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Frequency assignment is a classical problem in telecommunications (Hale 1980). A natural mathematical
setting, which can be used to approximate real-life problems arbitrarily closely, is graph coloring. Different
approximations have been studied extensively, including distance coloring (e.g. Heuvel & McGuinness 2003)
and L(2, 1)-labeling (e.g. Griggs & Yeh 1992). A more realistic modelling is possible using a more general
L(k, l)-labeling (Georges & Mauro 1995). In this paper we present a list of bounds for optimal L(k, l)-labeling
of graphs.

A labeling ϕn associates every vertex of a graph G with one number from the set of labels {0, 1, 2, . . . , n}.
If ϕn is such that the absolute-value difference of labels of any pair of adjacent vertices is at least k and
the absolute-value difference of labels of any pair of vertices at distance two is at least l, then we call it an
L(k, l)-labeling. It is not difficult to see that it is not restrictive to suppose that k and l are nonnegative
integers. If ϕn is L(k, l)-labeling of graph G and there is no L(k, l)-labeling ψm of this graph with m < n,
we consider ϕn to be optimal L(k, l)-labeling of G and define L(k, l)-labeling number λG(k, l) = n. In what
follows, everything relates to an arbitrary but fixed graph G.

Let us first introduce some notation. Let bxc for any real number x denote lower integer part of x, i.e.
bxc is an integer such that x− 1 < bxc ≤ x. Denote also {x} = x− bxc, so it is 0 ≤ {x} < 1.

Lemma 1 Let a, b be nonnegative integers such that a > b and m be a positive integer. Then⌊
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−
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Theorem 2 It is λ(αk, αl) = α · λ(k, l) for any positive integer α.

Proof: Let f(ϕn), for any nonnegative-integer-valued function f , be a labeling, which associates all the
vertices with label f(·) instead of the label assigned by the labeling ϕn. Given an optimal L(k, l)-labeling
ϕn, it is straightforward that α · ϕn is an L(αk, αl)-labeling, and so it must be λ(αk, αl) ≤ α · λ(k, l).

On the other hand, using Lemma 1 it is possible to prove that, given an optimal L(αk, αl)-labeling
ϕn, mapping bϕn

α c is an L(k, l)-labeling, which implies that λ(αk, αl) ≥ α · λ(k, l). �

Corollary 2.1 It is λ(k, k) = k · λ(1, 1).

Corollary 2.2 It is min{k, l} · λ(1, 1) ≤ λ(k, l) ≤ max{k, l} · λ(1, 1).
Corollary 2.2 comes from an observation that the larger k and l are, the more restricted the problem is,

and thus λ(k, l) ≤ λ(k∗, l∗) whenever k ≤ k∗ and l ≤ l∗. Both Corollary 2.1 and Corollary 2.2 are important
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from the point of view that they relate L(k, l)-labeling number to distance chromatic number χ2 = λ(1, 1)+1.
Indeed, L(1, 1)-labeling problem is equivalent to coloring problem of the square of the graph, which is in
turn equivalent to 2-distance graph coloring.

Another consequence, stated in Corollary 2.3, is a relation with a simpler and well studied L(2, 1)-
labeling number. We also consider a bound that uses L(1, 2)-labeling number, which may for some graphs
be easier to obtain than L(2, 1)-labeling number. Theorem 3 then indicates cases, when a sharper bound for
L(k, l)-labeling number by an expression of λ(2, 1) or λ(1, 2) exists. Its proof can be found in Jacko (2003).

Corollary 2.3 It is λ(k, l) ≤ max{bk+1
2 c, l} · λ(2, 1) and λ(k, l) ≤ max{k, b l+1

2 c} · λ(1, 2).

Theorem 3

(a) If k ≥ 2l, then λ(k, l) ≤
⌊
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2

⌋
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{
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2

}
2l.

(b) If 2k ≤ l, then λ(k, l) ≤
{
λ(1, 2)

2

}
2k +

⌊
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2

⌋
l.

Up to this point we have presented relationships between L(k, l)-labeling and other types of colorings and
labelings. Nevertheless, such information may not always be available. The rest of the analysis thus expounds
various bounds for L(k, l)-labeling number employing fundamental graph characteristics: the minimum degree
δ and the maximum degree ∆. First we present two upper bounds. In Griggs & Yeh (1992) it was shown
that λ(2, 1) ≤ ∆2 +2∆; analogously, it is possible to get a conclusion stated in Theorem 4. Theorem 5 draws
on the idea of the proof of a sharper bound, λ(2, 1) ≤ ∆2 + ∆, introduced in Chang & Kuo (1996).

Theorem 4 It is λ(k, l) ≤ (2l − 1)∆2 + 2(k − l)∆.

Theorem 5
(a) If k > l, then λ(k, l) < l∆2 + k∆. Moreover, if k

l is an integer, then λ(k, l) ≤ l∆2 + (k − l)∆.
(b) If k ≤ l, then λ(k, l) ≤ l∆2 + l∆.
Theorem 6 and Theorem 7 conclude our list by providing two lower bounds for L(k, l)-labeling number.

Note that Theorem 7 is a generalization of items (i) and (ii) of Lemma 2.1 presented in Whittlesey, Georges,
& Mauro (1995), which only dealt with L(2, 1)-labeling.

Theorem 6 For a nontrivial connected graph it is λ(k, l) ≥ k + (δ − 1)l.

Theorem 7 Let the maximum degree ∆ be at least 2.
(i) It is

λ(k, l) ≥


k + (∆− 1)l, if l ≤ k

2k + (∆− 2)l, if k ≤ l ≤ 2k
(∆− 1)l, if 2k ≤ l

(ii) If k > l and λ(k, l) = k+ (∆− 1)l, then every vertex of degree ∆ is labeled by 0 or by k+ (∆− 1)l
in all optimal L(k, l)-labelings.
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