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ABSTRACT
This paper addresses the problem of designing and com-
puting a tractable index policy for dynamic job admission
control and/or routing in a discrete time Markovian model
of parallel loss queues with one-period delayed state obser-
vation, which comes close to optimizing an infinite-horizon
discounted or average performance objective involving lin-
ear holding costs and rejection costs. Instead of devising
some ad hoc indices, we deploy a unifying fundamental de-
sign principle for design of priority index policies in dynamic
resource allocation problems of multiarmed restless bandit
type, based on decoupling the problem into subproblems and
defining an appropriate marginal productivity index (MPI)
for each subproblem. In the model of concern, such sub-
problems represent admission control problems to a single
queue with one-period feedback delay, for which the struc-
ture of optimal policies has been characterized in previous
work as being of bi-threshold type, yet without giving an
algorithm to compute the optimal thresholds. We deploy
in such subproblems theoretical and algorithmic results on
restless bandit indexation, which yields a fast algorithm that
computes the MPI for a subproblem with a buffer size of n
performing only O(n) arithmetic operations. Such MPI val-
ues can be used both to immediately obtain the optimal
thresholds for the subproblem, and to design an index pol-
icy for the admission control and/or routing problem in the
multi-queue system. The results readily extend to models
with infinite buffer space.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov processes, Queue-
ing theory;
C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing protocols;
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems
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1. INTRODUCTION
This paper addresses the problem of designing and com-

puting a tractable heuristic policy for dynamic job admis-
sion control and routing in a discrete time Markovian model
of parallel loss queues with one-period delayed state obser-
vation, which comes close to optimizing an infinite-horizon
discounted or average performance objective involving linear
holding costs and rejection costs. Two versions of the model
are considered, depending on whether the admission control
capability is enabled or not. The results will also apply to
the corresponding models with infinite buffer space.

Jobs arrive to the system as a Bernoulli stream with prob-
ability 0 < λ < 1 of arrival per period. Upon a job’s arrival,
a central controller must decide: (i) in the case that admis-
sion control is enabled, whether to admit the job or to reject
it; and, if admitted, (ii) to which of K queues in parallel to

route the job for service. Queue k ∈ K , {1, . . . ,K} is
endowed with a finite buffer with room for holding nk ≥ 1
jobs waiting or in service, and has a single geometric server,
which serves jobs in FCFS order and completes the service
of a job in a period with probability 0 < µk < 1. Arrival
and service processes are mutually independent.

Denote by Xk(t) the state of queue k at the start of period
t, given by the number of jobs it holds waiting or in service,
and by ak(t) ∈ {0, 1} the action indicator that takes the
value 1 when a job arriving at time t is not to be routed
to queue k. We assume that at the start of period t the
controller does not know the current state, but has informa-
tion on previous states and actions, knowing in particular
Xk(t− 1) and ak(t− 1) for each queue k.

Action choice is based on adoption of an admission control
and routing policy (if admission control is enabled), or just a
routing policy (if it is not), denoted by π. This is to be cho-
sen from the corresponding class Π of (possibly randomized)
policies that use previous state and action information.

The system incurs holding costs, at rate ck(ik) > 0 per
period that ik jobs are held in queue k; and loss costs, at
rate ν per rejected job, due either to active rejection or to



forced rejection (blocking) when an arrival finds all buffers
full.

We will find it convenient to formulate the total cost in-
curred in a period in which the joint system state is j = (jk)
and action a = (ak) prevails as a constant plus a term that
is separably additive across queues, using the identity∑
k∈K

ckjk+νλ
{

1−
∑
k∈K

(1−ak)
}

= −(K−1)λν+
∑
k∈K

(ckjk+νλak).

(1)
Note that the term 1−

∑
k∈K(1−ak) in (1) takes the value 1

if an arrival is to be rejected (ak = 1 for every k), and takes
the value 0 otherwise (ak = 0 for exactly one k).

The operation of such a system raises the following perfor-
mance optimization problems: (i) find a policy minimizing
the expected total discounted value of costs accrued,

min
π∈Π

Eπ
(i−,a−)

[
∞∑
t=0

∑
k∈K

{
ck
(
Xk(t)

)
+ νλak(t)

}
βt
]
, (2)

where 0 < β < 1 is the discount factor and Eπ
(i,a)[·] de-

notes expectation under policy π conditioned on the ini-
tial previous joint state and action vectors being equal to
X(−1) = i− = (i−k ) and a(−1) = a− = (a−k ); and (ii) find a
policy minimizing the long-run average cost rate per period,

min
π∈Π

lim sup
T→∞

1

T
Eπ

(i−,a−)

[
T∑
t=0

∑
k∈K

{
ck
(
Xk(t)

)
+ νλak(t)

}]
.

(3)
Note that in the objectives in (2)–(3) we have disregarded
the additive constant −(K − 1)λν in (1).

Such problems are relevant in a variety of application do-
mains, most notably in the operation of packet-switched
communication networks and distributed computer systems,
where there are nonnegligible propagation delays on system
state information, which force the controller to take deci-
sions based on stale information.

