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Abstract

• Extend understanding of Thompson Sampling for stochastic bandits.

• Bound on the Bayesian regret of Thompson Sampling for continuum-
armed bandits with nonparametric, smooth reward functions, and 
sub-exponential noise.

• Achieved by analysis based on the eluder dimension (a smoothness 
measure) of the reward function class.
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Problem Setting

• Continuum armed bandit specified by a tuple 𝒜, 𝑓, 𝑝
• 𝒜 ⊂ ℝ! is the action set,
• 𝑓:𝒜 → ℝ is the reward function, lying in a function class ℱ,
• 𝑝 on ℝ is the reward noise distribution.

• A learner who knows 𝒜 (but not 𝑓) iterates, for 𝑡 = 1,2, …𝑇,
• Select an action 𝑎" ∈ 𝒜
• Observe a reward 𝑅 𝑎" = 𝑓 𝑎" + 𝜂", where 𝜂" ∼ 𝑝.

• The learner’s objective is to minimise Bayesian regret,

min
!!,…,!"

𝐸$# /
%&'

(
max
!∈𝒜

𝑓(𝑎) − 𝑓(𝑎%) .
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Smoother-than-Lipschitz Functions

• The achievable scaling of regret depends on the smoothness of 𝑓
• Some known results,
• For 𝑓 Lipschitz: Optimal regret Ω 𝑇+/-  - [K05]
• For 𝑓 drawn from a Gaussian Process: Optimal regret Ω 𝑇  - [SKKS12]

• We focus on 𝑓 having 𝑀 ∈ ℕ Lipschitz derivatives,

𝑓 ∈ ℱ.,/,0 = 𝑔:𝒜 → 0, 𝐶 	 s.t.	 𝑔 1 𝑎 − 𝑔 1 𝑎2 ≤ 𝐿 𝑎 − 𝑎2 , 𝑚 ≤ 𝑀
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Thompson Sampling
• Thompson Sampling is a Bayesian approach to choosing 𝑎% ∈ 𝒜 in each round.
• Initialised by a prior distribution 𝜋3 on ℱ, at each 𝑡 = 1,… , 𝑇, do,

• Draw a function G𝑓% ∼ 𝜋%4'
• Choose an action 𝑎% ∈ argmax!∈𝒜 G𝑓%(𝑎)
• Observe 𝑅 𝑎%  and compute 𝜋% as posterior on 𝑓. 

On Thompson Sampling for Smoother-than-Lipschitz BanditsGrant, J. A., and Leslie, D. S. 5



Main Result

Theorem The Bayesian regret of Thompson Sampling with prior 
distribution 𝑝! on ℱ",$,% applied a the continuum armed bandit 
problem with reward function 𝑓! drawn from 𝑝!, and sub-exponentially 
distributed noise satisfies

𝐵𝑅 𝑇 = 𝑂 𝑇('$!())$()!)/(,$!(),$()') .

• Recall that 𝑀 is the number of Lipschitz derivatives.
• For 𝑀 = 0, the bound is 𝑂 𝑇5/6 , and for 𝑀 = 1, the bound is 𝑂 𝑇+-/-3 .
• As 𝑀 → ∞ the bound approaches 𝑂 𝑇 .
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Proof Sketch

• For parametric problems, where 𝑓 = 𝑓- , 𝜃 ∈ ℝ. , and confidence sets 
{Θ/}/0)1 	with 𝑃 𝜃 ∈ Θ/()|𝑎):/ , 𝑅):/ ≥ 1 − 𝛿, 

• [RVR14] show,

𝐵𝑅 𝑇, 𝜋13 ≤ 𝑇𝛿 + 𝔼 ?
/0)

1
sup
-∈5"

𝑓- 𝑎/ − inf
-∈5"

𝑓- 𝑎/

• They derive sets FΘ/  centred on the least squares estimator, whose 
width may be expressed in terms of properties of ℱ - the class of 
potential reward functions.
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Proof Sketch

First step is an analogue of FΘ/  for non-parametric settings.

