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Motivation

• Perishable product

? product with associated deadline after which it

becomes worthless, if not sold

? arises in food industry (“best before” date), fashion

industry (seasonal goods), etc.

• Q: How to select perishable products to be promoted?

? cannot ignore perishability!

? likely to be pspace-hard

• Similar problems in task management, project selection
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An Application: Task Management
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Knapsack Problem

• Classical 0-1 Knapsack Problem for items in I:

max
x

∑
i∈I

vixi

subject to
∑
i∈I

wixi ≤ W (KP)

xi ∈ {0, 1} for all i ∈ I

• There are 2 stages:

? stage 0: select items to put into knapsack

? stage 1: obtain rewards vi
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Characterization of a Perishable Item

• Selection stages: 0, 1, . . . , Ti − 1

? occupies space wi

? if in knapsack, it remains unsold with probability pi

? if not in knapsack, it remains unsold with probability

qi > pi

? once sold, it never resurrects

• Final stage (deadline): Ti

? pay cost ci > 0 if not sold (“bad” state)

? no cost if sold (“good” state)
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Knapsack Problem for Perishable Items

• Let T = max
i∈I

{Ti} be the time horizon

• Selection stages: 0, 1, . . . , T − 1

• A dynamic and stochastic problem (MDP)

• Aim: to minimize the total expected cost to pay

• Reduces to (KP), when Ti = 1, qi = 1, pi = 0, and

ci = vi for all i ∈ I

• (KP) is NP-hard =⇒ KPPI is at least NP-hard
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Intuitive Solution

• To each item assign a priority of choosing it

• At each selection stage, put the items with highest

priority into the knapsack

• Surprisingly: such behavior is often nearly optimal

• Questions to answer:

? How to assign priorities to items?

? How far from optimality is it?

? Is it better than other strategies (policies)?
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Dynamic Programming Formulation

DT (zT )=
∑

i∈I0
T

ciz(T,i) (DP)

Ds(zs)=
∑

i∈I0
s

ciz(s,i)+ min
ys≤z+

sP
i∈I+

s

wiy(s,i)≤W

 ∑
ms≤z+

s

Pys[ms]Ds+1(z+
s −ms)



• Solving a system of an exponential number of equations

for an exponential number of vectors zs at every stage

? tractability problem: curse of dimensionality

? no interpretation
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Bandit Machine
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Multi-Armed Bandit Problem

• There are K independent arms

• In every time epoch, one arm must be pulled

• Rested arms are frozen (no work, no reward, no change)

• Solved by Gittins et al. in early 1970’s

• Assigned a Gittins index to each arm and its state

• Optimal policy: index policy

• Decomposes K-dim. problem to K one-dimensional
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Gittins Index

• Arm k when in state x has the Gittins index

νk(x) = max
τ>0

E

{
τ−1∑
t=0

βtrk(xk(t))|xk(0) = x

}
E

{
τ−1∑
t=0

βt|xk(0) = x

} (GI)

• Maximal attainable expected reward per expected work

• I.e., indicates the “worth” of pulling the arm

• Calculated in O(n3) by an adaptive-greedy algorithm
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Restless Bandit Problem

• Drops the freezing property

• Allows to pull parallely exactly M arms

• Whittle’s relaxation ’88: pull M arms on average

? an upper bound and a heuristic for “some” RBP

• Papadimitriou & Tsitsiklis ’99: deterministic version is

pspace-hard

• Niño-Mora ’01: Sufficient condition for existence of an

index-policy heuristic using marginal productivity index
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Common features of RBP and KPPI

• Problems of allocation of a scarce resource

• Arms to pull ⇐⇒ Items to select

• M hands to use ⇐⇒ Knapsack’s space W

• Probability to win ⇐⇒ Probability to sell
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Contrasting RBP with KPPI
• Restless Bandit Problem:

? wi = 1 for all i ∈ I
? condition is equality

? infinite horizon

? stationary costs

• Knapsack Problem for Perishable Items:

? wi is arbitrary

? condition is inequality

? finite horizon

? only one cost at deadline
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Main Results

• Finite-horizon problem with deadline costs can be

formulated as an RBP

? augmented state space: state space × selection stages

• Marginal productivity indices (MPI’s) can be obtained

in closed form (uncommon!)

• An index-policy heuristic based on MPI’s can be defined

in a similar way as for RBP

• The heuristic is nearly optimal
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Marginal Productivity Index

• Closed form of MPI for item i

νi =
ci(1− pi)(qi − pi)pT−1

i

1− qi + (qi − pi)pT−1
i

(MPI)

• Some properties of MPI for an item in isolation:

? item with higher probability of remaining unsold if not

selected (qi) gets higher priority

? item with closer deadline Ti gets higher priority

? MPI is proportional to cost ci and positive
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MPI Heuristic

• “Solve a (KP) at each stage using MPI’s: vi = νi”

• Reduces a stochastic and dynamic problem to a simpler

deterministic problem

• Considers only the current situation, not any future

• Provides an excellent performance: avg. gap < 5%

• Systematically outperforms näıve policies

• (KP) solved efficiently up to millions of items, e.g. by

combo algorithm (Martello, Pisinger, & Toth 1999)
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Other Policies

• MIN: best-case policy (optimal solution)

• PAS: passive policy (empty knapsack)

• RND: random solution heuristic

? order the items randomly

? select items for knapsack following the order

• EDF: Earlier-Deadline-First heuristic

? “myopic” strategy, but often used in practice

? surprisingly, in general behaves worse than RND
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Relative Suboptimality Gap

• Relative suboptimality gap of policy π

gap(π) =
zπ − zMIN

zMIN
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Adjusted Relative Suboptimality Gap

• Classical relative suboptimality gap

gap(π) =
zπ − zMIN

zMIN

• “Adjusted” relative suboptimality gap

A-gap(π) =
zπ − zMIN

zPAS − zMIN

? to calibrate randomly generated instances

? takes into account both min and max values

? always between 0 (best-case) and 1 (worst-case)



27

2 8 14 20 26 32 38

2

3

4

5

6

7

8

Time horizon

N
um

be
r 

of
 p

ro
du

ct
s

0.1%

0.5%

1.0%

1.5%

Average A-gap(MPI)



28

2 8 14 20 26 32 38

2

3

4

5

6

7

8

Time horizon

N
um

be
r 

of
 p

ro
du

ct
s

 5%

10%

15%

20%

25%
Average A-gap(RND)



29

2 8 14 20 26 32 38

2

3

4

5

6

7

8

Time horizon

N
um

be
r 

of
 p

ro
du

ct
s

10%

20%

30%

Average A-gap(EDF)



30

Extensions of KPPI

• Geometric discounting of future

? slightly modified MPI’s

• Stage-dependent probabilities

? a regularity condition on probabilities is needed

• From real-world applications:

? add randomly arriving perishable items

? items with multiple units
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Thank you!