As for our considering joint admission control and routing
problems, instead of restricting attention to the conventional
pure-routing case, the motivation is that it allows the system
designer to take into account the tradeoff between rejection
and holding costs. The key insight is that, when the system
is heavily congested, denying access to further arrivals until
the congestion is sufficiently reduced can substantially de-
crease holding costs at a relatively small expense in terms
of increased rejection costs.

The above problems are naturally formulated as partially
observed Markov decision processes (POMDPs), which in
turn are readily reformulated as conventional Markov deci-
sion processes (MDPs) by redefining the state of each queue

k as the augmented state Yk(t) ,
(
ak(t − 1), Xk(t − 1)

)
,

and using the joint state and action process Y(t) =
(
Yk(t)

)
and a(t) =

(
ak(t)). Computation of optimal policies for the

resultant multidimensional MDPs by solving the associated
dynamic programming (DP) equations is, however, hindered
by the curse of dimensionality in large-scale models. We will
thus focus attention on the more realistic and practical goals
of designing and computing well-grounded heuristic policies
that are readily implementable.

Since in such problems the controller must dynamically
assess the relative values of alternative rejection and routing
actions, it is intuitively appealing to do so based on an index
policy. In the present model, such policies are based on

attaching to each queue k a numeric index νk(a−k , i
−
k ), which

can be thought of as a measure of undesirability for routing a
job to queue k, given as a function of the queue’s augmented
state, which we denote by (a−k , i

−
k ) to emphasize that it refers

to the observed action-state pair at the previous period. The
resultant index policy prescribes the following actions, when
at time t the augmented state of each queue k is known to
be Yk(t) = (a−k , i

−
k ). In the problem version with admission

control capability, the policy prescribes to admit an arriving
job if ν > νk(a−k , i

−
k ) for at least one queue k, i.e., if the cost

of rejecting the job exceeds the undesirability of routing it to
some queue; otherwise, the job is rejected. If accepted, the
job is routed to a queue of lowest index value, breaking ties
arbitrarily, among those queues k for which ν > νk(a−k , i

−
k ).

Note that such policies may well prescribe to accept and
route a job to a queue that is actually full, unbeknownst
to the controller, in which case the job will be blocked and
hence rejected.

For the special case of the pure-routing problem in which
there are two symmetric infinite-buffer queues (µk ≡ µ and
ck ≡ 1), it is shown in [6] that an index policy is optimal:
the Join the Shortest Expected Queue (JSEQ) rule, which
routes an incoming job to a queue k of lowest index

νJSEQ
k (a−k , i

−
k ) ,


i−k − µ if a−k = 1, i−k ≥ 1

0 if a−k = 1, i−k = 0

i−k + λ− µ if a−k = 0, i−k ≥ 1

λ(1− µ) if a−k = 0, i−k = 0,

where the index represents the expected value of Xk(t) con-
ditioned on (ak(t− 1), Xk(t− 1)) = (a−k , i

−
k ). Such a result

partially extends to queues with delays classical results in
[16, 4] for symmetric queues without delays on optimality of
the Join the Shortest (Nonfull) Queue (JSQ) rule.

For the case of routing to two nonsymmetric queues with
infinite buffers, in which index policies need no longer be
optimal, [2] shows (in a variation on the above model) that
the optimal routing policy is characterized by a monotone
switching curve, extending a classical result in [3] for a model
without delayed information. Still, one can easily devise a
variety of heuristic routing index rules by defining indices
based on ad hoc arguments, analogously to the Shortest Ex-
pected Delay routing rule in [5]. Yet, a drawback of such
conventional indices, which typically measure a queue’s ex-
pected weighted load, is that they only give a routing rule,
being of no use to obtain a reasonable combined admission
control and routing rule as outlined above, since considera-
tion of rejection costs does not play a role in their definition.

We are thus led to address the issue of how to define ap-
propriate indices νk(a−k , i

−
k ) for the above admission control

and routing problems. Instead of proposing some ad hoc in-
dex via heuristic arguments, we will deploy a unifying fun-
damental design principle for priority allocation policies in
multiarmed restless bandit problems (MARBPs), of which
(2) and (3) are special cases, based on the economically in-
tuitive concept of marginal productivity index (MPI). Such
an approach was introduced in [15], and has been developed
and applied in a variety of models by the second author in
work including [7, 8, 10, 9], which is reviewed in [12]. In
particular, [8, 13] introduced such an approach to the de-
sign of index policies for admission control and routing to
parallel exponential queues without delayed information. As
for use of MPI policies for problems with delayed state in-



formation, they were introduced in [14] in the setting of a
dynamic scheduling model.

