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Motivation

e Delays in information flow and action implementation

> physical distance of nodes in networks
> long-distance-controlled robots
> advanced processing of observations

e May lead to important losses if ignored

e We deal with delays in:

> admission control and routing to parallel queues
> admission control to a single queue
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Admission Control and Routing with Delays

e Even with 2 queues it is hard to analyze

e Delay of one period and symmetric queues: JSEQ

> “A large number of properties needs to be discovered
and then tediously verified.” (Kuri & Kumar, 1995)

e Delay of more than one period:

> . .. the approach quickly becomes very unwieldy. . . "

> JSEQ is not optimal (both Kuri & Kumar, 1995)

> “We were not able to derive significant results. . . "
(Artiges, 1993)



Admission Control and Routing with Delays

e What if servers, buffers, holding costs and delays differ?

> curse of dimensionality

e It is a joint decision of admitting to at most 1 queue

> there must be a queue where a job I1s worth admitting
> if there are several such queues, route to the queue
where admitting is most profitable

e Accomplished by an index policy

> via marginal productivity index (MPI)
> may be suboptimal due to ignored cross-dependence



Outline

e Admission control to a single queue:

> MDP model with no delay

> MDP model with one period delay

> exploiting special structure via bi-threshold policies
> establishing existence of MPls

> obtaining a fast algorithm for MPI calculation

e MPI policy properties for

> admission control and routing with one period delay
> servers assignment problem with one period delay

e Discussion of generalizations
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Admission Control with No Delay

e Discrete time epochst =0,1,2,...

e Bernoulli arrivals at rate A per period
o Geometric server at rate p per period
e Buffer + server room: [

e Holding costs at rate C; per period with 7 jobs

> convex, nondecreasing in 17

e Loss costs at rate v per rejected job



MDP Model (No Delay)
e Action process a(t) € A := {0,1}: closing the gate
(a(t) = 1) or opening the gate (a(t) = 0)
e State process X (t) € 7 :={0,1,...,1}
> state [ I1s uncontrollable
e At epoch t¢: a(t) must be based on X (¢)
e Transition probabilities py,

e One-period cost C; + vW?, where the work W/ is

(A ifi=1

0O otherwise

\
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MDP Model (One-Period Delay)

o a(t) must be based on X (¢) := (a(t — 1), X (¢t — 1))

> because X (t) is not known at ¢

e Action space A as before

o Augmented states 7 := (A% {0,1,...,I—1}H)U{(x, 1)}
> state (%, [) appears by merging (0, ) with (1,7)

e Transition probabilities p?; .05 ‘=P - 1{a' = b}

e One-period cost U, + vW(, ) = C; + v

> note the independence of the current-period action



Objective

e Solving the v-wage problem: min f . + vg,
mell ’ ’

> choosing a non-anticipative control policy m € 11
> expected total discounted holding cost

78 e T Ly
flai) = Efuiy | B Ck
| t=0 |

> expected total discounted work (number of rejections)

T . T t N
9y = Efuiy | D_ B Wi
| =0 ]



Exploiting Special Structure

e There I1s an optimal policy which is stationary,
deterministic, independent of the initial state

e Represent such policies as active sets § C 7

> the set of states in which it prescribes to shut the gate

e Bi-threshold policies are optimal (Altman & Nain, 1992)

~ 0
> T B

|> f

e The family of all such active sets: F

12
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Reduced Problem

e [he v-wage problem can be solved by solving

- S S
21612 f(a,i) T Vg(a,i)

e Evaluating all S € F requires O(I*) operations

e “Dual” approach in O(I?): marginal productivity indices

> but indexability (MPIs existence) must be proved
> we do by verifying PCL-indexability (Nifio-Mora, 2001)
> we improve algorithm to O([), as in no-delay case
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Indexability
e v-wage problem is indexable, if
> the optimal active set decreases monotonically
from Z to () as v increases from —oo to oo
e Equivalently, there exist values v, ;) such that

> it is optimal to shut the gate at state (a, %) if v, > v
> it is optimal to open the gate at state (a, ) if v, ;) < v

® V(i IS the marginal productivity index

> capturing the marginal productivity of work
> how much is worth shutting w.r.t. opening the gate



Indexability
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PCL-Indexability

e A sufficient condition for indexability

e v-wage problem is PCL(F)-indexable, if
(i) wfai) > () for each S € F and (a,i) € Z

(ii) there is an optimal S € F for every rejection cost v

> we establish (i) by proving Algfu) = g‘a’i) — gZ%)i) > 0

S

— because w(aﬂ.)’s are expected values of Algfm's

> Altman & Nain (1992) established (ii)

e Nifio-Mora (ValueTools 2007): O(I°) MPI algorithm

> here, we simplify it to O(I) under linear holding costs

21



Fast Index Algorithm (FI)

