Admission Control and Routing to Parallel Queues with Delayed Information via Marginal Productivity Indices

Peter Jacko* and José Niño-Mora

ValueTools 2008, Athens

*Universidad Carlos III de Madrid, Department of Statistics

Motivation

Delays in information flow and action implementation

- > physical distance of nodes in networks
- Iong-distance-controlled robots
- > advanced processing of observations
- May lead to important losses if ignored
- We deal with delays in:
 - admission control and routing to parallel queuesadmission control to a single queue

Admission Control to a Single Queue with Delays

Admission Control and Routing with Delays

Admission Control and Routing with Delays

- Even with 2 queues it is hard to analyze
- Delay of one period and symmetric queues: JSEQ
 - "A large number of properties needs to be discovered and then tediously verified." (Kuri & Kumar, 1995)
- Delay of more than one period:
 - "... the approach quickly becomes very unwieldy..."
 JSEQ is not optimal (both Kuri & Kumar, 1995)
 "We were not able to derive significant results..." (Artiges, 1993)

Admission Control and Routing with Delays

- What if servers, buffers, holding costs and delays differ?
 curse of dimensionality
- It is a joint decision of admitting to at most $1\ {\rm queue}$
 - there must be a queue where a job is worth admitting
 if there are several such queues, route to the queue where admitting is most profitable
- Accomplished by an index policy
 - via marginal productivity index (MPI)
 may be suboptimal due to ignored cross-dependence

Outline

• Admission control to a single queue:

- MDP model with no delay
- MDP model with one period delay
- > exploiting special structure via bi-threshold policies
- establishing existence of MPIs
- obtaining a fast algorithm for MPI calculation
- MPI policy properties for

admission control and routing with one period delay
 servers assignment problem with one period delay

• Discussion of generalizations

Admission Control to a Single Queue with Delays

7

Admission Control with No Delay

- Discrete time epochs $t = 0, 1, 2, \ldots$
- Bernoulli arrivals at rate λ per period
- Geometric server at rate μ per period
- Buffer + server room: I
- Holding costs at rate C_i per period with i jobs
 convex, nondecreasing in i
- Loss costs at rate ν per rejected job

MDP Model (No Delay)

- Action process $a(t) \in \mathcal{A} := \{0,1\}$: closing the gate (a(t) = 1) or opening the gate (a(t) = 0)
- State process X(t) ∈ I := {0, 1, ..., I}
 state I is uncontrollable
- At epoch t: a(t) must be based on X(t)
- Transition probabilities p_{ij}^a
- One-period cost $C_i +
 u W_i^a$, where the work W_i^a is

$$W_i^1 := \lambda \qquad \qquad W_i^0 := \begin{cases} \lambda & \text{if } i = I \\ 0 & \text{otherwise} \end{cases}$$

MDP Model (One-Period Delay)

- a(t) must be based on X̃(t) := (a(t − 1), X(t − 1))
 because X(t) is not known at t
- \bullet Action space ${\cal A}$ as before
- Augmented states $\widetilde{\mathcal{I}} := (\mathcal{A} \times \{0, 1, \dots, I-1\}) \cup \{(*, I)\}$ > state (*, I) appears by merging (0, I) with (1, I)
- Transition probabilities $p_{(a,i),(b,j)}^{a'} := p_{ij}^a \cdot \mathbf{1}\{a' = b\}$
- One-period cost C_(a,i) + νW_(a,i) := C_i + νW^a_i
 ▷ note the independence of the current-period action

Objective

• Solving the ν -wage problem: $\min_{\pi \in \Pi} f^{\pi}_{(a,i)} + \nu g^{\pi}_{(a,i)}$

▷ choosing a non-anticipative control policy π ∈ Π
 ▷ expected total discounted holding cost

$$f_{(a,i)}^{\pi} := \mathbb{E}_{(a,i)}^{\pi} \left[\sum_{t=0}^{\infty} \beta^t C_{\widetilde{X}(t)} \right]$$

expected total discounted work (number of rejections)

$$g_{(a,i)}^{\pi} := \mathbb{E}_{(a,i)}^{\pi} \left[\sum_{t=0}^{\infty} \beta^{t} W_{\widetilde{X}(t)} \right]$$

Exploiting Special Structure

- There is an optimal policy which is stationary, deterministic, independent of the initial state
- Represent such policies as active sets $\mathcal{S} \subseteq \widetilde{\mathcal{I}}$
 - ▷ the set of states in which it prescribes to shut the gate
- Bi-threshold policies are optimal (Altman & Nain, 1992)

 \bullet The family of all such active sets: ${\cal F}$

Reduced Problem

• The ν -wage problem can be solved by solving

$$\min_{\mathcal{S}\in\mathcal{F}} f_{(a,i)}^{\mathcal{S}} + \nu g_{(a,i)}^{\mathcal{S}}$$

• Evaluating all $\mathcal{S}\in\mathcal{F}$ requires $\mathcal{O}(I^4)$ operations