In the present setting, and focusing for concreteness on
discounted problem (2) under combined admission control
and routing, such a restless bandit indexation approach is
based on decoupling the problem into individual single-queue
admission control subproblems, one for each queue k ∈ K:

min
πk∈Πk

Eπk

(i−
k
,a−

k
)

[
∞∑
t=0

{
ck
(
Xk(t)

)
+ νλak(t)

}
βt
]
, (4)

where Πk denotes the class of admission control policies
based on one-period delayed state observation for operat-
ing queue k in isolation, and Eπk

(i−
k
,a−

k
)
[·] denotes expectation

conditioned on the initial observed state and action pair be-
ing equal to Yk(0) =

(
Xk(−1), ak(−1)

)
= (i−k , a

−
k ). Note

that, in such a setting, taking action ak(t) = 1 at period
t means denying access to potential arrivals, which can be
conveniently visualized as the action of shutting the queue’s
entry gate which is taken by a gatekeeper.

Problem (4) is a single restless bandit problem (RBP), i.e.,
a binary-action (ak(t) = 1: active; ak(t) = 0: passive) MDP,
on which we can deploy the powerful theoretical and algo-
rithmic results available for restless bandit indexation (cf.
[12]). Let us say that problem (4) is indexable if there exists
an index ν∗k(i−k , a

−
k ) that characterizes its optimal policies

for every value of rejection cost parameter ν ∈ R, as follows:
it is optimal to take the active action (shut the entry gate)
in augmented state Yk(t) = (i−k , a

−
k ) iff ν∗k(i−k , a

−
k ) ≥ ν.

In such a case, we term ν∗k(i−k , a
−
k ) the queue’s MPI, due

to its economic interpretation as a measure of the rate of
marginal reduction in expected holding cost relative to the
marginal increase in expected rejections that results from
shutting the gate in state (i−k , a

−
k ) instead of opening it,

which characterizes the expected holding cost versus rejec-
tions tradeoff curve. Such is the index we propose to use as
the basis for designing an index rule for admission control
and/or routing for the multi-queue problems of concern.

Two issues need thus be addressed: (i) show that problem
(4) is indeed indexable; and (ii) design an efficient index-
computing algorithm. As for the first issue, we will deploy
the sufficient indexability conditions based on partial con-
servation laws (PCLs) introduced in [7, 8]. Such conditions
require one to identify a family of stationary deterministic
policies among which an optimal policy for problem (4) ex-
ists for every value of the parameter ν. For such a purpose,
we draw on results in [1, 6] that characterize the structure of
optimal policies for such an admission control problem (in
an infinite-buffer model) with one-period delayed state in-
formation. Such work shows that it suffices to consider poli-
cies that are characterized by two thresholds k1 ≥ k0 ≥ 0,
as follows: if the previous observed number of jobs in the
system was i− and the previous action was to open, i.e.,
a− = 0 (resp. shut, i.e., a− = 1) the queue’s entry gate, the
(k0, k1)-policy prescribes to shut the gate iff i− > k0 (resp.
iff i− > k1). The intuition behind such a result is that, if
it is optimal to shut the entry gate given that it was pre-
viously shut, then, other things being equal, it should also
be optimal to shut it when it was previously open, as in the
latter case the actual number of jobs in the system cannot
be smaller than in the former. It is further shown in [1] that
one need only consider threshold pairs that differ in at most
one unit: 0 ≤ k1 − k0 ≤ 1. Note that, in order to be con-

sistent with such bi-threshold policies, the MPI ν∗(a−, i−)
must be monotone nondecreasing in i−, and satisfy

ν∗(0, i−) ≥ ν∗(1, i−).

As for the second issue, that of index computation, pro-
vided PCL-indexability is established relative to such a fam-
ily of policies, one can use the adaptive-greedy index algo-
rithm introduced in [7, 8] to compute the MPI. Using the
general fast-pivoting implementation given in [11] such an
algorithm has a cubic arithmetic operation complexity in
the number of restless bandit states, which in the present
setting corresponds to an O(n3) operation count. While
tractable, such a complexity can be overly burdensome for
online computation in high-speed communication switches.

Relative to the above two issues, this paper presents the
following contributions: (i) it shows that problem (4) is
PCL-indexable relative to bi-threshold policies, which en-
sures both existence of the MPI and the validity of the
adaptive-greedy index algorithm for its computation; and
(ii) by exploiting special structure, a substantially faster in-
dex algorithm is presented that computes the MPI in O(n)
operations.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the formulation of the admission control
problems with and without feedback delay as Markov deci-
sion problems (MDPs). Section 3 discusses the restless ban-
dit indexation approach to be deployed in a single-queue ad-
mission control problem with delayed information. Finally,
Section 4 discusses the theoretical and algorithmic results.

Proofs of all results along with an extensive computational
study testing the performance of the proposed index policies
will be included in the full version of this paper, currently
under preparation.

2. MDP FORMULATIONS
In order to see the analogy, in this section we formulate

as a Markov decision process (MDP) both the admission
control problem without delay and its counterpart with one-
period delayed observation.

2.1 Admission Control with No Delay
First we formulate as an MDP the no-delay admission

control problem. Let X(t) be the state process, denoting
the queue length (including jobs in service, if any) at time
period t. If a(t) denotes the action process, then the queue’s
gatekeeper must choose at time period t between shutting
the entry gate (a(t) = 1) and opening it (a(t) = 0). The
MDP elements are as follows:

• The action space is denoted by A , {0, 1}.

