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Outline

1. Introduction to online learning problems.

2. Application to surveillance on a perimeter.

3. Application to quality control.
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Online Learning

• Traditional optimisation:
• Typically make one decision
• If objective function known -> simply* optimise it
• If objective function uncertain -> estimate expected value -> stochastic 

optimisation

• Online learning:
• Initial uncertainty, but opportunity to receive feedback and revise decision
• Iterate between estimation, decision, and feedback
• Which decision to make at which stage is non-trivial!
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A Simple Example

• Suppose we have an action set of size 𝐾, and 𝑇 > 𝐾 opportunities to 
make a decision:
• One action 𝑘 ∈ {1,… , 𝐾} can be chosen at each time 𝑡 ∈ {1,… , 𝑇},
• When chosen, 𝑘 generates stochastic reward, 𝑋!, with mean 𝜇!,
• Aim is to maximise the sum of rewards over 𝑇 actions.

• If all 𝜇! known, optimal strategy is to always use 𝑘∗ = argmax! 𝜇!.
• Otherwise, it is necessary to estimate each 𝜇!.

• This problem is known as the multi-armed bandit problem – a name 
derived from a toy application of choosing among 𝐾 slot machines.
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A Naïve Approach

• We could approach this problem by explore-then-commit:

• Use the first 𝑀 ⋅ 𝐾 rounds to try each action 𝑀 times,
• Then compute mean estimators 𝜇̂! =

"
#
∑$𝑋!,$ , ∀𝑘 ∈ {1,… , 𝐾},

• Identify the ‘best’ action, 𝑘$&' = argmax
!

𝜇̂!,

• Use 𝑘$&' at all remaining times 𝑡 ∈ {𝑀𝐾 + 1,… , 𝑇}.

• This will work sometimes, but is sub-optimal in general.
• We need to continue to sample all actions at some level.
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More Successful Strategies

Optimistic Approach
• Consider the upper limit of a 

confidence interval for each 
action’s mean.
• Deploy the action with the largest 

upper limit.
• Eventually confidence intervals 

become small.
• NB we take increasing quantiles on 

the limit to ensure exploration.
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Randomised Approach
• Consider the posterior distribution 

on the mean of each action.
• Draw a sample from each and 

deploy action with the highest 
sample.
• Observe the actual 𝑋! and update 

posterior.
• Repeat.
• Eventually distributions 
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General Framework

• These methods (appropriately tuned) are successful for the multi-
armed bandit problem - and for many more general online problems.
• Performance is measured by regret. 
• Suppose in each round we choose 𝐴# ∈ 𝒜 (= {1,… , 𝐾} for MAB)
• And then observe reward 𝑅 𝐴# (= 𝑋$! for MAB)
• Let the optimal action be 𝐴∗ = argmax$∈𝒜 𝐸(𝑅 𝐴# )

𝑅𝑒𝑔 𝑇 =;
#'(

)

𝐸(𝑅 𝐴∗ − 𝑅 𝐴# ) = 𝑇 ⋅ 𝐸(𝑅 𝐴∗ ) −;
#'(

)

𝐸(𝑅 𝐴# )

• Theoretical property, analysed in worst case.
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Application 1: Perimeter 
Surveillance
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Perimeter Surveillance
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Perimeter Surveillance

• We discretise the perimeter, so we have Poisson counts in each cell

Online Learning in Surveillance and Quality ControlGrant, J. A. 18

𝜇! 𝜇" 𝜇#𝜇$… …

𝑋" ∼ 𝑃𝑜𝑖𝑠(𝜇")



Perimeter Surveillance

• A sensor is deployed to a set of cells, and observes a filtered set of 
events
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probability 𝛾(3)

Sensor observes
𝑅 = 9𝑋$ + 9𝑋$%! + 9𝑋$%"

where 
9𝑋& ∼ 𝑃𝑜𝑖𝑠(𝛾 3 𝜇&)



Model

• Let there be 𝐾 cells and 𝑈 < 𝐾 sensors.
• Let the sensor 𝑢 have filtering probability function 𝛾*
• Let 𝒂* ⊂ {1,…𝐾} be the cells assigned to sensor 𝑢
• We wish to (learn to) optimise

max
𝒂",*'(,…,.

;
*'(

.
𝛾* |𝒂*| ;

!∈𝒂"
𝜇!

𝑠. 𝑡. 𝒂* ∩ 𝒂/ = ∅, ∀ 𝑢 ≠ 𝑣
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Solution Approaches

• We compute the solution to an optimisation of the form below at 
each 𝑡 ∈ {1, … , 𝑇}

𝒂# = argmax
𝒂",*'(,…,.

;
*'(

.
𝛾* |𝒂*| ;

!∈𝒂"
𝜇!

𝑠. 𝑡. 𝒂* ∩ 𝒂/ = ∅, ∀ 𝑢 ≠ 𝑣
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Solution Approaches

• We compute the solution to an optimisation of the form below at 
each 𝑡 ∈ {1, … , 𝑇}

𝒂# = argmax
𝒂",*'(,…,.

