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Motivation

e Perishable product

product with associated deadline after which it
becomes worthless, if not sold
arises in food industry (“best before” date), fashion
industry (seasonal goods), etc.

e Q: How to select perishable products to be promoted?

cannot ignore perishability!
likely to be PSPACE-hard

e Similar problems in task management, project selection



An Application: Task Management




Knapsack Problem

e Classical 0-1 Knapsack Problem for items in Z:
ma,XZvZ-a:Z—
Y e
subject to Zwiaﬁi < W (KP)
ieT
r; € {0,1} foralli e T

e [here are 2 stages:

stage 0: select items to put into knapsack
stage 1: obtain rewards v,



Characterization of a Perishable ltem

e Selection stages: 0,1,...,7; — 1

OCcuples space w;

iIf in knapsack, it remains unsold with probability p;

if not in knapsack, it remains unsold with probability
qi > DPi

once sold, It never resurrects

e Final stage (deadline): T;

pay cost ¢; > 0 if not sold ( “bad” state)
no cost if sold (“good” state)



Knapsack Problem for Perishable ltems
o Let T = I?Eaix{ﬂ-} be the time horizon
e Selection stages: 0,1,...,T —1
e A dynamic and stochastic problem (MDP)

e Aim: to minimize the total expected cost to pay

e Reduces to (I"), when T; =1, ¢, = 1, p;, = 0, and
c,=v; foralli e’

e (<) is NP-hard = KPPl is at least NP-hard



Intuitive Solution
e To each item assign a priority of choosing it

e At each selection stage, put the items with highest
priority into the knapsack

e Surprisingly: such behavior is often nearly optimal

e Questions to answer:

How to assign priorities to items?
How far from optimality is it?
s it better than other strategies (policies)?




Dynamic Programming Formulation

Dr(zr)= > 2T (DP)

ieI%

Ds(zs)= > ciZ(s45)F min+ > PYsims]Dgy1(z3 —mys)
Z'GIQ Ys<Zzg mgs<zg
2. Wil(s,5)SW
€T
e Solving a system of an exponential number of equations
for an exponential number of vectors z, at every stage

tractability problem: curse of dimensionality
no Interpretation






Multi-Armed Bandit Problem

e [here are K independent arms

e In every time epoch, one arm must be pulled

e Rested arms are frozen (no work, no reward, no change)
e Solved by Gittins et al. in early 1970’'s

e Assigned a Gittins index to each arm and its state

e Optimal policy: index policy

e Decomposes K-dim. problem to K one-dimensional



Gittins Index

e Arm Lk when in state x has the Gittins index

{5 Brlen®)ln(0) = o
E {1_2: Btlxr(0) = az}

(Gl)

V() = max
k( ) 7>0
e Maximal attainable expected reward per expected work
e |.e., indicates the “worth” of pulling the arm

e Calculated in O(n?) by an adaptive-greedy algorithm
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Restless Bandit Problem

e Drops the freezing property
e Allows to pull parallely exactly M arms

e Whittle's relaxation '88: pull M arms on average

* an upper bound and a heuristic for “some” RBP

e Papadimitriou & Tsitsiklis '99: deterministic version is
PSPACE-hard

e Nino-Mora '01: Sufficient condition for existence of an
index-policy heuristic using marginal productivity index
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Common features of RBP and KPPI

e Problems of allocation of a scarce resource
e Arms to pull <= ltems to select
e ) hands to use <= Knapsack's space W

e Probability to win <= Probability to sell
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Contrasting RBP with KPPI

e Restless Bandit Problem:

w; =1forallte?
condition is equality
infinite horizon
stationary costs

e Knapsack Problem for Perishable ltems:

w; Is arbitrary

condition Is inequality
finite horizon

only one cost at deadline
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Main Results

e Finite-horizon problem with deadline costs can be
formulated as an RBP

augmented state space: state space X selection stages

e Marginal productivity indices (MPI's) can be obtained
in closed form (uncommon!)

e An index-policy heuristic based on MPI's can be defined
in a similar way as for RBP

e [ he heuristic is nearly optimal
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Marginal Productivity Index

e Closed form of MPI for item 1

e Some properties of M

item with higher pro

(MPI)

P| for an 1item in isolation:

bability of remaining unsold if not

selected (qg;) gets higher priority
item with closer deadline T; gets higher priority
MPI Is proportional to cost ¢; and positive
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MPI Heuristic

e “Solve a (/) at each stage using MPl's: v; = ;"

e Reduces a stochastic and dynamic problem to a simpler
deterministic problem

e Considers only the current situation, not any future
e Provides an excellent performance: avg. gap < 5%
e Systematically outperforms naive policies

e (1“I") solved efficiently up to millions of items, e.g. by
COMBO algorithm (Martello, Pisinger, & Toth 1999)



Other Policies
e MIN: best-case policy (optimal solution)
e PAS: passive policy (empty knapsack)

e RND: random solution heuristic

order the items randomly

select items for knapsack following the order
e EDF: Earlier-Deadline-First heuristic

“myopic” strategy, but often used in practice
surprisingly, in general behaves worse than RND
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Relative Suboptimality Gap

e Relative suboptimality gap of policy 7

ST ZI\/HN
gap(ﬂ) — VIIY
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Number of instances (9431)
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Histogram of gap (2-log transformation)
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Histogram of gap (4-log transformation)

9000

O =~ o
o O O
o O O
o O O

5000

4000

£10]0]0

2000

Number of instances (9431)

=
o
o
o

B MPI
] EDF

B PAS |

Bl RND |

‘|||4| | 1 .
0.1 0.2 0.3 04

2 0 4 05 06
Relative suboptimality gap

0.7

0.8

22



Number of products
o O1 A W

\l

Average gap(MPI)

19%

4%

3%

2%

1%

2 8 14 20 26 32 38
Time horizon



W

N

Number of products
o O1

8

Average gap(RND)

14 20 26 @ 32
Time horizon

24

100%

80%

60%

40%



25

Average gap(EDF)
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Adjusted Relative Suboptimality Gap

e Classical relative suboptimality gap

ST _ ZMIN
gap(ﬂ) — _MIN

e "Adjusted’ relative suboptimality gap

7 _ ,MIN

A-gap(m) =
8aD(T) = ~pAs — _MIN

to calibrate randomly generated instances
takes into account both min and max values
always between 0 (best-case) and 1 (worst-case)
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Extensions of KPPI

e Geometric discounting of future

slightly modified MPI's

e Stage-dependent probabilities

a regularity condition on probabilities is needed

e From real-world applications:

add randomly arriving perishable items
items with multiple units
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Thank you!
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