• The state space is X , {0, 1, . . . , n}, where state i ∈ X
represents the number of jobs in the system.

• Writing ζ , λ(1 − µ), η , µ(1 − λ), and ε , 1 −
ζ − η, the one-period transition probabilities paij ,
P [X(t) = j|X(t− 1) = i, a(t− 1) = a] from state 1 ≤
i ≤ n− 1 to state j under action a are

p0
ij =


η if j = i− 1

ε if j = i

ζ if j = i+ 1

p1
ij =

{
µ if j = i− 1

1− µ if j = i;

(5)



for the boundary cases, p1
00 = 1, and

p0
0j =

{
1− ζ if j = 0

ζ if j = 1
panj =

{
µ if j = n− 1

1− µ if j = n

(6)

All other transition probabilities are zero.

• If the queue length is i ∈ X, then one-period hold-
ing cost Ci is incurred. We assume Ci to be convex
nondecreasing in i. At the same time, imagining that
the gatekeeper performs work when he rejects an ar-
rival, the one-period quantity of work expended is the
expected number of rejected jobs during the current
period, given by

Q1
i , λ, Q0

i ,

{
λ if i = n

0 otherwise.

2.2 Admission Control with Delay
In the admission control problem with delay, the decision

at period t is based on the augmented state Y (t) , (a(t −
1), X(t−1)). Thus, Y (t) is the observed state at time period
t, while X(t) is the actual (hidden) queue length process.
The MDP elements of the admission control problem with
delay are as follows:

• The action space is A as in the no-delay problem.

• First note that states (0, n) and (1, n) in the problem
with delay are indistinguishable, so we will merge them
into a unique state denoted by (∗, n). We therefore
define the augmented state space as

Y , (A× {0, 1, . . . , n− 1}) ∪ {(∗, n)}.

• The one-period transition probabilities are

pa
′

(a,i),(b,j) , P
[
Y (t+ 1) = (b, j)|Y (t) = (a, i), a(t) = a′

]
= paij · 1{a′ = b},

where the paij are as in the no-delay model above. For
the merged state (∗, n), we have

pa
′

(a,i),(∗,n) , pain.

• If the current-period augmented state is (a, i), then

the one-period holding cost is taken to be C(a,i) , Ci.
Similarly, the gatekeeper’s one-period work is defined
as the expected number of rejected jobs during the
previous period,

Q(1,i) , λ Q(0,i) ,

{
λ if i = n

0 otherwise.
(7)

To evaluate an admission control policy π under the dis-
counted criterion relative to a given discount factor 0 < β <
1, we consider the following two measures. Let

gπ(a,i) , Eπ(a,i)

[
∞∑
t=0

QY (t)β
t

]
. (8)

be the expected total discounted work expended (i.e., the
expected total discounted number of rejected jobs) if starting

from state Y (0) = (a, i) under policy π. The corresponding
expected total discounted holding cost incurred is

fπ(a,i) , Eπ(a,i)

[
∞∑
t=0

CY (t)β
t

]
. (9)

If the rejection cost ν is interpreted as the wage paid to
gatekeeper per rejected job, then the objective is to solve the
following ν-wage problem for each ν ∈ R, where one seeks
to minimize the sum of holding and labor costs:

min
π∈Π

fπ(a,i) + νgπ(a,i), (10)

where Π is the class of all admission control policies that
use state and action information up to and including the
previous period.

3. RESTLESS BANDIT INDEXATION
In the previous section we have formulated the admission

control problem with delay as a binary-action Markov de-
cision process (MDP), i.e., a restless bandit, where shutting
the entry gate corresponds to the active action, and opening
it as the passive action.

We next address such a problem by deploying a restless
bandit indexation approach, following the seminal idea in-
troduced in [15] and developed by the second author, in
work surveyed in [12]. We focus on the finite-buffer problem
under the discounted criterion. The solution to the problem
under the time-average criterion is treated in Section 4.3.

MDP theory ensures existence of an optimal policy that is
stationary, deterministic and independent of the initial state.
We represent a stationary deterministic policy in terms of an
active set S ⊆ Y, i.e., the set of states in which it prescribes
to shut the gate. The problem to find an optimal admission
control policy is thus reduced to finding an optimal active
set,

min
S⊆Y

fS(a,i) + νgS(a,i). (11)

Now, let us say that the ν-wage problem (11) is indexable
if, as the parametric rejection cost ν is increased from −∞
to ∞ the set of states where it is optimal to take the active
action (shut the gate) decreases monotonically from Y to ∅.
Such an indexability property is equivalent to existence of
break-even values ν∗(a,i) of the rejection cost ν attached to
augmented states (a, i) ∈ Y, which characterize the optimal
policies for (11) as follows: it is optimal to take the active
action when the system occupies augmented state (a, i) iff
ν∗(a,i) ≥ ν. We will refer to index ν∗(a,i) as the marginal pro-
ductivity index (MPI), after its economic interpretation as
the marginal productivity of work at state (a, i), as eluci-
dated in [8, 10].

