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Abstract

Learning the optimal ordering of content is an important challenge in website design. The
learning to rank (LTR) framework models this problem as a sequential problem of selecting
lists of content and observing where users decide to click. Most previous work on LTR assumes
that the user considers each item in the list in isolation, and makes binary choices to click or
not on each. We introduce a multinomial logit (MNL) choice model to the LTR framework,
which captures the behaviour of users who consider the ordered list of items as a whole and
make a single choice among all the items and a no-click option. Under the MNL model, the
user favours items which are either inherently more attractive, or placed in a preferable position
within the list. We propose upper confidence bound algorithms to minimise regret in two
settings - where the position dependent parameters are known, and unknown. We present
theoretical analysis leading to an Ω(

√
T ) lower bound for the problem, an Õ(

√
T ) upper bound

on regret for the known parameter version. Our analyses are based on tight new concentration
results for Geometric random variables, and novel functional inequalities for maximum likelihood
estimators computed on discrete data.

Keywords: Learning to rank; Multinomial Logit choice model; Multi-armed Bandits; Upper
Confidence Bound; Concentration Inequalities.

1 Introduction

Learning the optimal ordering of content is an important challenge in website design and online
advertising. The learning to rank (LTR) framework captures such a challenge via a sequential
decision-making model. In this setting, a decision-maker repeatedly selects orderings of items
(product advertisements, search results, news articles etc.) and displays them to a user visiting
their website. In response the user opts to click on none, one, or more of the displayed items.
The objective of the decision-maker will be to maximise the number of clicks received over many
iterations of this process. Such an objective is a reasonable and widely-used proxy for the most
common interests of a decision-maker in this setting: e.g. maximising profit, and maximising user
satisfaction. As such, methods which achieve this objective can be hugely impactful in real-world
settings.
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Recent works (e.g. Kveton et al. (2015), Lagrée et al. (2016)) have considered various formula-
tions of LTR, distinguished by the assumptions on the click model, assumed to govern how users
decide to click on items. A majority of previous works utilise a factored click model, which assumes,
in particular, that the user will click on any displayed item satisfying two conditions: 1) that the
user finds the item attractive, and 2) the user examines the item. The various factored models are
differentiated by their specification of the probability of attraction and examination events given
particular orderings of content.

Factored models represent the user’s choice as a series of binary decisions to click or not click on
each examined item. They fail to capture settings where the user’s decisions are made among more
than two alternatives, for instance choosing between several items considered simultaneously. In
this work, we consider LTR under a click model which captures the phenomenon of a user making
a single decision among several alternatives including the option to not click at all. Our click
model is based on the multinomial logit (MNL) model of user choice (Luce, 1959; Plackett, 1975).
We augment the classical MNL model with position effects to capture the relative prominence of
different display positions, which may be pre-specified or learned online.

Our model may be more suitable in a variety of settings. For instance, where all items are
visible on a screen simultaneously, and are not considered sequentially, or where items are laid out
on a grid or more complex display and it is not possible, a priori, to specify a rank order of positions
in terms of prominence. This phenomenon has been noticed at a partner company, where the final
slot on a homepage has higher click rates than mid-page slots.

1.1 Problem Definition

We propose the Multinomial Logit Learning to Rank (MNL-LTR) problem. This problem captures
the challenge of learning an optimal list of K items among J , where the click model is an order-
dependent variant of multinomial logit choice.

In each of a series of rounds t ∈ [T ],1 the decision-maker chooses an action at = (a1,t, . . . , aK,t) ∈
A ⊂ [J ]K , where A is the set of all ordered lists of length K consisting of items drawn from [J ]
without replacement. The action indicates an ordering of K items to display to the user in round
t. Each action j ∈ [J ] has an associated attractiveness parameter, αj ∈ (0, 1], and each slot k ∈ [K]
has an associated position bias λk ∈ (0, 1]. We let αk,t = αak,t refer to the attractiveness parameter
of item ak,t.