Lemma (informal) For sets,

ℱ/ = 𝑓 ∈ ℱ:	 ?
60)

/
H𝑓%3,/ 𝑎6 − 𝑓 𝑎6

'
≤ 𝛽(𝛿, 𝛼(𝑡))

where 𝛽 𝛿, 𝛼(𝑡) ∝ 𝑁(𝛼(𝑡), ℱ, ⋅ 7), and 

H𝑓%3,/ ∈ argmin
8∈ℱ

?
6
𝑓 𝑎6 − 𝑅 𝑎6

'
,

we have 𝑃 𝑓! ∈ ⋂60)
/ ℱ/ ≥ 1 − 2𝛿.
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Proof Sketch

Second step is to bound the sum of diameters of ℱ% sets.

Lemma (informal) For sets ℱ% ⊂ ℱ as defined previously, and all non-increasing 
functions 𝜅 ∶ ℕ → ℝ we have that the sum of diameters 
∑%&'( sup

7∈ℱ$
𝑓 𝑎% − inf

7∈ℱ$
𝑓 𝑎%  is bounded by,

𝑇𝜅 𝑇 + 𝒹9 ℱ, 𝜅 𝑇 + 𝒹9 ℱ, 𝜅 𝑇 𝛽(𝛿, 𝛼 𝑇 )𝑇.

• 𝒹9(ℱ, 𝜅 𝑇 ) is the eluder dimension of ℱ - defined momentarily.
• Everything to this point is for general ℱ and doesn’t depend on Lipschitzness.
• We choose 𝜅(𝑇) and 𝛼(𝑇) to optimise a bound.
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Proof Sketch

Finally, specialise to the smoother-than-Lipschitz setting by bounding covering 
number and eluder dimension.
1. Covering number bound available from classic theory [KT1961],

log𝑁 𝛼, ℱ.,/,0, ⋅ : = Θ 𝛼4
'

/;'

2. 𝒹9(ℱ, 𝜅 𝑇 ) is the length, 𝐷, of longest sequence 𝑎', … , 𝑎< ∈ 𝒜, such that for 
every 𝑖 ∈ 1,… , 𝐷 	there exist 𝑓, 𝑓2 ∈ ℱ such that 

𝑓 𝑎= − 𝑓2 𝑎= > 𝜅(𝑇)
and

/
>&'

=
𝑓 𝑎> − 𝑓2 𝑎>

+
≤ 𝜅 𝑇
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Proof Sketch

Lemma The eluder dimension of ℱ",$,% can be bounded as

𝒹: ℱ",$,% , 𝜅 = 𝑜
𝜅
𝐿

;)/($())
.
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• The proof considers functions  ℎ = 𝑓 − 𝑓′ where 𝑓, 𝑓# ∈ ℱ$,&,'.

• In particular, look at if ℎ 𝑎 > 𝜅, how small can 𝛿 be such that ℎ 𝑎 ± 𝛿 ≪ 𝜅.

• The more smooth derivatives, the larger 𝛿, and the smaller the eluder dimension.



Lower Bound

Theorem For any algorithm for continuum armed bandit problems of the 
form ([0,1], 𝑓, 𝑝) where 𝑓 ∈ ℱ!,#,$ and 𝑝 is sub-exponential, there exists a 
problem instance such that the regret incurred satisfies

𝑅𝑒𝑔 𝑇 = Ω 𝑇(#&')/('#&*) .

• Recall the upper bound is 𝑂 𝑇('#(&++#&+,)/(-#(&+-#&+') .
• There is a gap of order 𝑇(*#&')/(-#(&+-#&+'), which vanishes as 𝑀 → ∞.
• Open Question: Is this gap a feature of TS or of the eluder dimension 

based analysis?
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Summary

• Presented Bayesian regret bound for non-parametric Thompson 
Sampling on smooth continuum-armed bandit problems.

• Proof via eluder dimension analysis, leads to result which matches 
lower bound in case of infinitely many smooth derivatives.

• Open questions around gap for finitely many smooth derivatives, and 
the extension to higher dimensional action spaces.
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Thank you for watching
-
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