3.1 Exploiting Special Structure
While one could test numerically whether a given instance

is indexable and calculate the MPI ν∗(a,i), we aim instead
to establish analytically the indexability of the admission
control problem with delay. This will further allow us to
achieve our objective of obtaining a fast way of computing
the indices. In this subsection we show how to exploit special
structure for such a purpose.

The key is to be able to identify a family F ⊆ 2Y of active
sets, satisfying certain connectivity conditions (see [12, Sec.
4.2] for the details), among which an optimal policy (active



set) for ν-wage problem (11) exists for every value of ν ∈ R.
We will thus aim to establish indexability relative to such a
family, or F -indexability.

Before presenting the appropriate family F to use for the
admission control problem with delay, we next the sufficient
conditions we will deploy to establish F -indexability, based
on satisfaction of partial conservation laws (PCLs), intro-
duced in [7, 8].

Denote by 〈a, S〉 the policy that takes action a in the ini-
tial period and adopts the S-active policy afterwards. Define
the marginal work measure by

wS(a,i) , g
〈1,S〉
(a,i) − g

〈0,S〉
(a,i) , (12)

i.e., as the marginal increment in work expended (recall that
work is performed by the gatekeeper when he rejects an ar-
rival) that results from shutting the gate instead of opening
it at the initial period, provided that the S-active policy
is followed on subsequent periods. Analogously, define the
marginal cost measure,

cS(a,i) , f
〈0,S〉
(a,i) − f

〈1,S〉
(a,i) , (13)

as the corresponding decrease in holding costs incurred. Fi-
nally, define the marginal productivity rate

νS(a,i) ,
cS(a,i)

wS(a,i)
,

provided that the denominator does not vanish. As we will
see, wS(a,i) is positive for the present model under active sets
S taken from the active-set family F to be given below.

Table 1: Adaptive-greedy Index Algorithm AGF .

Output:
{

(ak, ik), ν∗(ak,ik)

}2n+1

k=1

S0 , Y;
for k = 1 to 2n+ 1 do

pick (ak, ik) ∈ arg min
{
ν
Sk−1
(a,i) : (a, i) ∈ Sk−1

and Sk−1 \ {(a, i)} ∈ F};
ν∗(ak,ik) := ν

Sk−1
(ak,ik);

Sk , Sk−1 \ {(ak, ik)};
end {for};

We will further refer to the adaptive-greedy index algo-
rithm AGF described in Table 1, which computes both an
augmented state string (ak, ik) spanning Y (note that the
size of the augmented state space is |Y| = 2n + 1) along
with index values ν∗(ak,ik).

Definition 1. We say that problem (11) is PCL(F )-
indexable if :

(i) for every active set S ∈ F and augmented state (a, i) ∈
Y, wS(a,i) > 0;

and either of the following conditions holds:

(ii) algorithm AGF computes index ν∗(ak,ik) in nondecreas-
ing order; or

(ii’) for every rejection cost ν ∈ R, there exists an optimal
active set S ∈ F .

The concept of PCL(F )-indexability was introduced in
[7, 8] in terms of conditions (i) and (ii) in Definition 1. The
more recent equivalent reformulation in terms of conditions
(i) and (ii’) is announced in [12, Sec. 4.2] and [11]. The
usefulness of such a concept is made clear by the following
result.

Theorem 1. If problem (11) is PCL(F )-indexable, then
it is F -indexable, and the index ν∗(ak,ik) computed by algo-
rithm AGF is its MPI.

3.2 Choosing the Active-Set Family
To choose the appropriate active-set family F we draw on

results in [1], which establish the optimality of bi-threshold
policies for the problem of concern. A bi-threshold active-set
policy with open-gate threshold m0 and shut-gate threshold
m1 will be denoted by

S(m0,m1) , {(0,m0), (0,m0 + 1), . . . , (0, n)}
∪ {(1,m1), (1,m1 + 1), . . . , (1, n)}, (14)

which is well-defined for all 0 ≤ m0,m1 ≤ n + 1 except
the active sets Sn+1,n and Sn,n+1, because states (1, n) and
(0, n) are duplicates, and hence either both or none of them

can belong to S(m0,m1).
Thus, the S(m0,m1)-active policy proceeds as follows. If

the gate was open (resp. shut) at the previous period, the
policy prescribes to shut the gate if the queue length at the
previous period was greater than or equal to the open-gate
threshold m0 (resp. the shut-gate threshold m1).