In response to the action at, the user will either click on a displayed item or take a no click
action. This process is captured via a click variable Qt taking values in [K]0. The click probabilities
follow from the MNL choice model, whose parameters are the products of attractiveness and bias
parameters. Specifically, we have

P (Qt = k | at) =
λkαk,t

1 +
∑K

v=1 λvαv,t
, k ∈ [K], (1)

and P (Qt = 0 | at) = 1−
∑K

k=1 P (Qt = k | at).
Following the user’s choice, the decision-maker receives a reward R(at) = I{Qt 6= 0}. The

decision-maker’s aim is to maximise their expected cumulative reward over T rounds. The expected
reward on an action a ∈ A (in any round) is written, r(a) := E(R(a)) =

∑K
k=1 P (Q = k | a). The

challenge for the decision maker is that the attractiveness parameters are unknown and the optimal

1For an integer W ≥ 1, we let [W ] denote the set {1, . . . ,W}
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action is therefore initially unclear. We will consider the problem in two informational settings:
where the position biases are known, and unknown.

1.2 On Approaches to the Problem

The decision-maker faces a classic exploration-exploitation dilemma and must employ a strategy
which balances between reward maximising and information gaining actions. We refer to such a
strategy as a policy, and formalise it as a (possibly randomised) mapping from a history Ht−1 =
σ(a1, Q1, . . . ,at−1, Qt−1) to an action at ∈ A for each time t ∈ [T ].

We propose upper confidence bound (UCB) policies for both the known and unknown position
bias settings. UCB approaches are well-studied in the context of multi-armed bandits, following
from Lai and Robbins (1985), and are known to achieve optimal regret in a variety of settings.
The canonical principle of a UCB approach is as follows. In each round, the policy computes
high probability upper confidence bounds on the expected rewards of actions by utilising tight
concentration results, and selects an action with maximal associated bound. Intuitively speaking,
these approaches are effective because they tend to select actions that either have high reward (and
thus are profitable) or high uncertainty (and thus provide a substantial information gain).

In the MNL-LTR setting, the identification of tight concentration results is the most involved
aspect of designing UCB policies. In part, this is because the likelihood induced by the MNL model
(1) has a complex combinatorial structure, making it hard to identify parameter estimates with
known distributional properties. Our proposed strategies subvert this issue by utilising a restriction
on the decision-maker’s actions such that the likelihood factorises usefully. This technique (first
used by Agrawal et al. (2017, 2019)) restricts the decision-maker to repeatedly display any selected
ordered list in each round until a no-click event is observed. Unbiased estimators may then be
constructed as a sum of geometrically distributed random variables which are functions of the
users’ stochastic behaviour.

We will be interested in the empirical and theoretical performance of policies, measured in terms
of their expected pseudoregret (referred to simply as regret in what follows) in T rounds, defined
as,

Reg(T ) = Tr(a∗)− E
( T∑
t=1

R(at)

)
, (2)

where a∗ = maxa∈A r(a) is an optimal action. Specifically, we will be interested in the order
(w.r.t. T,K, and J) of upper bounds on the regret for our proposed policies, and lower bounds
on the regret which hold uniformly across all (reasonable) policies. We will study the problem in
two informational settings: one where only attractiveness parameters are unknown, and another
where both the attractiveness parameters and position biases are unknown. Our results establish
an Ω(

√
JKT ) lower bound on regret, and an upper bound matching this up to logarithmic factors

for the known-position bias setting.

1.3 Key Contributions

The primary contributions of this work are threefold. Firstly, we provide a new parametric model
of LTR based on set-wise user decisions with foundations in classic choice theory.

Second, we derive new theoretical results concerning the concentration of Geometric random
variables, giving rise to two new exponential inequalities: The first, an improved high-probability
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bound on the sum of non-independent, non-identically distributed (n.i.n.i.d.) Geometric random
variables. The second, a high-probability bound on smooth functions of n.i.n.i.d. Geometric random
variables, which is applied to the maximum likelihood estimates (MLEs) in the unknown position
bias setting to give non-asymptotic confidence sets for all parameters, even in the absence of closed-
form expressions for the MLEs.

Finally, based on these results we propose UCB algorithms for the known and unknown position
bias settings, and validate their efficacy through derivation of upper and lower bounds on regret
- which match up to logarithmic factors - and empirical assessment against other state-of-the-art
approaches.

1.4 Related Work

A special case of our MNL-LTR model is the MNL bandit (Rusmevichientong et al., 2010). It does
not consider ordering of the items and coincides with our model when all position biases are equal.