• "Dual" approach in $\mathcal{O}(I^3)$: marginal productivity indices

▶ but indexability (MPIs existence) must be proved
▶ we do by verifying PCL-indexability (Niño-Mora, 2001)
▶ we improve algorithm to O(I), as in no-delay case

• ν -wage problem is indexable, if

 $\triangleright \mbox{ the optimal active set decreases monotonically from $\widetilde{\mathcal{I}}$ to \emptyset as ν increases from $-\infty$ to ∞ }$

• Equivalently, there exist values $u_{(a,i)}$ such that

▷ it is optimal to shut the gate at state (a, i) if $\nu_{(a,i)} \ge \nu$ ▷ it is optimal to open the gate at state (a, i) if $\nu_{(a,i)} \le \nu$

• $\nu_{(a,i)}$ is the marginal productivity index

capturing the marginal productivity of work
how much is worth shutting w.r.t. opening the gate

15

PCL-Indexability

• A sufficient condition for indexability

• ν -wage problem is $PCL(\mathcal{F})$ -indexable, if

(i) $w_{(a,i)}^{S} > 0$ for each $S \in \mathcal{F}$ and $(a,i) \in \widetilde{\mathcal{I}}$ (ii) there is an optimal $S \in \mathcal{F}$ for every rejection cost ν

▷ we establish (i) by proving $\Delta_1 g_{(1,i)}^{\mathcal{S}} := g_{(1,i)}^{\mathcal{S}} - \overline{g_{(0,i)}^{\mathcal{S}}} > 0$ - because $w_{(a,i)}^{\mathcal{S}}$'s are expected values of $\Delta_1 g_{(1,i)}^{\mathcal{S}}$'s ▷ Altman & Nain (1992) established (ii)

Niño-Mora (ValueTools 2007): O(I³) MPI algorithm
 ▷ here, we simplify it to O(I) under linear holding costs

Fast Index Algorithm (FI)

{Input $I, \lambda, \mu, c, \beta$ } $\{\texttt{Output} \ \{\nu_{(a,i)}\}_{(a,i)\in\widetilde{\mathcal{I}}}\}$ {Initialization} $\zeta := \lambda(1-\mu); \quad \eta := \mu(1-\lambda); \quad \varepsilon := 1-\zeta - \eta;$ $\overline{A_0 := 0}; \quad \overline{A'_0} := \beta \zeta; \quad \overline{B} := \beta \mu / (1 - \beta + \beta \mu); \quad \overline{B'} := \beta \zeta B + \beta (\mu - \eta); \quad C := \underline{c} / (1 - \beta + \beta \mu); \quad D_0 := 0;$ $\nu_{(1,0)} := \beta \zeta C / \lambda;$ $u_{(0,0)} := rac{eta \zeta C}{\lambda} \cdot rac{(1-eta+eta \mu)(1+eta\lambda+\lambda\mu)+eta \zeta(\mu+eta \mu+eta \zeta)}{(1-eta+eta \mu)(1+eta \zeta)+eta \zeta(eta \zeta-B')};$ {Loop} for K = 1 to I - 1 do $A_{K} := \beta \zeta / [1 - \beta + \beta \zeta + \beta \eta (1 - A_{K-1})]; \quad A'_{K} := \beta \zeta + \beta (\mu - \eta) A_{K}; \quad D_{K} := (c + \beta \eta D_{K-1}) A_{K} / (\beta \zeta); \quad Z_{K} := A_{K} A'_{K-1} / A'_{K};$ $f^{0} := -\frac{\frac{\beta\zeta}{A_{K}}D_{K} + \beta\zeta(c + \beta\mu BD_{K-1}) + [c - \beta(\mu - \eta)\beta D_{K-1}]B'}{\frac{A'_{K}}{A_{K}} + \beta A'_{K-1}B' + \beta\zeta\beta\mu(1 - BA_{K-1})};$ $f^{1} := -\frac{\frac{\beta\zeta}{A_{K}}D_{K} + c\beta\zeta BA_{K-1} + [\beta\mu\beta\zeta + (1-\beta)\beta(\mu-\eta)]D_{K-1} + A'_{K-1}(c-\beta\zeta\beta C)}{\frac{A'_{K}}{A_{K}} + \beta A'_{K-1}B' + \beta\zeta\beta\mu(1-BA_{K-1})};$ $g^{0} := \frac{\beta\lambda(1+B')}{\frac{A'_{K}}{A_{K}} + \beta A'_{K-1}B' + \beta\zeta\beta\mu(1-BA_{K-1})}; \quad g^{1} := \frac{1+A'_{K-1}}{1+B'}g^{0};$ if K > 1 ther $\nu_{(0,K-1)} := \frac{\left[\beta(\mu-\eta)(D_{K-1}-c) + \beta\eta\beta\zeta D_{K-1} + \beta\zeta\beta\zeta C\right] - \left[\beta\eta Z_{K-1} + \beta\varepsilon\right]A'_{K-1}f^0 - \beta\zeta B'f^1}{\beta\lambda - \left[\beta\eta Z_{K-1} + \beta\varepsilon\right]A'_{K-1}g^0 - \beta\zeta B'g^1};$ end {if}; $\nu_{(1,K)} := \frac{[\beta(1-\mu)\beta\zeta C + \beta\mu\beta(\mu-\eta)D_{K-1}] - \beta\mu A'_{K-1}f^0 - \beta(1-\mu)B'f^1}{\beta\lambda - \beta\mu A'_{K-1}g^0 - \beta(1-\mu)B'a^1};$ end {for}; {Termination} $A_{I} := \beta \zeta / [1 - \beta + \beta \zeta + \beta \eta (1 - A_{I-1})]; \quad A'_{I} := \beta \zeta + \beta (\mu - \eta) A_{I}; \quad D_{I} := (c + \beta \eta D_{I-1}) A_{I} / (\beta \zeta); \quad Z_{I} := A_{I} A'_{I-1} / A'_{I};$ $f^{0} := -\frac{\frac{\beta\zeta}{A_{I}}D_{I} - \beta(\mu - \eta)\beta\mu D_{I-1}}{\frac{A'_{I}}{A_{I}} + \beta\mu A'_{I-1}}; \quad g^{0} := \frac{\lambda(1 + \beta\mu)}{\frac{A'_{I}}{A_{I}} + \beta\mu A'_{I-1}};$ $\nu_{(0,I-1)} := \frac{[\beta(\mu - \eta)(D_{I-1} - c) + \beta\eta\beta\zeta D_{I-1}] - [\beta\eta Z_{I-1} + \beta\varepsilon]A'_{I-1}f^0}{\beta(1 - \zeta)\lambda - [\beta\eta Z_{I-1} + \beta\varepsilon]A'_{I-1}q^0};$ $\nu_{(*,I)} := \frac{[\beta(\mu - \eta) + \beta \eta Z_I] D_{I-1} + c Z_I}{\lambda(1 - Z_I)};$