Intuitively, if an active set S(m0,m1) is optimal for some
rejection cost ν, then it must be m0 ≤ m1. Indeed, for a
given previous-period queue length, we should be less prone
to shut the gate if it was previously shut than if it was pre-
viously open, because the queue length cannot get larger
under a shut gate. Indeed, we can draw on [1, Theorem 3.1]
to show that it suffices to use such active sets to solve the
problem of concern, further restricting attention to thresh-
olds that satisfy m1 ≤ m0 + 1. Therefore, the appropriate
family of optimal active sets to choose for the admission
control problem with delay is

F , {S(m,m) : m = 0, 1, . . . , n+ 1}

∪ {S(m,m+1) : m = 0, 1, . . . , n− 1}, (15)

where S(0,0) = Y and S(n+1,n+1) = ∅.
Although the result in [1, Theorem 3.1] was shown for the

problem with infinite buffer, it directly applies to the finite-
buffer variant of concern herein. Note that if a bi-threshold
policy is optimal for the infinite-buffer problem, then it is
also optimal for all problems with buffer size equal to or
larger than both thresholds.

For the active-set family F given in (15), picking (ak, ik)
in the adaptive-greedy algorithm becomes trivial, because
there is a unique feasible augmented state at each step.
Thus, at step k = 1, only state (1, 0) both belongs in S0

and S0 \ {(1, 0)} = S(0,1) ∈ F , since S0 , Y = S(0,0). Simi-
larly, at step k = 2, only state (0, 0) both belongs in S1 and

S1\{(0, 0)} = S(1,1) ∈ F . In general, (ak, ik) = (0, (k/2)−1)
for every even 1 ≤ k ≤ 2n, and (ak, ik) = (1, (k − 1)/2) for



every odd 1 ≤ k ≤ 2n. Finally, at step k = 2n + 1, the
chosen state is (∗, n).

To summarize, the sequence of active sets Sk generated
by algorithm AGF under such an active-set family F is
uniquely determined, being given by

S0 = Y = S(0,0), S1 = S(0,1), S2 = S(1,1), S3 = S(1,2),

S4 = S(2,2), . . . , S2n−1 = S(n−1,n), S2n = S(n,n),

S2n+1 = S(n+1,n+1) = ∅,
(16)

and the generated sequence of augmented states (ak, ik) is

(a1, i1) = (1, 0), (a2, i2) = (0, 0), (a3, i3) = (1, 1),

(a4, i4) = (0, 1), . . . , (a2n−1, i2n−1) = (1, n− 1),

(a2n, i2n) = (0, n− 1), (a2n+1, i2n+1) = (∗, n).

In lishg of the above results, Table 2 shows the the resul-
tant simplified version of algorithm AGF as it applies to the
postulated family F given in (15). Note however that the
computational complexity remains at the same level since

the main difficulty lies in the calculation of ν
Sk−1
(ak,ik), for which

no computational details are given.

Table 2: Simplified Version of Algorithm AGF under
the Active-set Family F in (15).

Output:
{
ν∗(a,i)

}
(a,i)∈Y

for m = 1 to n do

ν∗(1,m−1) := νS
(m−1,m−1)

(1,m−1) ;

ν∗(0,m−1) := νS
(m−1,m)

(0,m−1) ;

end { for };

ν∗(∗,n) := νS
(n,n

(∗,n) ;

4. RESULTS
In this section we focus on the admission control problem

with delay with a finite buffer of size n ≥ 2 under the dis-
counted criterion. The case n = 1 is treated in Section 4.2.
The results under the time-average criterion are summarized
in Section 4.3.

Our main results are twofold. First, we show that the
problem is PCL(F )-indexable (cf. Definition 1) under the
active-set family F given in (15), which allows us to invoke
Theorem 1 to ensure that algorithm AGF can be used to
compute the MPI. Second, we dramatically reduce the com-
plexity of such an algorithm, which has generally a cubic
complexity O(n3) as shown in [11], obtaining an implemen-
tation that performs only O(n) arithmetic operations.

Let us introduce a more compact notation. For a variable
of the form x(a,i), we will use the backward difference opera-
tor in the first dimension, i.e., the action-difference operator,

∆1x(1,i) , x(1,i) − x(0,i) (17)

and in the second dimension, i.e., the state-difference oper-
ator,

∆2x(a,i) , x(a,i) − x(a,i−1) (18)

whenever the right-hand side expressions are defined. We
further write ∆2x(a,0) , 0 for a ∈ A. Note that from such
definitions we obtain the following auxiliary identity:

∆2x(1,i) −∆2x(0,i) = ∆1x(1,i) −∆1x(1,i−1). (19)

We list our main results, drawing on the technical analysis
of work measures which is omitted due to space constraints.

Proposition 1. The admission control problem with de-
lay (11) is PCL(F )-indexable, and therefore it is indexable
and algorithm AGF computes its MPI.

4.1 A Fast Index Algorithm
In order to avoid unnecessary technical complications, we

henceforth restrict attention to the linear holding cost case,
i.e., Ci , ci for some c > 0. We develop an implementation
of the above adaptive-greedy algorithm that computes the
MPI performing only O(n) arithmetic operations, which is
two orders of magnitude faster that the best general imple-
mentation of the algorithm, which performs O(n3) opera-
tions.