Initial studies of the MNL-bandit problem presented “explore-then-commit” approaches, which
only behave optimally for specific problem classes, and with prior knowledge of certain problem pa-
rameters (Rusmevichientong et al., 2010; Sauré and Zeevi, 2013). Agrawal et al. (2019) and Agrawal
et al. (2017) since presented UCB and TS approaches to the MNL-bandit respectively, which have
Õ(
√
JT ) regret, matching the minimax lower bound derived by Chen and Wang (2018) (up to

logarithmic factors). These methods use restrictions on decision-making to permit the construction
of estimators with desirable properties. Wang et al. (2018) propose a further approach for the
MNL-bandit whose regret is independent of J subject to further assumptions on the attractiveness
parameters.

There has since been interest in extending the MNL-bandit model in various directions, con-
sidering the best-action identification variant (Chen et al., 2018a), context-dependent variant (Oh
and Iyengar, 2019; Chen et al., 2018b), and variants with variable rewards and no ‘no-click’ event
(Bengs and Hüllermeier, 2019; Saha and Gopalan, 2019; Mesaoudi-Paul et al., 2020). None of these
works, however, consider the effect of ordering and position biases - i.e. an LTR variant.

Works on LTR are mainly distinguished by different click models (Chuklin et al., 2015), the
majority being of the factored form previously described. Two notable choices are the Cascade
Model (CM) (Craswell et al., 2008) and the Position Based Model (PBM) (Richardson et al.,
2007). Under the CM the user considers each item in sequence, and decides whether or not to click
on it before considering any items. If the user clicks an item, or reaches the end of the list without
clicking any items, they stop. In contrast, under the PBM, the user may click on multiple items,
and chooses whether to examine each item independently, with probabilities similar to our position
biases.

Kveton et al. (2015) consider a LTR problem incorporating the CM, and Lagrée et al. (2016)
and Komiyama et al. (2017) the PBM. In each of these settings upper confidence bound approaches
achieve O(

√
T ) regret. Recent works of Zoghi et al. (2017), Lattimore et al. (2018), and Li et al.

(2019) have investigated more general click models which include the CM and PBM as special
cases. The models of Zoghi et al. (2017) and Li et al. (2019) retain the assumption of a factored
model, but are less restrictive than CM, and PBM. The model of Lattimore et al. (2018) makes
sufficiently few assumptions to capture a wider range of models, including that which we propose.
However such a general approach does not admit as tight theoretical guarantees. Table 1 compares
the existing results on regret in LTR and the MNL-bandit with our regret upper bound.
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MNL choice LTR Algorithm Regret

Agrawal et al. (2019) X - UCB
Õ
(√

JT
)

Agrawal et al. (2017) X - TS

Lattimore et al. (2018) included as special case X TopRank O
(√

JK3T
)

This paper X X UCB Õ
(√

JKT
)

Table 1: Comparison of results in the present paper and related work. T denotes the number of
rounds, J the number of items, and K the number of items chosen per round.

2 Inference

In the MNL-LTR framework, the task of making accurate and efficient inference on the attractive-
ness parameters is more challenging than in other variants of LTR. Consider the likelihood of the
sequence of clicks Q1:T = {Q1, . . . , QT } given the attractiveness parameters α, position biases λ,
and action sequence a1:T = {a1, . . . ,aT },

L(Q1:T | a1:T ,α,λ) =
T∏
t=1

∑J
j=0 αj

∑K
k=1 λkI{ak,t = j,Qt = k}

1 +
∑J

j=1 αj
∑K

k=1 λkI{ak,t = j}
. (3)

The likelihood (3) lacks a closed-form maximiser, meaning maximum likelihood estimators of α
and λ can only be computed numerically. Similarly, any Bayesian inference would necessarily be
approximate, and computationally intensive. Both of these approximations (which are not necessary
in related, factored models) are obstacles to the design and analysis of efficient, optimal sequential
decision making policies.

2.1 Inference with Known Position Biases

Exact inference is possible if we restrict the manner in which actions are selected. For the MNL-
bandit, Agrawal et al. (2019) propose a restriction on decision-making that admits unbiased inde-
pendent estimators of the attractiveness parameters. Specifically, if each selected set of items is
displayed repeatedly until a no-click event is observed, then unbiased estimators of the attractive-
ness parameters are available. We will show that the same is possible in the MNL-LTR setting, if
we display the same ranked list repeatedly until a no-click event occurs.

