Some Bounds for Labeling with a Condition at Distance Two

Peter Jacko \& Stanislav Jendrol'

$$
\text { W-FAP } 2005
$$

Presentation by Peter Jacko

Graph Coloring Representation of FAP

- Vertices (nodes) stand for frequency transmitters
- Edges (arcs) join pairs of "very close" transmitters
- Graph distance (\# edges) is a proxy for the true distance
- Vertex labels (nonnegative integers) represent channels
- Frequency interference problem prescribes coloring restrictions, which can arbitrarily closely approximate real-life situation

Popular Approximations

- d-distant coloring (coloring of graph powers)
\star Labels of vertices within distance d must differ
- L(2, 1)-labeling
^ Labels of adjacent vertices must differ by 2, of those at distance 2 by 1
- L($k, 1$)-labeling
^ Labels of adjacent vertices must differ by k, of those at distance 2 by 1

$L(k, l)$-labeling

Definition. A labeling φ_{n} associates every vertex of a graph G with one number from the set of labels $\{0,1,2, \ldots, n\}$.

Definition. Labeling φ_{n} is called an $L(k, l)$-labeling if

- $\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \geq k$, whenever x, y are neighbours;
- $\left|\varphi_{n}(x)-\varphi_{n}(y)\right| \geq l$, whenever x, y are at distance two.

$L(k, l)$-labeling

- It is a generalization of the previous versions (2-distant coloring, $L(2,1)$-labeling and $L(k, 1)$-labeling).
- We can WLOG suppose that k and l are nonnegative integers and we omit the restriction of $k \geq l$.
- For a given graph G, an $L(k, l)$-labeling φ_{n} with minimal n is called optimal and defines the $L(k, l)$-labeling number $\lambda_{G}(k, l)=n$.

Results

Lemma 1. Let a, b be nonnegative integers such that $a>b$ and m be a positive integer. Then

$$
\left\lfloor\frac{a}{m}\right\rfloor-\left\lfloor\frac{b}{m}\right\rfloor>\frac{a-b}{m}-1, \text { and also }\left\lfloor\frac{a}{m}\right\rfloor \geq\left\lfloor\frac{b}{m}\right\rfloor .
$$

(where $\lfloor x\rfloor$ denotes the lower integer part of x.)
Theorem 2 (Scaling property).
It is $\lambda(\alpha k, \alpha l)=\alpha \cdot \lambda(k, l)$ for any positive integer α.

Proof of Theorem 2 (a sketch)

(i) If φ_{n} is an optimal $L(k, l)$-labeling, then $\alpha \cdot \varphi_{n}$ is clearly an $L(\alpha k, \alpha l)$-labeling, so $\lambda(\alpha k, \alpha l) \leq \alpha \cdot \lambda(k, l)$.
(ii) Denote $k_{1}=k, k_{2}=l$. Suppose φ_{n} is an optimal $L(\alpha k, \alpha l)$-labeling, we will show that $\psi=\left\lfloor\frac{\varphi_{n}}{\alpha}\right\rfloor$ is an $L(k, l)$-labeling. Cases, if $k_{i}=0$ or if for two vertices x, y at distance $i \leq 2$ is $\varphi_{n}(x)=\varphi_{n}(y)$, are trivial.
Othewise, suppose WLOG that $\varphi_{n}(x)>\varphi_{n}(y)$. Then $\psi(x)-\psi(y)=\left\lfloor\frac{\varphi_{n}(x)}{\alpha}\right\rfloor-\left\lfloor\frac{\varphi_{n}(y)}{\alpha}\right\rfloor>\frac{\varphi_{n}(x)-\varphi_{n}(y)}{\alpha}-1 \geq k_{i}-1$, so $\psi(x)-\psi(y) \geq k_{i}$ and $\lambda(\alpha k, \alpha l) \geq \alpha \cdot \lambda(k, l)$. qed.

Relation with 2-distant Coloring

Corollary 2.1 It is $\lambda(k, k)=k \cdot\left(\chi_{2}-1\right)$.
Corollary 2.2 lt is
$\min \{k, l\} \cdot\left(\chi_{2}-1\right) \leq \lambda(k, l) \leq \max \{k, l\} \cdot\left(\chi_{2}-1\right)$.
These are true, because $\lambda(1,1)=\chi_{2}-1$.
Theorem 2 and listed consequences also hold in a more dimensional restrictions space

Relation with $L(2,1)$ - and $L(1,2)$-labeling

Corollary 2.3 lt is $\lambda(k, l) \leq \max \left\{\left\lfloor\frac{k+1}{2}\right\rfloor, l\right\} \cdot \lambda(2,1)$ and $\lambda(k, l) \leq \max \left\{k,\left\lfloor\frac{l+1}{2}\right\rfloor\right\} \cdot \lambda(1,2)$.