Optimal Bi-Threshold Policy

Can be obtained from MPIs (nondecreasing in i)
 the optimal open-gate threshold is

$$K_0 := \min\{i \in \mathcal{I} : \nu_{(0,i)} \ge \nu\}$$

▷ the optimal closed-gate threshold is

$$K_1 := \min\{i \in \mathcal{I} : \nu_{(1,i)} \ge \nu\}$$

- \triangleright if $\nu >
 u_{(*,I)}$, then the gate is open always
- FI can be used also for infinite buffer (never stops)
- FI also works under the time-average criterion $(\beta = 1)$

MPI Properties

- Both $\nu_{(0,i)}$ and $\nu_{(1,i)}$ are nondecreasing in i, nondecreasing in λ , nonincreasing in μ
- Interleaving values:
 - ▷ $\nu_{(0,i)} \le \nu_{(1,i+1)} \le \nu_{(0,i+1)}$ ▷ $\nu_{(1,i)} \le \nu_{(0,i)} \le \nu_{(1,i+1)}$
- Convergence

$$\begin{split} \triangleright \ \nu_{(1,i)} &\to \nu_{(0,i)} \text{ as } \lambda \to 0 \\ \triangleright \ \nu_{(1,i)} &\to \nu_{(0,i-1)} \text{ as } \lambda(1-\mu) \to 1 \\ \triangleright \ \nu_{(0,i)}, \nu_{(1,i)} \to \beta c/(1-\beta) \text{ as } i \to \infty \end{split}$$

• $\lambda \nu_{(1,0)} =$ the expected total discounted holding cost

Admission Control and Routing with Delay

Admission Control and Routing with Delay

- MPI policy for K queues:
 - ▷ Admit an arriving job iff
 ν > ν_{X̃k}(t) for at least one queue k
 ▷ If admitted, route to the queue with lowest MPI
- By MPI properties, a job is routed to a queue with
 - less waiting jobs
 - ▷ faster server
 - no job admitted in the previous period
 - Iower holding costs
- JSEQ is recovered in case of two symmetric queues

Servers Assignment Problem with Delay

Servers Assignment Problem with Delay

- The MPI is $\nu_{(a,i)} = \frac{c\beta(1-\mu)}{1-\beta(1-\mu)}$
 - equal for all augmented states
 - equal to the MPI with no delay
 - \triangleright equal under any arrival rate λ
- By MPI properties, a job is routed to a queue with
 - ▷ faster server
 - Iower holding costs
- Jobs are routed always to the same queue

Why MPI Policy is not Optimal?

- MPI policy is, in general, not optimal due to crossdependence
 - we do not know after-routing arrival rates for each queue; moreover, they may be time-varying
 computation of MPIs implicitly assumes that the threshold policy is the same in all periods
- MPI policy may be optimal in certain instances
- Mean behavior is nearly-optimal

Summary of MPI Approach

- No news:
 - > analysis of problems with delays is hard
- Good news:
 - yields tractable heuristics in heterogeneous problems
 powerful to obtain an exact algorithm of the same complexity as in the no-delay case
 - some general patterns are extensible to other problems
 promising for larger delays

Thank you for your attention!