Time-Constrained Restless Bandits and the Knapsack Problem for Perishable Items

Peter Jacko & José Niño-Mora

CS 2006, Prague

Motivation

- Perishable product
 - product with associated deadline after which it becomes worthless, if not sold
 arises in food industry ("best before" date), fashion industry (seasonal goods), etc.
- Q: How to select perishable products to be promoted?
 * cannot ignore perishability!
 * likely to be PSPACE-hard
- Similar problems in task management, project selection

An Application: Task Management

Knapsack Problem

• Classical 0-1 Knapsack Problem for items in \mathcal{I} :

$$\begin{split} \max_{x} \sum_{i \in \mathcal{I}} v_{i} x_{i} \\ \text{subject to } \sum_{i \in \mathcal{I}} w_{i} x_{i} \leq W \qquad \qquad (\mathsf{KP}) \\ x_{i} \in \{0, 1\} \text{ for all } i \in \mathcal{I} \end{split}$$

• There are 2 stages:

* stage 0: select items to put into knapsack * stage 1: obtain rewards v_i

Characterization of a Perishable Item

- Selection stages: $0, 1, \ldots, T_i 1$
 - \star occupies space w_i
 - \star if in knapsack, it remains unsold with probability p_i
 - * if not in knapsack, it remains unsold with probability
 - $q_i > p_i$
 - ★ once sold, it never resurrects
- Final stage (deadline): T_i
 - ★ pay cost c_i > 0 if not sold ("bad" state)
 ★ no cost if sold ("good" state)

Knapsack Problem for Perishable Items

- Let $T = \max_{i \in \mathcal{I}} \{T_i\}$ be the time horizon
- Selection stages: $0, 1, \ldots, T-1$
- A dynamic and stochastic problem (MDP)
- Aim: to minimize the total expected cost to pay
- Reduces to (KP), when $T_i = 1$, $q_i = 1$, $p_i = 0$, and $c_i = v_i$ for all $i \in \mathcal{I}$
- (KP) is NP-hard \implies KPPI is at least NP-hard

Intuitive Solution

- To each item assign a priority of choosing it
- At each selection stage, put the items with highest priority into the knapsack
- Surprisingly: such behavior is often nearly optimal
- Questions to answer:
 - ★ How to assign priorities to items?
 - ★ How far from optimality is it?
 - * Is it better than other strategies (policies)?

Dynamic Programming Formulation

$$D_{T}(\boldsymbol{z}_{T}) = \sum_{i \in \mathcal{I}_{T}^{0}} c_{i} \boldsymbol{z}_{(T,i)} \qquad (\mathsf{DP})$$

$$D_{s}(\boldsymbol{z}_{s}) = \sum_{i \in \mathcal{I}_{S}^{0}} c_{i} \boldsymbol{z}_{(s,i)} + \min_{\substack{\boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{y}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{i} \boldsymbol{y}_{(s,i)} \leq W \\ \boldsymbol{w}_{s} \leq \boldsymbol{z}_{s}^{+} \end{cases} \left\{ \sum_{\substack{\boldsymbol{w}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \neq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \leq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \geq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \geq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s}^{+} \\ \boldsymbol{w}_{s} \geq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s} \leq \boldsymbol{z}_{s} \geq \boldsymbol{z}_{s}$$

 Solving a system of an exponential number of equations for an exponential number of vectors z_s at every stage
 * tractability problem: curse of dimensionality
 * no interpretation

Multi-Armed Bandit Problem

- There are K independent arms
- In every time epoch, one arm must be pulled
- Rested arms are frozen (no work, no reward, no change)
- Solved by Gittins et al. in early 1970's
- Assigned a Gittins index to each arm and its state
- Optimal policy: index policy
- Decomposes K-dim. problem to K one-dimensional

Gittins Index

• Arm k when in state x has the Gittins index

$$\nu_k(x) = \max_{\tau > 0} \frac{\mathbb{E}\left\{\sum_{t=0}^{\tau-1} \beta^t r_k(x_k(t)) | x_k(0) = x\right\}}{\mathbb{E}\left\{\sum_{t=0}^{\tau-1} \beta^t | x_k(0) = x\right\}} \quad (\mathsf{GI})$$