Theorem 3.
(a) If $k \geq 2 l$, then $\lambda(k, l) \leq\left\lfloor\frac{\lambda(2,1)}{2}\right\rfloor k+\left\{\frac{\lambda(2,1)}{2}\right\} 2 l$.
(b) If $2 k \leq l$, then $\lambda(k, l) \leq\left\{\frac{\lambda(1,2)}{2}\right\} 2 k+\left\lfloor\frac{\lambda(1,2)}{2}\right\rfloor l$.
(where $\{x\}=x-\lfloor x\rfloor$, so it is $0 \leq\{x\}<1$.)

Proof of Theorem 3 (a sketch)

(a) If φ_{n} is an optimal $L(2,1)$-labeling, then it is enough to show that $\psi=\left\lfloor\frac{\varphi_{n}}{2}\right\rfloor k+\left\{\frac{\varphi_{n}}{2}\right\} 2 l$ is an $L(k, l)$-labeling. If for two vertices x, y it was $\varphi_{n}(x)=\varphi_{n}(y)+1$, then $\psi(x)-\psi(y) \geq l$. Moreover, $\varphi_{n}(x)=\varphi_{n}(y)+2$ implies $\psi(x)-\psi(y)=k$. Since ψ is nondecreasing as function of φ_{n}, the proof is finished.
(b) Proceed analogously. qed.

Upper Bounds (1)

Theorem 4.
It is $\lambda(k, l) \leq(2 l-1) \Delta^{2}+2(k-l) \Delta$.
(where Δ is the maximum degree of the graph.)
The proof of Theorem 4 is done by greedy labeling, analogously to that presented by Griggs \& Yeh (1992).

Upper Bounds (2)

Theorem 5.

(a) If $k>l$, then $\lambda(k, l)<l \Delta^{2}+k \Delta$. Moreover, if $\frac{k}{l}$ is an integer, then $\lambda(k, l) \leq l \Delta^{2}+(k-l) \Delta$.
(b) If $k \leq l$, then $\lambda(k, l) \leq l \Delta^{2}+l \Delta$.

The proof of Theorem 5 draws on the idea of the proof of the bound $\Delta^{2}+\Delta$ on $L(2,1)$-labeling number, introduced in Chang \& Kuo (1996).

Lower Bounds (1)

Theorem 6. For a nontrivial connected graph it is
$\lambda(k, l) \geq k+(\delta-1) l$.
(where δ is the minimum degree of the graph.)
Proof: Look at any vertex labeled by 0 (such a vertex exists in any optimal $L(k, l)$-labeling) with all its neighbours. As the mutual distances of its neighbours are 2 , the span of their labels must be at least $(\delta-1) l$. Moreover, the lowest label cannot be lower than k, as their are neighbours of the vertex labeled by 0 . qed.

Lower Bounds (2)

Theorem 7. Let the maximum degree Δ be at least 2 .
(i) It is

$$
\lambda(k, l) \geq \begin{cases}k+(\Delta-1) l, & \text { if } l \leq k \\ 2 k+(\Delta-2) l, & \text { if } k \leq l \leq 2 k \\ (\Delta-1) l, & \text { if } 2 k \leq l\end{cases}
$$

(ii) If $k>l$ and $\lambda(k, l)=k+(\Delta-1) l$, then every vertex of degree Δ is labeled by 0 or by $k+(\Delta-1) l$ in all optimal $L(k, l)$-labelings.

Proof of Theorem 7 (a sketch)

(i) Consider the vertex x whose degree is Δ. If all its neighbours are labeled by a label larger than x 's label, or their labels are all lower than x 's label, then by the same argument as in the proof of Theorem 6, we need to use at least the label $k+(\Delta-1) l$.

Otherwise, one can show that it is needed either the label $(\Delta-1) l$ or the label $2 k+(\Delta-2) l$. By considering the minimum of all these values we reach the statement of the theorem.

Proof of Theorem 7 (a sketch)

(ii) One can show that, in this case, the neighbours of x have labels either all larger or all lower than x 's label. qed.

Note that Theorem 7 is a generalization of items (i) and (ii) of Lemma 2.1 presented in Whittlesey, Georges, \& Mauro (1995), which only dealt with $L(2,1)$-labeling.

Thank you!

