Some Bounds for Labeling with a Condition at Distance Two ${ }^{1}$ (Extended Abstract)

Peter Jacko, Stanislav Jendrol'
Universidad Carlos III de Madrid, Department of Statistics, Avenida de la Universidad 30, 28911 Leganés (Madrid), Spain
P. J. Šafárik University, Institute of Mathematics, Jesenná 5, 04154 Košice, Slovakia
peter.jacko@uc3m.es, jendrol@kosice.upjs.sk

Key words: distance colouring of graphs, lambda coloring, $\mathrm{L}(\mathrm{k}, \mathrm{l})$-number, optimal $\mathrm{L}(\mathrm{k}, \mathrm{l})$-labeling, radio channel frequency assignment problem
AMS Mathematics Subject Classification 2000: 05C78, 05C15, 05C12
Frequency assignment is a classical problem in telecommunications (Hale 1980). A natural mathematical setting, which can be used to approximate real-life problems arbitrarily closely, is graph coloring. Different approximations have been studied extensively, including distance coloring (e.g. Heuvel \& McGuinness 2003) and $L(2,1)$-labeling (e.g. Griggs \& Yeh 1992). A more realistic modelling is possible using a more general $L(k, l)$-labeling (Georges \& Mauro 1995). In this paper we present a list of bounds for optimal $L(k, l)$-labeling of graphs.

A labeling φ_{n} associates every vertex of a graph G with one number from the set of labels $\{0,1,2, \ldots, n\}$. If φ_{n} is such that the absolute-value difference of labels of any pair of adjacent vertices is at least k and the absolute-value difference of labels of any pair of vertices at distance two is at least l, then we call it an $L(k, l)$-labeling. It is not difficult to see that it is not restrictive to suppose that k and l are nonnegative integers. If φ_{n} is $L(k, l)$-labeling of graph G and there is no $L(k, l)$-labeling ψ_{m} of this graph with $m<n$, we consider φ_{n} to be optimal $L(k, l)$-labeling of G and define $L(k, l)$-labeling number $\lambda_{G}(k, l)=n$. In what follows, everything relates to an arbitrary but fixed graph G.

Let us first introduce some notation. Let $\lfloor x\rfloor$ for any real number x denote lower integer part of x, i.e. $\lfloor x\rfloor$ is an integer such that $x-1<\lfloor x\rfloor \leq x$. Denote also $\{x\}=x-\lfloor x\rfloor$, so it is $0 \leq\{x\}<1$.
Lemma 1 Let a, b be nonnegative integers such that $a>b$ and m be a positive integer. Then

$$
\left\lfloor\frac{a}{m}\right\rfloor-\left\lfloor\frac{b}{m}\right\rfloor>\frac{a-b}{m}-1, \text { and also }\left\lfloor\frac{a}{m}\right\rfloor \geq\left\lfloor\frac{b}{m}\right\rfloor .
$$

Theorem 2 It is $\lambda(\alpha k, \alpha l)=\alpha \cdot \lambda(k, l)$ for any positive integer α.
Proof: Let $f\left(\varphi_{n}\right)$, for any nonnegative-integer-valued function f, be a labeling, which associates all the vertices with label $f(\cdot)$ instead of the label assigned by the labeling φ_{n}. Given an optimal $L(k, l)$-labeling φ_{n}, it is straightforward that $\alpha \cdot \varphi_{n}$ is an $L(\alpha k, \alpha l)$-labeling, and so it must be $\lambda(\alpha k, \alpha l) \leq \alpha \cdot \lambda(k, l)$.

On the other hand, using Lemma 1 it is possible to prove that, given an optimal $L(\alpha k, \alpha l)$-labeling φ_{n}, mapping $\left\lfloor\frac{\varphi_{n}}{\alpha}\right\rfloor$ is an $L(k, l)$-labeling, which implies that $\lambda(\alpha k, \alpha l) \geq \alpha \cdot \lambda(k, l)$.

Corollary 2.1 It is $\lambda(k, k)=k \cdot \lambda(1,1)$.
Corollary 2.2 It is $\min \{k, l\} \cdot \lambda(1,1) \leq \lambda(k, l) \leq \max \{k, l\} \cdot \lambda(1,1)$.
Corollary 2.2 comes from an observation that the larger k and l are, the more restricted the problem is, and thus $\lambda(k, l) \leq \lambda\left(k^{*}, l^{*}\right)$ whenever $k \leq k^{*}$ and $l \leq l^{*}$. Both Corollary 2.1 and Corollary 2.2 are important

[^0]from the point of view that they relate $L(k, l)$-labeling number to distance chromatic number $\chi_{2}=\lambda(1,1)+1$. Indeed, $L(1,1)$-labeling problem is equivalent to coloring problem of the square of the graph, which is in turn equivalent to 2-distance graph coloring.

