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Motivation

• Delays in information flow and action implementation

. physical distance of nodes in networks

. long-distance-controlled robots

. advanced processing of observations

• May lead to important losses if ignored

• We deal with delays in:

. admission control and routing to parallel queues

. admission control to a single queue
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Admission Control to a Single Queue with
Delays
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Admission Control and Routing with Delays
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Admission Control and Routing with Delays

• Even with 2 queues it is hard to analyze

• Delay of one period and symmetric queues: JSEQ

. “A large number of properties needs to be discovered

and then tediously verified.” (Kuri & Kumar, 1995)

• Delay of more than one period:

. “. . . the approach quickly becomes very unwieldy. . . ”

. JSEQ is not optimal (both Kuri & Kumar, 1995)

. “We were not able to derive significant results. . . ”

(Artiges, 1993)
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Admission Control and Routing with Delays

• What if servers, buffers, holding costs and delays differ?

. curse of dimensionality

• It is a joint decision of admitting to at most 1 queue

. there must be a queue where a job is worth admitting

. if there are several such queues, route to the queue

where admitting is most profitable

• Accomplished by an index policy

. via marginal productivity index (MPI)

. may be suboptimal due to ignored cross-dependence
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Outline

• Admission control to a single queue:

. MDP model with no delay

. MDP model with one period delay

. exploiting special structure via bi-threshold policies

. establishing existence of MPIs

. obtaining a fast algorithm for MPI calculation

• MPI policy properties for

. admission control and routing with one period delay

. servers assignment problem with one period delay

• Discussion of generalizations
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Admission Control to a Single Queue with
Delays
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Admission Control with No Delay

• Discrete time epochs t = 0, 1, 2, . . .

• Bernoulli arrivals at rate λ per period

• Geometric server at rate µ per period

• Buffer + server room: I

• Holding costs at rate Ci per period with i jobs

. convex, nondecreasing in i

• Loss costs at rate ν per rejected job
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MDP Model (No Delay)

• Action process a(t) ∈ A := {0, 1}: closing the gate

(a(t) = 1) or opening the gate (a(t) = 0)

• State process X(t) ∈ I := {0, 1, . . . , I}
. state I is uncontrollable

• At epoch t: a(t) must be based on X(t)

• Transition probabilities pa
ij

• One-period cost Ci + νW a
i , where the work W a

i is

W 1
i := λ W 0

i :=

{
λ if i = I

0 otherwise
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MDP Model (One-Period Delay)

• a(t) must be based on X̃(t) := (a(t− 1), X(t− 1))

. because X(t) is not known at t

• Action space A as before

• Augmented states Ĩ := (A×{0, 1, . . . , I−1})∪{(∗, I)}

. state (∗, I) appears by merging (0, I) with (1, I)

• Transition probabilities pa′
(a,i),(b,j) := pa

ij · 1{a′ = b}

• One-period cost C(a,i) + νW(a,i) := Ci + νW a
i

. note the independence of the current-period action
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Objective

• Solving the ν-wage problem: min
π∈Π

fπ
(a,i) + νgπ

(a,i)

. choosing a non-anticipative control policy π ∈ Π

. expected total discounted holding cost

fπ
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtCX̃(t)

]

. expected total discounted work (number of rejections)

gπ
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtWX̃(t)

]
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Exploiting Special Structure

• There is an optimal policy which is stationary,

deterministic, independent of the initial state

• Represent such policies as active sets S ⊆ Ĩ

. the set of states in which it prescribes to shut the gate

• Bi-threshold policies are optimal (Altman & Nain, 1992)

. ĨK,K

. ĨK,K+1

• The family of all such active sets: F
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Reduced Problem

• The ν-wage problem can be solved by solving

min
S∈F

fS(a,i) + νgS(a,i)

• Evaluating all S ∈ F requires O(I4) operations

• “Dual” approach in O(I3): marginal productivity indices

. but indexability (MPIs existence) must be proved

. we do by verifying PCL-indexability (Niño-Mora, 2001)

. we improve algorithm to O(I), as in no-delay case
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Indexability

• ν-wage problem is indexable, if

. the optimal active set decreases monotonically

from Ĩ to ∅ as ν increases from −∞ to ∞

• Equivalently, there exist values ν(a,i) such that

. it is optimal to shut the gate at state (a, i) if ν(a,i) ≥ ν

. it is optimal to open the gate at state (a, i) if ν(a,i) ≤ ν

• ν(a,i) is the marginal productivity index

. capturing the marginal productivity of work

. how much is worth shutting w.r.t. opening the gate
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Indexability

fS

gS

•Ĩ
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Indexability

fS

gS

• Ĩ \ {(1, 0)}
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Indexability

fS

gS

•
. . .
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Indexability

fS

gS

•
. . .
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Indexability

fS

gS

•
{(∗, I)}
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Indexability

fS

gS

• ∅
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PCL-Indexability

• A sufficient condition for indexability

• ν-wage problem is PCL(F)-indexable, if

(i) wS
(a,i) > 0 for each S ∈ F and (a, i) ∈ Ĩ

(ii) there is an optimal S ∈ F for every rejection cost ν

. we establish (i) by proving ∆1g
S
(1,i) := gS(1,i)− gS(0,i) > 0

− because wS
(a,i)’s are expected values of ∆1g

S
(1,i)’s

. Altman & Nain (1992) established (ii)

• Niño-Mora (ValueTools 2007): O(I3) MPI algorithm

. here, we simplify it to O(I) under linear holding costs
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Fast Index Algorithm (FI)