Note that algorithm AGF in Table 2 is formulated in its
bottom-up version, as it calculates the MPI values in non-
decreasing order (cf. Definition 1(ii)). One can similarly
consider the algorithm’s reformulation in its equivalent, top-
down version, starting with the empty set and calculating
the indices in nonincreasing order.

In other words, while the bottom-up version of algorithm
AGF traverses the active-set family F in the order (cf. 16)

S(0,0), S(0,1), S(1,1), S(1,2), . . . , S(n−1,n), S(n,n), S(n+1,n+1),

the top-down version does it in the reverse order

S(n+1,n+1), S(n,n), S(n−1,n), . . . , S(1,2), S(1,1), S(0,1), S(0,0).

For instance, the MPI value ν∗(1,0) is calculated as the

marginal productivity rate νS
(0,0)

(1,0) in the bottom-up version,
while the same value is calculated as the marginal productiv-

ity rate νS
(0,1)

(1,0) in the top-down version. In fact, [8, Theorem

6.4(b)] implies that ν
Sk−1
(ak,ik) = ν

Sk
(ak,ik), using the notation

in Table 2. Therefore, we can reformulate the algorithm
in terms of marginal productivity rates under active sets
S(m,m) only. The resultant simplified algorithm is presented
in Table 3.

Table 3: Reformulation of Algorithm AGF in terms
of Active Sets S(m,m) only.

Output:
{
ν∗(a,i)

}
(a,i)∈Y

ν∗(1,0) := νS
(0,0)

(1,0) ;

for m = 1 to n− 1 do

ν∗(0,m−1) := νS
(m,m)

(0,m−1); ν∗(1,m) := νS
(m,m)

(1,m)

end {for};

ν∗(0,n−1) := νS
(n,n)

(0,n−1); ν∗(∗,n) := νS
(n+1,n+1)

(∗,n)

We next develop an efficient implementation of the algo-
rithmic scheme AGF , termed the fast index (FI) algorithm,
which is described in Table 4. Algorithm FI is two orders



of magnitude faster than the best existing general imple-
mentation of the algorithm AGF . We characterize the MPI
calculated as indicated in Table 3 in terms of closed-form
expressions of pivot state-differences.

Proposition 2. The FI algorithm in Table 4 computes
the MPI for problem (11) under the discounted criterion,
performing O(n) arithmetic operations.

Once the MPI is available is known, the optimal thresh-
olds for a given rejection cost ν are readily obtained. The
optimal open-gate threshold is

m0 = min{i ∈ X : ν∗(0,i) ≥ ν},

and the optimal shut-gate threshold is

m1 = min{i ∈ X : ν∗(1,i) ≥ ν}.

If the rejection charge is high enough, in particular if ν >
ν∗(∗,n), then m0 , n+ 1 and m1 , n+ 1, meaning that it is
optimal to always shut the gate.

Note that the indices calculated in the FI algorithm’s
“loop” are independent of the buffer length n (only the in-
dices of boundary states (0, n− 1) and (∗, n) depend on n).
Therefore, the algorithm can be used to obtain the MPI for
the model extension with infinite buffer space, although in
such a case the algorithm’s loop would never stop.

4.2 The case of a single buffer space
In this section we solve the admission control problem

with delay for n = 1, i.e., no job is allowed to be queued,
except for the one in service. While this problem may not be
of intrinsic interest, its solution given next serves as a basis
for the corresponding problem of admission control and/or
routing to parallel queues where each queue has a single
buffer space.

Proposition 3. The MPI of state (a, i) ∈ Y in case n =
1 is state-independent and equals

ν∗(a,i) :=
ζβC

λ
=

cλβ(1− µ)

1− β(1− µ)
.

These indices can be obtained in the same way as the
general case n ≥ 2. The state-independent marginal pro-
ductivity index means that, given a rejection cost ν, it is
optimal either to admit always, or to reject always, regard-
less of the previous-period state and previous-period action,
i.e., regardless of information available.

4.3 The Time-Average Criterion
The above results extend directly to the admission control

problem with delay under the time-average criterion.

Proposition 4. By setting β = 1, the FI algorithm in
Table 4 computes the MPI under the time-average criterion.

4.4 Further Remarks
If in state (1, 0), the buffer is empty, because it was empty

a period ago and the gate has been closed since then. There-
fore, one could expect that the index of state (1, 0) is the
same as the index of state 0 in the no-delay problem, which
is in fact true. Moreover, there is a simple interpretation of
that expression.

If the buffer is empty, the expected total β-discounted
holding cost is

ζβc
[
1 + β(1− µ) + (β(1− µ))2 + . . .

]
=

βζc

1− β + βµ
,

because ζ is the probability that the job remains in the buffer
for more than a period. The above expression is equal to
λν∗(1,0), the expected (total β-discounted) rejection cost is
if the rejection cost ν = ν∗(1,0). Thus, in state (1, 0) it is
optimal to close the gate if the expected rejection cost is
lower than the expected discounted total holding cost of an
admitted job. Further, in state (1, 0) it is optimal to let the
gate open if the expected rejection cost is greater than the
expected discounted total holding cost of an admitted job.
If the two expected costs are equal, both closing and opening
is optimal. It is also clear that under the former condition it
is optimal to close the gate in any state, and therefore the
indices of all states must not be smaller than ν∗(1,0).

