem: curse of dimensionality
 - ▷ no interpretation

MPI Policy for KPPI

• Solve 0-1 Knapsack Problem for items (i, j):

$$\begin{split} \max_{x} \sum_{(i,j)} \nu_{(i,j),T} x_{ij} \\ \text{subject to} \ \sum_{(i,j)} w_i x_{ij} \leq W \\ x_{ij} \in \{0,1\} \text{ for all } (i,j) \end{split}$$
(KP)

• Policy: Promote $y_i = \sum_{j=1}^{J_i} x_{ij}$ units of each product $i \in \mathcal{I}$

Simulation Study

- Randomly generated instances, $c_i, w_i \in [10, 50]$
- Let $T = \max\{T_i\}$ be the time horizon
- Non-conservative inventory: $\frac{1}{2}\lambda_i T_i \leq J_i \leq \frac{3}{2}\lambda_i T_i$ and $1 \leq J_i \leq J$
- Knapsack volume W less than 30% of total volume
- Experiment 1: J = 1 and I, T varying (10000 instances)
- Experiment 2: I = 2 and J, T varying (10000 instances)
- Experiment 3: I = 5, J = 9, T = 10 (20 instances)

Performance of MPI Policy (J = 1)

Performance of MPI Policy (J = 1)

Performance of MPI Policy (I = 2)

Performance of MPI Policy (I = 2)

Relative Suboptimality Gap

$$\operatorname{rsg}(\pi) = \frac{C^{\pi} - C^{\min}}{C^{\min}}$$

• Takes values between 0 (achievable) and ∞ (?)

- For what values of $rsg(\pi)$ is π a "good" policy?
- ullet Generally accepted: below 5%
- Is it a good measure for bounded-from-above problems?
- What if rsg(max) = 10%? What if $C^{min} \approx 0$?

Adjusted Relative Suboptimality Gap

$$\operatorname{arsg}(\pi) = \frac{C^{\pi} - C^{\min}}{C^{\max} - C^{\min}}$$

• Takes values between 0 and 1 (both achievable)

- ullet Suitable if $C^{
 m max}$ can be calculated and is not ∞
- π_1 is better than π_2 following rsg $\equiv \pi_1$ is better than π_2 following arsg
- Interpretation: Fraction of absolute gap $C^{\max} C^{\min}$ that is not avoided

Other Heuristics

- EDF policy: Products with Earlier Deadline go First
 naive benchmark policy
- GRE policy: Solving (KP) by greedy heuristic
 - to be used when (KP) is computationally intractable
 based on Niño-Mora (2002)
- Define performance ratio of policy π

$$ratio(\pi) = \frac{mean (arsg(\pi))}{mean (arsg(MPI))}$$

Performance Ratio of EDF Policy (J = 1)

Performance Ratio of EDF Policy (J = 1)

Performance Ratio of EDF Policy (I = 2)

Performance Ratio of EDF Policy (I = 2)

EDF Policy Summary

- Experiment 3: I = 5, J = 9, T = 10 (20 instances)
 - \triangleright ratio $(\pi) = 3.58$
- Significantly inferior to MPI policy in all relevant cases

Performance Ratio of GRE Policy (J = 1)

Performance Ratio of GRE Policy (J = 1)

Performance Ratio of GRE Policy (I = 2)

Performance Ratio of GRE Policy (I = 2)

GRE Policy Summary

- Experiment 3: I = 5, J = 9, T = 10 (20 instances)
 - \triangleright ratio $(\pi) = 1.59$
- Outperformed by MPI policy in all cases
- Suggesting convergence to MPI policy for large values of parameters

Summary

- We have presented:
 - a nontrivial problem with closed-form MPI
 an optimal policy for inventory of perishable items
 a new index-policy heuristic achieving

 nearly-optimal performance for KPPI
 applicable to a variety of ad-hoc restrictions
 new policy performance measure for bounded problems
- What to do: extensions and other applications

Thank you for your attention