{Input I, λ, µ, c, β}
{Output

{
ν(a,i)

}
(a,i)∈eI}

{Initialization}
ζ := λ(1 − µ); η := µ(1 − λ); ε := 1 − ζ − η;
A0 := 0; A′

0 := βζ; B := βµ/(1 − β + βµ); B′ := βζB + β(µ − η); C := c/(1 − β + βµ); D0 := 0;
ν(1,0) := βζC/λ;

ν(0,0) :=
βζC

λ
· (1 − β + βµ)(1 + βλ + λµ) + βζ(µ + βµ + βζ)

(1 − β + βµ)(1 + βζ) + βζ(βζ − B′)
;

{Loop}
for K = 1 to I − 1 do

AK := βζ/[1 − β + βζ + βη(1 − AK−1)]; A′
K := βζ + β(µ − η)AK; DK := (c + βηDK−1) AK/(βζ); ZK := AKA′

K−1/A
′
K;

f 0 := −
βζ
AK

DK + βζ(c + βµBDK−1) + [c − β(µ − η)βDK−1] B
′

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1 − BAK−1)

;

f 1 := −
βζ
AK

DK + cβζBAK−1 + [βµβζ + (1 − β)β(µ − η)] DK−1 + A′
K−1(c − βζβC)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1 − BAK−1)

;

g0 :=
βλ (1 + B′)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1 − BAK−1)

; g1 :=
1 + A′

K−1

1 + B′ g0;

if K > 1 then

ν(0,K−1) :=
[β(µ − η)(DK−1 − c) + βηβζDK−1 + βζβζC] − [βηZK−1 + βε] A′

K−1f
0 − βζB′f 1

βλ − [βηZK−1 + βε] A′
K−1g

0 − βζB′g1
;

end {if};

ν(1,K) :=
[β(1 − µ)βζC + βµβ(µ − η)DK−1] − βµA′

K−1f
0 − β(1 − µ)B′f 1

βλ − βµA′
K−1g

0 − β(1 − µ)B′g1
;

end {for};
{Termination}
AI := βζ/[1 − β + βζ + βη(1 − AI−1)]; A′

I := βζ + β(µ − η)AI; DI := (c + βηDI−1) AI/(βζ); ZI := AIA
′
I−1/A

′
I;

f 0 := −
βζ
AI

DI − β(µ − η)βµDI−1

A′
I

AI
+ βµA′

I−1

; g0 :=
λ(1 + βµ)

A′
I

AI
+ βµA′

I−1

;

ν(0,I−1) :=
[β(µ − η)(DI−1 − c) + βηβζDI−1] − [βηZI−1 + βε] A′

I−1f
0

β(1 − ζ)λ − [βηZI−1 + βε] A′
I−1g

0
;

ν(∗,I) :=
[β(µ − η) + βηZI ] DI−1 + cZI

λ(1 − ZI)
;
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Optimal Bi-Threshold Policy

• Can be obtained from MPIs (nondecreasing in i)

. the optimal open-gate threshold is

K0 := min{i ∈ I : ν(0,i) ≥ ν}

. the optimal closed-gate threshold is

K1 := min{i ∈ I : ν(1,i) ≥ ν}

. if ν > ν(∗,I), then the gate is open always

• FI can be used also for infinite buffer (never stops)

• FI also works under the time-average criterion (β = 1)
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MPI Properties

• Both ν(0,i) and ν(1,i) are nondecreasing in i,

nondecreasing in λ, nonincreasing in µ

• Interleaving values:

. ν(0,i) ≤ ν(1,i+1) ≤ ν(0,i+1)

. ν(1,i) ≤ ν(0,i) ≤ ν(1,i+1)

• Convergence

. ν(1,i) → ν(0,i) as λ → 0

. ν(1,i) → ν(0,i−1) as λ(1− µ) → 1

. ν(0,i), ν(1,i) → βc/(1− β) as i →∞

• λν(1,0) = the expected total discounted holding cost
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Admission Control and Routing with Delay
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Admission Control and Routing with Delay

• MPI policy for K queues:

. Admit an arriving job iff

ν > νX̃k(t) for at least one queue k

. If admitted, route to the queue with lowest MPI

• By MPI properties, a job is routed to a queue with

. less waiting jobs

. faster server

. no job admitted in the previous period

. lower holding costs

• JSEQ is recovered in case of two symmetric queues
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Servers Assignment Problem with Delay
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Servers Assignment Problem with Delay

• The MPI is ν(a,i) = cβ(1−µ)
1−β(1−µ)

. equal for all augmented states

. equal to the MPI with no delay

. equal under any arrival rate λ

• By MPI properties, a job is routed to a queue with

. faster server

. lower holding costs

• Jobs are routed always to the same queue
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Why MPI Policy is not Optimal?

• MPI policy is, in general, not optimal due to cross-

dependence

. we do not know after-routing arrival rates for each

queue; moreover, they may be time-varying

. computation of MPIs implicitly assumes that the

threshold policy is the same in all periods

• MPI policy may be optimal in certain instances

• Mean behavior is nearly-optimal
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Summary of MPI Approach

• No news:

. analysis of problems with delays is hard

• Good news:

. yields tractable heuristics in heterogeneous problems

. powerful to obtain an exact algorithm of the same

complexity as in the no-delay case

. some general patterns are extensible to other problems

. promising for larger delays
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Thank you for your attention!