Figure 1 shows the indices for a number of instances of the
admission control problem with delay. An extensive simula-
tion study we have performed suggests a convergence of the
indices:

ν∗(1,i) → ν∗(0,i) as λ→ 0,

ν∗(1,i) → ν∗(0,i−1) as ζ → 1,

ν∗(0,i) →
βc

1− β as i→∞,

ν∗(1,i) →
βc

1− β as i→∞.

The convergence of the marginal productivity indices to
βc/(1 − β) is intuitive. If the buffer is almost full (say, the
pervious-period queue length is n − 2), then admitting a
job means to increase the overal holding cost by c at least
in the following n − 2 periods, because the admitted job
cannot leave the system earlier that the previous n− 2 jobs.
Therefore, the expected total β-discounted holding cost is
at least

βc
[
1 + β + β2 + · · ·+ βn−2] =

βc(1− βn−1)

1− β .

On the other hand, it is not greater than the expected hold-
ing cost of remaining in the buffer forever, which is

βc
[
1 + β + β2 + . . .

]
=

βc

1− β .

Now it is clear that the marginal productivity indices con-
verge to βc/(1− β) as n→∞.
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Table 4: The Fast Index Algorithm FI.

Input: n, λ, µ, c, β ;

Output:
{
ν∗(a,i)

}
(a,i)∈Y

}

{ Initialization }

ζ := λ(1− µ); η := µ(1− λ); ε := 1− ζ − η;
A0 := 0; A′0 := βζ; B := βµ/(1− β + βµ); B′ := βζB + β(µ− η); C := c/(1− β + βµ); D0 := 0;
ν∗(1,0) := ζβC/λ;

ν∗(0,0) :=
ζ

λ
βC1

(1− β + βµ)(1 + βζ) + βζ(µ+ βµ+ βζ) + (1− β + βµ)(1 + β)(µ− η)

(1− β + βµ)(1 + βζ) + βζβζ(1−B)− βζβ(µ− η)
;

{ Loop }

for m := 1 to n− 1 do

Am := βζ/[1− β + βζ + βη(1−Am−1)]; A′m := βζ + β(µ− η)Am; Dm := (c+ βηDm−1)Am/(βζ);

f0 := −
βζ
Am

Dm + βζ(c+ βµBDm−1) + [c− β(µ− η)βDm−1]B′

A′m
Am

+ βA′m−1B
′ + βζβµ(1−BAm−1)

;

f1 := −
βζ
Am

Dm + cβζBAm−1 + [βµβζ + (1− β)β(µ− η)]Dm−1 +A′m−1(c− βζβC)
A′m
Am

+ βA′m−1B
′ + βζβµ(1−BAm−1)

;

g0 :=
βλ (1 +B′)

A′m
Am

+ βA′m−1B
′ + βζβµ(1−BAm−1)

; g1 :=
1 +A′m−1

1 +B′
g0
;

if m > 1 then

ν∗(0,m−1) :=
[β(µ− η)(Dm−1 − c) + βηβζDm−1 + βζβζC]− [βηAm−1A

′
m−2 + βεA′m−1] f0 − βζB′f1

βλ−
[
βηAm−1A′m−2 + βεA′m−1

]
g0 − βζB′g1

;

end {if};

ν∗(1,m) :=
[β(1− µ)βζC + βµβ(µ− η)Dm−1]− βµA′m−1f

0 − β(1− µ)B′f1

βλ− βµA′m−1g
0 − β(1− µ)B′g1

;

end {for};

{ Termination }

An := βζ/[1− β + βζ + βη(1−An−1)]; A′n := βζ + β(µ− η)An; Dn := (c+ βηDn−1)An/(βζ);

f0 := −
βζ
An
Dn − β(µ− η)βµDn−1

A′n
An

+ βµA′n−1

; g0 :=
λ(1 + βµ)

A′n
An

+ βµA′n−1

;

ν∗(0,n−1) :=
[β(µ− η)(Dn−1 − c) + βηβζDn−1]− [βηAn−1A

′
n−2 + βεA′n−1] f0

β(1− ζ)λ−
[
βηAn−1A′n−2 + βεA′n−1

]
g0

;

ν∗(∗,n) :=
β(µ− η)Dn−1A

′
n + βζDnA

′
n−1

λA′n − λAnA′n−1



(a) if λ = 0.1, µ = 0.1 (b) if λ = 0.1, µ = 0.9

(c) if λ = 0.5, µ = 0.1 (d) if λ = 0.5, µ = 0.9

(e) if λ = 0.9, µ = 0.1 (f) if λ = 0.9, µ = 0.9

Figure 1: MPIs for the admission control problem with delay with parameters n = 10, c = 1, β = 0.99. The
solid line shows the index ν∗(1,i) and the dotted line shows ν∗(0,i).
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