Another consequence, stated in Corollary 2.3, is a relation with a simpler and well studied $L(2,1)$ labeling number. We also consider a bound that uses $L(1,2)$-labeling number, which may for some graphs be easier to obtain than $L(2,1)$-labeling number. Theorem 3 then indicates cases, when a sharper bound for $L(k, l)$-labeling number by an expression of $\lambda(2,1)$ or $\lambda(1,2)$ exists. Its proof can be found in Jacko (2003).
Corollary 2.3 It is $\lambda(k, l) \leq \max \left\{\left\lfloor\frac{k+1}{2}\right\rfloor, l\right\} \cdot \lambda(2,1)$ and $\lambda(k, l) \leq \max \left\{k,\left\lfloor\frac{l+1}{2}\right\rfloor\right\} \cdot \lambda(1,2)$.

Theorem 3

(a) If $k \geq 2 l$, then $\lambda(k, l) \leq\left\lfloor\frac{\lambda(2,1)}{2}\right\rfloor k+\left\{\frac{\lambda(2,1)}{2}\right\} 2 l$.
(b) If $2 k \leq l$, then $\lambda(k, l) \leq\left\{\frac{\lambda(1,2)}{2}\right\} 2 k+\left\lfloor\frac{\lambda(1,2)}{2}\right\rfloor l$.

Up to this point we have presented relationships between $L(k, l)$-labeling and other types of colorings and labelings. Nevertheless, such information may not always be available. The rest of the analysis thus expounds various bounds for $L(k, l)$-labeling number employing fundamental graph characteristics: the minimum degree δ and the maximum degree Δ. First we present two upper bounds. In Griggs \& Yeh (1992) it was shown that $\lambda(2,1) \leq \Delta^{2}+2 \Delta$; analogously, it is possible to get a conclusion stated in Theorem 4. Theorem 5 draws on the idea of the proof of a sharper bound, $\lambda(2,1) \leq \Delta^{2}+\Delta$, introduced in Chang \& Kuo (1996).
Theorem 4 It is $\lambda(k, l) \leq(2 l-1) \Delta^{2}+2(k-l) \Delta$.

Theorem 5

(a) If $k>l$, then $\lambda(k, l)<l \Delta^{2}+k \Delta$. Moreover, if $\frac{k}{l}$ is an integer, then $\lambda(k, l) \leq l \Delta^{2}+(k-l) \Delta$.
(b) If $k \leq l$, then $\lambda(k, l) \leq l \Delta^{2}+l \Delta$.

Theorem 6 and Theorem 7 conclude our list by providing two lower bounds for $L(k, l)$-labeling number. Note that Theorem 7 is a generalization of items (i) and (ii) of Lemma 2.1 presented in Whittlesey, Georges, \& Mauro (1995), which only dealt with $L(2,1)$-labeling.
Theorem 6 For a nontrivial connected graph it is $\lambda(k, l) \geq k+(\delta-1) l$.
Theorem 7 Let the maximum degree Δ be at least 2 .
(i) It is

$$
\lambda(k, l) \geq \begin{cases}k+(\Delta-1) l, & \text { if } l \leq k \\ 2 k+(\Delta-2) l, & \text { if } k \leq l \leq 2 k \\ (\Delta-1) l, & \text { if } 2 k \leq l\end{cases}
$$

(ii) If $k>l$ and $\lambda(k, l)=k+(\Delta-1) l$, then every vertex of degree Δ is labeled by 0 or by $k+(\Delta-1) l$ in all optimal $L(k, l)$-labelings.

References

[1] Chang, G. J. \& Kuo, D. (1996): The L(2,1)-labeling Problem on Graphs, SIAM Journal of Discrete Mathematics 9, 309-316.
[2] Georges, J. P. \& Mauro, D. M. (1995): Generalized Vertex Labelings with a Condition at Distance Two, Congressus Numerantium 109, 141-159.
[3] Griggs, J. R. \& Yeh, R. K. (1992): Labelling Graphs with a Condition at Distance 2, SIAM Journal of Discrete Mathematics 5, 586-595.
[4] Hale, W. K. (1980): Frequency Assignment: Theory and Applications, Proceedings of IEEE 68, 1497-1514.
[5] Heuvel, J. van den \& McGuinness, S. (2003): Coloring the Square of a Planar Graph, Journal of Graph Theory 42, 110-124.
[6] Jacko, P. (2003): Dištančné Farbenia Grafov (Distance Labelings of Graphs), Mgr. Thesis, P. J. Šafárik University.
[7] Whittlesey, M. A., Georges, J. P., \& Mauro, D. W. (1995): On the λ-number of Q_{n} and Related Graphs, SIAM Journal of Discrete Mathematics 8 (4), 499-506.

[^0]: 1 This is an extended abstract of a revised version of a part of the first author's Mgr. Thesis (Jacko 2003) supervised by professor S. Jendrol', which was presented at P. J. Šafárik University in 2003.

