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Graph Coloring Representation of FAP

• Vertices (nodes) stand for frequency transmitters

• Edges (arcs) join pairs of ”very close” transmitters

• Graph distance (# edges) is a proxy for the true distance

• Vertex labels (nonnegative integers) represent channels

• Frequency interference problem prescribes coloring

restrictions, which can arbitrarily closely approximate

real-life situation
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Popular Approximations

• d-distant coloring (coloring of graph powers)

? Labels of vertices within distance d must differ

• L(2, 1)-labeling

? Labels of adjacent vertices must differ by 2, of those

at distance 2 by 1

• L(k, 1)-labeling

? Labels of adjacent vertices must differ by k, of those

at distance 2 by 1
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L(k, l)-labeling

Definition. A labeling ϕn associates every vertex of a

graph G with one number from the set of labels

{0, 1, 2, . . . , n}.

Definition. Labeling ϕn is called an L(k, l)-labeling if

• |ϕn(x) − ϕn(y)| ≥ k, whenever x, y are neighbours;

• |ϕn(x)− ϕn(y)| ≥ l, whenever x, y are at distance two.
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L(k, l)-labeling

• It is a generalization of the previous versions (2-distant

coloring, L(2, 1)-labeling and L(k, 1)-labeling).

• We can WLOG suppose that k and l are nonnegative

integers and we omit the restriction of k ≥ l.

• For a given graph G, an L(k, l)-labeling ϕn with minimal

n is called optimal and defines the L(k, l)-labeling
number λG(k, l) = n.
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Results

Lemma 1. Let a, b be nonnegative integers such that

a > b and m be a positive integer. Then⌊
a

m

⌋
−

⌊
b

m

⌋
>
a− b

m
− 1, and also

⌊
a

m

⌋
≥

⌊
b

m

⌋
.

(where bxc denotes the lower integer part of x.)

Theorem 2 (Scaling property).
It is λ(αk, αl) = α · λ(k, l) for any positive integer α.



6

Proof of Theorem 2 (a sketch)

(i) If ϕn is an optimal L(k, l)-labeling, then α ·ϕn is clearly

an L(αk, αl)-labeling, so λ(αk, αl) ≤ α · λ(k, l).

(ii) Denote k1 = k, k2 = l. Suppose ϕn is an optimal

L(αk, αl)-labeling, we will show that ψ = bϕn
α c is an

L(k, l)-labeling. Cases, if ki = 0 or if for two vertices

x, y at distance i ≤ 2 is ϕn(x) = ϕn(y), are trivial.

Othewise, suppose WLOG that ϕn(x) > ϕn(y). Then

ψ(x)−ψ(y) = bϕn(x)
α c−bϕn(y)

α c > ϕn(x)−ϕn(y)
α −1 ≥ ki−1,

so ψ(x) − ψ(y) ≥ ki and λ(αk, αl) ≥ α · λ(k, l). qed.
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Relation with 2-distant Coloring

Corollary 2.1 It is λ(k, k) = k · (χ2 − 1).

Corollary 2.2 It is

min{k, l} · (χ2 − 1) ≤ λ(k, l) ≤ max{k, l} · (χ2 − 1).

• These are true, because λ(1, 1) = χ2 − 1.

• Theorem 2 and listed consequences also hold in a more

dimensional restrictions space
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Relation with L(2, 1)- and L(1, 2)-labeling

Corollary 2.3 It is λ(k, l) ≤ max{bk+1
2 c, l} · λ(2, 1)

and λ(k, l) ≤ max{k, bl+1
2 c} · λ(1, 2).

Theorem 3.

(a) If k ≥ 2l, then λ(k, l) ≤
⌊
λ(2, 1)

2

⌋
k +

{
λ(2, 1)

2

}
2l.

(b) If 2k ≤ l, then λ(k, l) ≤
{
λ(1, 2)

2

}
2k +

⌊
λ(1, 2)

2

⌋
l.

(where {x} = x− bxc, so it is 0 ≤ {x} < 1.)
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Proof of Theorem 3 (a sketch)

(a) If ϕn is an optimal L(2, 1)-labeling, then it is enough to

show that ψ =
⌊
ϕn
2

⌋
k +

{
ϕn
2

}
2l is an L(k, l)-labeling.

If for two vertices x, y it was ϕn(x) = ϕn(y) + 1, then

ψ(x)− ψ(y) ≥ l. Moreover, ϕn(x) = ϕn(y) + 2 implies

ψ(x) − ψ(y) = k. Since ψ is nondecreasing as function

of ϕn, the proof is finished.

(b) Proceed analogously. qed.
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Upper Bounds (1)

Theorem 4.
It is λ(k, l) ≤ (2l − 1)∆2 + 2(k − l)∆.

(where ∆ is the maximum degree of the graph.)

The proof of Theorem 4 is done by greedy labeling,

analogously to that presented by Griggs & Yeh (1992).
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Upper Bounds (2)

Theorem 5.

(a) If k > l, then λ(k, l) < l∆2 + k∆. Moreover, if k
l is an

integer, then λ(k, l) ≤ l∆2 + (k − l)∆.

(b) If k ≤ l, then λ(k, l) ≤ l∆2 + l∆.

The proof of Theorem 5 draws on the idea of the proof

of the bound ∆2 + ∆ on L(2, 1)-labeling number,

introduced in Chang & Kuo (1996).
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Lower Bounds (1)

Theorem 6. For a nontrivial connected graph it is

λ(k, l) ≥ k + (δ − 1)l.

(where δ is the minimum degree of the graph.)

Proof: Look at any vertex labeled by 0 (such a vertex

exists in any optimal L(k, l)-labeling) with all its

neighbours. As the mutual distances of its neighbours

are 2, the span of their labels must be at least (δ − 1)l.
Moreover, the lowest label cannot be lower than k, as

their are neighbours of the vertex labeled by 0. qed.
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Lower Bounds (2)
Theorem 7. Let the maximum degree ∆ be at least 2.

(i) It is

λ(k, l) ≥


k + (∆ − 1)l, if l ≤ k

2k + (∆ − 2)l, if k ≤ l ≤ 2k

(∆ − 1)l, if 2k ≤ l

(ii) If k > l and λ(k, l) = k + (∆ − 1)l, then every vertex

of degree ∆ is labeled by 0 or by k + (∆ − 1)l in all

optimal L(k, l)-labelings.
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Proof of Theorem 7 (a sketch)

(i) Consider the vertex x whose degree is ∆. If all its

neighbours are labeled by a label larger than x’s label,

or their labels are all lower than x’s label, then by the

same argument as in the proof of Theorem 6, we need

to use at least the label k + (∆ − 1)l.

Otherwise, one can show that it is needed either the

label (∆−1)l or the label 2k+(∆−2)l. By considering

the minimum of all these values we reach the statement

of the theorem.



15

Proof of Theorem 7 (a sketch)

(ii) One can show that, in this case, the neighbours of x

have labels either all larger or all lower than x’s label.

qed.

Note that Theorem 7 is a generalization of items (i) and

(ii) of Lemma 2.1 presented in Whittlesey, Georges, &

Mauro (1995), which only dealt with L(2, 1)-labeling.
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Thank you!