;
*'(

.
𝛾* |𝒂*| ;

!∈𝒂"
𝝁𝒌

𝑠. 𝑡. 𝒂* ∩ 𝒂/ = ∅, ∀ 𝑢 ≠ 𝑣

• Since 𝜇! are unknown we replace them with optimistic or 
randomised estimates
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Estimate Design

• The observed data for a bin 𝑘 is a series of Poisson r.v.s with means 
𝛾(𝜇! , 𝛾1𝜇! , … , 𝛾2𝜇! for some sequence 𝛾(, 𝛾1, … , 𝛾2 ∈ 0,1 2.
• For a randomised approach, Gamma prior is conjugate, so posterior 

sampling is straightforward.
• Replace 𝜇" with a sample from a Gamma posterior.

• For an optimistic approach, non-independence raises complexities. 
• Can use martingale inequalities to derive upper confidence bound:

𝑃 P𝜇!,2 + 𝐶2 ≥ 𝜇! ≥ 1 − 𝛿

Online Learning in Surveillance and Quality ControlGrant, J. A. 26



Optimistic Strategy (UCB)

• Initial phase: choose actions randomly to initialize mean estimates.
• Iterative phase, at each time 𝑡 ≤ 𝑇

• Compute mean estimate for each bin #𝜇!,#
• Compute the upper confidence bound term

𝐶!,# = 𝑂
𝜇!,$%&
Γ!,#

• Choose an action which is optimal w.r.t the upper confidence bounds,

𝒂! = argmax
𝒂',$%&,…,(

<
$%&

(
𝛾$ |𝒂$| <

)∈𝒂'
( @𝜇),! + 𝐶),!)

𝑠. 𝑡. 𝒂$ ∩ 𝒂+ = ∅, ∀ 𝑢 ≠ 𝑣

Grant, J. A. Online Learning in Surveillance and Quality Control 27

𝜇$,()*: upper 
bound on 𝜇$

Γ$,+: sum of 
detection 
probability in 𝑘 so 
far



Randomised Strategy (Thompson Sampling)

• Initialise via a Gamma prior on each mean parameter 𝜇" ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼", 𝛽").
• Iterative phase, at each time 𝑡 ≤ 𝑇

• Draw a sample from the posterior for each bin,

M𝜇),! ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼) + 𝑆),!, 𝛽) + Γ),!)

• Choose an action which is optimal w.r.t the Thompson Samples,

𝒂; = argmax
𝒂!,=>?,…,@

G
=>?

@
𝛾= |𝒂=| G

"∈𝒂!
J𝜇",;

𝑠. 𝑡. 𝒂= ∩ 𝒂A = ∅, ∀ 𝑢 ≠ 𝑣
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𝑆$,+: sum of events 
observed in 𝑘 so far

Γ$,+: sum of 
detection 
probability in 𝑘 so 
far



Results
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Application 2: Quality Control
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Apple Tasting Model

• A new apple presented at time 𝑡
• It is either
• Class 0: good
• Class 1: rotten

• We want to remove rotten 
apples, and let good apples pass
• We can only tell the class by 

removing and tasting.
• Need to balance tasting/passing
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Network Traffic Data

• Monitoring a set of data streams
• Occasional anomalies occur, 

which are either 
• Class 0 – innocuous
• Class 1 – relevant

• A time series algorithm flags 
these, and we can determine the 
class by showing to an engineer
• Showing an engineer entails a 

cost, and therefore we only want 
to display relevant anomalies
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Quality Control

• Points where the time series algorithm flags an anomaly become decision 
times.
• We want to learn the parameters of a classifier.
• Assume a logistic regression model

𝑃 𝐶" = 1 = 𝜎 𝑥"#𝜃∗ =
exp(−𝑥"#𝜃∗)

1 + exp(−𝑥"#𝜃∗)

• 𝑥" are features of the anomaly
• 𝜃∗ is an unknown parameter vector
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Randomised Approach (Thompson Sampling)

• Potential anomaly proposed with feature vector 𝑥"
• Draw a sample 0𝜃" from the posterior* 𝜋" on parameter 𝜃∗

• Estimate the probability of being a relevant anomaly

2𝑝" = 𝜎 𝑥"# 0𝜃" .

• Display to engineer if expected cost is minimised by doing so.
• If displayed to engineer, receive true class as feedback.
• In either case, incur cost (unknown (to algorithm) if not displayed).
*We require an approximation to the posterior – but the approximation is 
consistent in a limiting sense.
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Performance of Thompson Sampling

• Compare against:
• IDS (a hybrid of optimisation and randomisation)
• CBP-side (an optimistic approach)
• 𝜖 −Greedy (exploration is independent of the data)
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Summary

• Online learning, benefits of optimism and randomisation

• Applications in surveillance, and quality control

• Papers (will) contain theoretical analysis of regret - showing the 
optimality of these approaches.
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-
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