{Input I,\ p,c, 5}

{output {v( }(a,i)ef}

{Initialization}

C:=A1=p); n=pl=X); e=1-C=1n;

Ao :=0; Ay:=0¢ B:=p0u/(L=pF+0u); B :=0CB+pBp—n); C=c/(-06+p0p); Do:=0;

V1,0 = 5CC/)\;

L BCC (1= B4 Bu)(L+ BA+ M)+ BC(u+ B+ 5C)
D A—B+pw+060)+p(B—B)
{Loop}

for K=1to I —1 do

Ak = B¢/[1 =B+ B¢+ On(l — Ax—1)l; Ak = BC+ B(p—n)Ak; Dx = (c+ AnDk-1) Ax/(BC);  Zk = Ak Ak 1/Ak;

%DK + B¢(c + BuBDg_1) + [c — B(p — n)BDg 1] B’ )

fo = 7
fx_i + BAY B+ B¢Bu(l — BAk 1)
I 4o Dic + ¢BCBAk-1 + [BuB¢ + (1 = B)B(1 — 1)) Dic—1 + A1 (c — B¢BC)
| A+ BB+ BCOu(L — BAk ) ’
P = BA(1+ B) g 1+ Ay o
A< 1 BAy_, B/ + BCBu(l — BAx_) 1+ 5

if K > 1 then
[6(p — 1)(Dk—1 — ¢) + BnB¢Dx_1 + BCBCC] — [BnZk—1 + Be] Ak, f* — BCB'f1

voren = BN = [BnZxc—1 + Be] Ayc_1g° — BCB'g?
end {if};
. 1B = w)BCC + B — ) Di—1] = Bpdk_\f° = BA = ) B'f
- BA = Budie_1g° — B(1 — p)B'g" ’
end {for};
{Termination}

Ap=0B¢/[1 =8+ B¢+ 0l —Ara)]; A7 =60+ B(p—n)Ar; Dr:=(c+6nDr1) Ar/(BC);  Zr:= ArAr_, /AL

£ .= _%Dl — B(p —n)BuDi- = AL+ Bu)

21 Bl 4y Budy_,
i _ 1B = n)(Di1 — 0) + BnB¢Dr ] — [BnZi s + Be] Ap_1 f°
(s B =X — [BnZ1_1 + Be] Ap_,° ’

- [B(p —n) + BnZi) D11 + cZr
o \1-2) j
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Optimal Bi-Threshold Policy

e Can be obtained from MPIs (nondecreasing in %)

> the optimal open-gate threshold is

Ko :=min{i € T : vy, > v}
> the optimal closed-gate threshold is

Ky :=min{i € T : vy, > v}
> it v > v, 1), then the gate is open always

e Fl can be used also for infinite buffer (never stops)

e Fl also works under the time-average criterion (6 = 1)



MPI1 Properties

e Both vy, and v(; ;) are nondecreasing in ¢,
nondecreasing In A, nonincreasing in [

e Interleaving values:

> V04) S V(1,i+1) < V(0,i4+1)
> V(1) < V(0,) S V(1,i41)

e Convergence

> V(1) — V(0,i) aS A — 0
> Vi) — V(,-1) as )\(1 — ,u) — 1
> V(o.4), V1,i) — Be/(1 =) as i — oo

® Ay ) = the expected total discounted holding cost

24
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Admission Control and Routing with Delay

e MPI policy for K queues:

> Admit an arriving job iff
V> Vg o for at least one queue k
> |f admltted route to the queue with lowest MPI

e By MPI properties, a job is routed to a queue with

> less waiting jobs

> faster server

> no job admitted in the previous period
> lower holding costs

e JSEQ is recovered in case of two symmetric queues
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Servers Assignment Problem with Delay

e The MPlis v, = 16_65(11_—%)

> equal for all augmented states
> equal to the MPI with no delay
> equal under any arrival rate A

e By MPI properties, a job is routed to a queue with

> faster server
> lower holding costs

e Jobs are routed always to the same queue
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Why MPI Policy is not Optimal?

e MPI policy is, in general, not optimal due to cross-
dependence

> we do not know after-routing arrival rates for each
queue; moreover, they may be time-varying

> computation of MPls implicitly assumes that the
threshold policy 1s the same in all periods

e MPI policy may be optimal in certain instances

e Mean behavior is nearly-optimal



Summary of MPI Approach

e No news:

> analysis of problems with delays is hard

e Good news:

> yields tractable heuristics in heterogeneous problems

> powerful to obtain an exact algorithm of the same
complexity as in the no-delay case

> some general patterns are extensible to other problems

> promising for larger delays
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Thank you for your attention!
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