To describe this approach, we think of the T rounds as being divided into L ≤ T epochs of
variable length. An epoch l ∈ [L] will consist of a sequence of consecutive time periods El ⊆ [T ].
In each epoch l we will offer an ordered list al ∈ A repeatedly, until a no-click event is observed.
Let alk be the item in position k in epoch l and let αlk be the attractiveness parameter of this item,
for k ∈ [K].

As usual in each round t ∈ El a click variable Qt is observed. For each slot k ∈ [K]0 the number
of clicks on position k in epoch l is defined as nlk =

∑
t∈El I{Qt = k}. By the construction of the

epochs we always have nl0 = 1, unless l = L and the final epoch is stopped by the completion of
the time horizon, rather than a no-click event. We now show that these counts nlk can be used to
construct simple closed-form estimators of the attractiveness parameters.

The log-likelihood of the observed clicks nl = (nl0, n
l
1, . . . , n

l
K) in a single epoch l, with fixed
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action al can be written as,

logL(nl|al,α) =

K∑
k=0

nlk

[
log(λkα

l
k)− log(1 +

K∑
v=1

λvα
l
v)

]
.

The single-epoch likelihood is maximised by estimators α̂lk = nlk/λk for k ∈ [K].
Inspired by these within-epoch estimators, we may then construct estimators for each attrac-

tiveness parameter αj , j ∈ [J ], aggregating over L complete epochs as

ᾱj(L) =

∑L
l=1

∑K
k=1 I{alk = j}nlk∑L

l=1

∑K
k=1 I{alk = j}λk

, j ∈ [J ]. (4)

These estimators result from weighted averaging of the within-epoch maximum likelihood estimators
- which is preferable to uniform averaging as we should expect epochs where the item j was placed
in a slot with a higher position bias to be less variable and thus more reliable. The lemma below,
whose proof is reserved for Appendix E, gives the distribution of the random variables nlk. It follows
immediately that our estimators α̂lk and ᾱj(L) are unbiased.

Lemma 1 For each k ∈ [K], and l ∈ [L], nlk, the number of clicks on the item in position k during
epoch l, follows an Geometric2 distribution with parameter (1 + λkα

l
k)
−1.

2.2 Inference with Unknown Position Biases

When the position biases are unknown, epoch-based decision making is also useful. In this setting
the likelihood is not identified unless we fix one of the position biases, so we fix λ1 = 1. This
restriction may rescale other parameters, with respect to the known position bias case, but crucially
it does not change the interpretation of the model. Some further notation is also useful to describe
inference in this setting. Define the K × J matrix of click counts in l ∈ [L] epochs as N(l) having
entries,

Nkj =
L∑
l=1

∑
t∈El

I{Qt = k,alk = j}, k ∈ [K], j ∈ [J ].

Similarly, define Ñ(l) as the matrix of counts of selections of item-position combinations, whose
entries are

Ñkj =

L∑
l=1

I{alk = j}, k ∈ [K], j ∈ [J ].

Now, define γjk = αjλk, j ∈ [J ], k ∈ [K] to be the products of the attraction probabilities and
position biases. Using the known distribution of the click counts nlk we can derive an unbiased
product parameter estimate γ̄jk(L) = Nkj/Ñkj for each j ∈ [J ], and k ∈ [K]. A naive approach
would independently estimate the JK product parameters and build UCBs around those. Such
an approach does not make efficient use of the data, and as such associated decision-making rules
can spend a prohibitively long time exploring, although they will eventually converge to optimal
actions. We discuss the limitations of such an approach in more detail in Appendix F and revisit

2For clarity, we note that throughout this paper we use the following parametrisation of the geometric distribution.
If X ∼ Geom(p) then P (X = x) = (1− p)xp, x ∈ N := {0, 1, . . . }.
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it in the experiments in Section 6. In the remainder of this section we will focus on direct inference
on the attractiveness parameters and position biases.

We may obtain estimates of the attractiveness parameters and position biases via the EM scheme
outlined in Algorithm 1. In particular this algorithm exploits that conditioned on estimates of the
attractiveness parameters α̂1:J(L) we have an estimate of the position bias for slot k ∈ {2, . . . ,K}
as

λ̂k(L) =
1

L

J∑
j=1

γ̂jk(L)

α̂j(L)

L∑
l=1

I{alk = j} =
1

L

J∑
j=1

Nkj

α̂j(L)
. (5)

Similarly, we have an estimate of the attractiveness of item j ∈ [J ] given estimates λ̂2:K(L) of the
position biases, as

α̂j(L) =
1∑L

l=1

∑K
k=1 I{alk = j}

K∑
k=1

Nkj

λ̂k(L)
, (6)

where λ̂1(L) = λ1 = 1. Algorithm 1 iterates between estimating position biases and attractiveness
parameters until the estimates converge to within some tolerance.3 The following lemma guaran-
tees the convergence of this EM scheme. Its proof is given in Appendix E, and follows from the
unimodality of the log-likelihood function.

