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Abstract

* Extend understanding of Thompson Sampling for stochastic bandits.

* Bound on the Bayesian regret of Thompson Sampling for continuum-
armed bandits with nonparametric, smooth reward functions, and
sub-exponential noise.

e Achieved by analysis based on the eluder dimension (a smoothness
measure) of the reward function class.
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Problem Setting

 Continuum armed bandit specified by a tuple (A, f, p)
e A c R% is the action set,
* f:A — Ris the reward function, lying in a function class F,
* p on R is the reward noise distribution.

* Alearner who knows A (but not f) iterates, fort = 1,2, ... T,
* Select an action a; € A
* Observe areward R(a;) = f(a;) + n¢, where n; ~ p.

* The learner’s objective is to minimiTse Bayesian regret,
min E; (z (max f(a) — f(at))).
a4,..,ar t=1 NAEA
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Smoother-than-Lipschitz Functions

* The achievable scaling of regret depends on the smoothness of f

e Some known results,
* For f Lipschitz: Optimal regret Q(TZ/B) - [KO5]
* For f drawn from a Gaussian Process: Optimal regret Q(\/T) - [SKKS12]

* We focus on f having M € N Lipschitz derivatives,

fEFeur={9:A-1[0,C] st |g™(a)—g™(a)|<Lla-a|,m< M)}
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Thompson Sampling

* Thompson Sampling is a Bayesian approach to choosing a; € A in each round.
* |Initialised by a prior distribution Ty on F,ateacht = 1, ..., T, do,

* Draw a function f; ~ mp_4

* Choose an action a, € argmax ¢4 f;(a)

* Observe R(a;) and compute m; as posterior on f.
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Main Result

Theorem The Bayesian regret of Thompson Sampling with prior

distribution py on F¢ ;. applied a the continuum armed bandit
problem with reward function fy drawn from p,, and sub-exponentially
distributed noise satisfies

BR(T) = 0(T(ZMZ+11M+10)/(4M2+14M+12))_
e Recall that M is the number of Lipschitz derivatives.

* For M = 0, the bound is O(T>/®), and for M = 1, the bound is 0(T?3/3°).
e As M — oo the bound approaches 0(\/7)
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Proof Sketch

* For parametric problems, where f = f,0 € R%, and confidence sets
{O}i=1 With P(0 € O¢yqasy, Ry) 216,
* [RVR14] show,
T
BR(T,n™) < TS+ E (Z sup fp(a;) — inf fo (at))
t=10€0; Oe0

* They derive sets ©, centred on the least squares estimator, whose
width may be expressed in terms of properties of F - the class of
potential reward functions.
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Proof Sketch

First step is an analogue of @t for non-parametric settings.

Lemma (informal) For sets,

Fo={rer Y (fsda) (@) <pGaw)
where (6, a(t)) <« N(a(t),F,|l|le), and
fuse € argmin > (f(ap) - R(ap)”,

feF
we have P(fo S ﬂle}"t) >1— 20.
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Proof Sketch

Second step is to bound the sum of diameters of F; sets.

Lemma (informal) For sets Fy € F as defined previously, and all non-increasing
functions k : N = R we have that the sum of diameters

>I_. sup f(a,) — inf f(a,) is bounded by,
fE?t fE?t

Tk(T) + dg(F, k(T)) + \/dE(T,K(T)),B(cY, a(T)T.

* dp(F,k(T)) is the eluder dimension of F - defined momentarily.
* Everything to this point is for general F and doesn’t depend on Lipschitzness.
* We choose k(T) and a(T) to optimise a bound.
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Proof Sketch

Finally, specialise to the smoother-than-Lipschitz setting by bounding covering

number and eluder dimension.

1. Covering number bound available from classic theory [KT1961],

1
log N(at, Fep ol lleo) = 0(qw+1)

2. dg(F,k(T)) is the length, D, of longest sequence a4, ..., ap € A, such that for
everyi € {1, ...,D} there exist f, f' € F such that

and

fla;) — f'(a;) > k(T)
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Proof Sketch

Lemma The eluder dimension of F 5, 1, can be bounded as
~1/(M+1)

dE(TC,M,L» K) =0 (%)

* The proof considers functions h = f — f" where f, f' € F¢ ;.

* |n particular, look at if h(a) > k, how small can é be such that h(a + §) < k.

 The more smooth derivatives, the larger 6, and the smaller the eluder dimension.
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Lower Bound

Theorem For any algorithm for continuum armed bandit problems of the
form (]0,1], f,p) where f € F 1 and p is sub-exponential, there exists a
problem instance such that the regret incurred satisfies

Reg(T) — Q(T(M+2)/(2M+3)).

e Recall the upper bound is 0(T(ZMZ+11M+10)/(4M2+14M+12)).

» There is a gap of order T 3M+2)/(4M*+14M+12) '\\hich vanishes as M — oo.

* Open Question: Is this gap a feature of TS or of the eluder dimension
based analysis?
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Summary

* Presented Bayesian regret bound for non-parametric Thompson
Sampling on smooth continuum-armed bandit problems.

* Proof via eluder dimension analysis, leads to result which matches
lower bound in case of infinitely many smooth derivatives.

* Open questions around gap for finitely many smooth derivatives, and
the extension to higher dimensional action spaces.
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Thank you for watching
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