Maximal attainable expected reward per expected work

- I.e., indicates the "worth" of pulling the arm
- Calculated in $\mathcal{O}(n^3)$ by an adaptive-greedy algorithm

Restless Bandit Problem

- Drops the freezing property
- \bullet Allows to pull parallely exactly M arms
- Whittle's relaxation '88: pull M arms on average
 * an upper bound and a heuristic for "some" RBP
- Papadimitriou & Tsitsiklis '99: deterministic version is PSPACE-hard
- Niño-Mora '01: Sufficient condition for existence of an index-policy heuristic using marginal productivity index

Common features of RBP and KPPI

- Problems of allocation of a scarce resource
- Arms to pull \iff Items to select
- M hands to use \iff Knapsack's space W
- Probability to win <>>> Probability to sell

Contrasting RBP with KPPI

- Restless Bandit Problem:
 - $\star w_i = 1$ for all $i \in \mathcal{I}$
 - ★ condition is equality
 - \star infinite horizon
 - ★ stationary costs
- Knapsack Problem for Perishable Items:
 - $\star w_i$ is arbitrary
 - ★ condition is inequality
 - ★ finite horizon
 - ★ only one cost at deadline

Main Results

 Finite-horizon problem with deadline costs can be formulated as an RBP

★ augmented state space: state space × selection stages

- Marginal productivity indices (MPI's) can be obtained in closed form (uncommon!)
- An index-policy heuristic based on MPI's can be defined in a similar way as for RBP
- The heuristic is nearly optimal

Marginal Productivity Index

• Closed form of MPI for item i

$$\nu_i = \frac{c_i (1 - p_i)(q_i - p_i) p_i^{T-1}}{1 - q_i + (q_i - p_i) p_i^{T-1}}$$
(MPI)

• Some properties of MPI for an item in isolation:

★ item with higher probability of remaining unsold if not selected (q_i) gets higher priority
★ item with closer deadline T_i gets higher priority

* MPI is proportional to cost c_i and positive

MPI Heuristic

- "Solve a (KP) at each stage using MPI's: $v_i = \nu_i$ "
- Reduces a stochastic and dynamic problem to a simpler deterministic problem
- Considers only the current situation, not any future
- \bullet Provides an excellent performance: avg. gap <5%
- Systematically outperforms naïve policies
- (KP) solved efficiently up to millions of items, e.g. by COMBO algorithm (Martello, Pisinger, & Toth 1999)

Other Policies

- MIN: best-case policy (optimal solution)
- PAS: passive policy (empty knapsack)
- RND: random solution heuristic
 * order the items randomly
 * select items for knapsack following the order
- EDF: Earlier-Deadline-First heuristic
 - * "myopic" strategy, but often used in practice
 * surprisingly, in general behaves worse than RND

Relative Suboptimality Gap

• Relative suboptimality gap of policy π

$$\operatorname{gap}(\pi) = \frac{z^{\pi} - z^{\mathsf{MIN}}}{z^{\mathsf{MIN}}}$$

Histogram of gap

Histogram of gap (log transformation)

Histogram of gap (2-log transformation)

Histogram of gap (4-log transformation)

$\overline{\textbf{Average }}gap(\textbf{MPI})$

Average gap(EDF)

Adjusted Relative Suboptimality Gap

Classical relative suboptimality gap

$$\operatorname{gap}(\pi) = \frac{z^{\pi} - z^{\mathsf{MIN}}}{z^{\mathsf{MIN}}}$$

"Adjusted" relative suboptimality gap

$$A-gap(\pi) = \frac{z^{\pi} - z^{\mathsf{MIN}}}{z^{\mathsf{PAS}} - z^{\mathsf{MIN}}}$$

* to calibrate randomly generated instances
* takes into account both min and max values
* always between 0 (best-case) and 1 (worst-case)

Average A-gap(MPI)

Extensions of KPPI

- Geometric discounting of future
 - * slightly modified MPI's
- Stage-dependent probabilities
 - * a regularity condition on probabilities is needed
- From real-world applications:
 - * add randomly arriving perishable items* items with multiple units

Thank you!