Lemma 2 The estimators αEM , and λEM derived from the EM algorithm, Algorithm 1, converge
monotonically to the maximum likelihood estimators.

Algorithm 1 EM Algorithm for MNL-LTR with Unknown Position Biases

Inputs: Initial parameter values αj,0 for all j ∈ [J ], and λk,0 for k ∈ {2, . . . ,K}. Tolerance
parameter 0 < ξ < 1. Action and click histories, a1:L, Q1:T .

Set d← 1, s← 0, and λ1,t ← 1 for all t ≥ 0.

While d > ξ do:

• Set s← s+ 1.

• E-Step For each k ∈ {2, . . . ,K}, calculate λk,s according to (5).

• M-Step For each j ∈ [J ], calculate αj,s according to (6).

• Calculate d = max
(
maxk∈{2,...,K} |λk,s − λk,s−1|,maxj∈[J ] |αj,s − αj,s−1|

)
.

Return λ1,s, . . . , λK,s and α1,s . . . , αJ,s as estimates of position biases and attractiveness parame-
ters.

3There is an issue with the numerical stability of this EM scheme, as if a given item or position has no associated
clicks, its estimate will go to 0. We can resolve this either by adopting the convention that 0/0 = 0 or by artificially
constraining the estimates to be no smaller than some ε > 0
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3 Concentration Results

In this section we derive concentration results for the parameter estimates in both the known
and unknown position bias settings. Quantification of the uncertainty in the parameters is key to
designing effective sequential decision-making algorithms, and the results in this section will later
be used to construct UCB approaches.

3.1 Concentration Results Relevant to the Known Position Bias Setting

As discussed in Section 2.1, the empirical means, ᾱj , are weighted averages of Geometric random
variables. The following theorem gives a martingale-type concentration result for the sum of ge-
ometrically distributed random variables with differing means. This result is not specific to the
MNL-LTR or MNL bandit settings, and therefore may be of independent interest.

It is worth noting that the results of Theorem 1 simultaneously have improved coefficients,
and a greater generality than alternative results for i.i.d. geometric random variables obtained
by Agrawal et al. (2019). We require the greater generality in the MNL-LTR setting because the
random variables associated with clicks of an item per epoch will be a) non-identically distributed
as they depend on the position bias, and b) non-independent as the assignment of items to slots
depends on the previously observed data.

Theorem 1 Consider geometric random variables Yi with parameter pi, i ∈ [n], where pi may be
a function of p1, . . . , pi−1, Y1, . . . Yi−1. Let µi = 1−pi

pi
, and σ2

i = µ2
i + µi. If µi ≤ 1 for all i ∈ [n],

then we have for all C > 0,

P

∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

µi

∣∣∣∣∣ >
√√√√2

n∑
i=1

σ2
i log(C) + 4 log(C)

 ≤ 2C−1, ∀n ≥ 1. (7)

Furthermore, we have for all C > 0,

P

∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

µi

∣∣∣∣∣ >
√√√√8

n∑
i=1

Yi log(C) + 4 log(C)

∣∣∣∣ An
 ≤ 4C−1, (8)

where An =
{∑n

i=1 µi ≥ 8 log(C) +
√

8
∑n

i=1 σ
2
i log(C)

}
.

A full proof of Theorem 1 is provided in Appendix A, but we briefly outline its intuition here.
The proof derives a new bound on the central moments of the geometric distribution in order to
utilise a Bernstein-like inequality for martingale difference sequences. As the central moments of
the geometric distribution lack a closed-form expression, this is non-trivial. We achieve the bound
by first bounding the cumulants of the geometric distribution and exploiting a combinatorial link
between central moments and cumulants.

The following lemma adapts the result of Theorem 1 to the LTR setting. Its proof is also given
in Appendix A. The UCB algorithm we propose in Section 4 for the known position bias setting is
designed to exploit these results.
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Lemma 3 We have for estimators ᾱj(l) j ∈ [J ] defined as in Equation (4), and attractiveness
parameters 0 < αj ≤ 1, j ∈ [J ], the following concentration results, for all l : Λj,l > 0

P

(
|ᾱj(l)− αj | >

√
4 log(Jl2/2)

Λj,l
+

4 log(Jl2/2)

Λj,l

)
≤ 4

Jl
, (9)

P

(
|ᾱj(l)− αj | >

√
8ᾱj(l) log(Jl2/2)

Λj,l
+

8 log(Jl2/2)

Λj,l

)
≤ 6

Jl
. (10)

Furthermore, for l : Λj,l > 4 log(Jl2/2)/αj we have,

P

(
ᾱj(l) > 2αj +

4 log(Jl2/2)

Λj,l

)
≤ 2

Jl
. (11)

3.2 Concentration Results Relevant to the Unknown Position Bias Setting

The derivation of concentration results in the unknown position biases setting is more challenging,
since the MLE for any unknown parameter (attractiveness or position bias) does not have a closed
form. The asymptotic properties of MLEs are well documented, but there are comparatively few
general guarantees relating to finite-time behaviour. However, here we are able to utilise non-
asymptotic deviation inequalities on certain functions of random variables to derive concentration
properties for a family of MLEs derived from geometrically distributed data.

As in the previous section we have a general concentration result, followed by an application
to the MNL-LTR setting. We begin with Theorem 2, whose proof is given in Appendix B which
gives a deviation inequality for a function of multivariate Geometric data. The derivation of this
result is based on theory from Bobkov and Ledoux (1998) and a logarithmic Sobolev inequality of
Joulin and Privault (2004). Before stating our result we introduce a notion of the smoothness of a
discrete function expressed in terms of its finite differences.

Let (εli)i∈[d],l∈[n] denote the canonical basis on Rd×n. For a function f : Nd×n → R define the
finite difference with respect to the input variable indexed l, i,

Dlif(X) = F (X + εli)− F (X), X ∈ Nd×n.

We say that a function F : Nd×n → R is (β1, β2)-smooth, for parameters β1, β2 > 0, if,

n∑
l=1

d∑
i=1

|DliF |2 ≤ β2
1 , and max

l∈[n]
max
i∈[d]

(|DliF |) ≤ β2 ∀ X ∈ Nd×n. (12)

Theorem 2 Let n, d ∈ N and µl | µ1:l−1 l ∈ [n] be a series of conditional multivariate geometric
measures on Nd, such that each component, µli is a geometric law with parameter pli ∈ (0, 1] for
i ∈ [d], l ∈ [n]. Define µn =

⊗n
l=1 µl as the product measure, and let F be a (β1, β2)-smooth

function with β1 > 0, and β2 ∈ (0,maxi,l(− log(1−pli))]. Then Eµn(|F |) <∞, and for every δ > 0,

Pµn (F ≥ Eµn(F ) + δ) ≤ exp

(
min

{
−δ2

4β2
1M

,
(log(1− p))2β2

1M

4β2
2

+
log(1− p)δ

2β2

})
, (13)

where M > 0 is a known finite constant depending on the parameters {pli}i∈[d],l∈[n].
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Choosing the function F to be the MLEs in the MNL-LTR setting, we have the following result,
giving concentration inequalities for the estimators derived from Algorithm 1.

Corollary 1 We have for EM estimators αEMl,j , j ∈ [J ] and attractiveness parameters 0 < αj ≤ 1,

j ∈ [J ], that for all l :
∑K

k=1 Ñkj > 0,

P
(∣∣αEMl,j − αj∣∣ >√36β2

1,l,j log(Jl2)
)
≤ 2

Jl2
.

The proof of this corollary is reserved for Appendix B. Its main argument is to recognise that
the restriction of αEMl to its jth output, for fixed selections matrix Ñ(l), is (subject to a minor
rearrangement of the inputs) a function from NK×l → [0, 1], to which the functional inequality of
Theorem 2 applies.

A similar result will hold for the position bias parameters but is not required. This is since the
algorithm we propose in the following section does not need to construct UCBs for the position
biases as every slot is utilised in every round.

4 Decision-making Algorithms

We now outline our new UCB approaches. As is typical, the algorithms select actions which
maximise the expected reward with respect to a set of upper confidence bounds on the attractiveness
parameters. Such an optimal action will place the item with the kth largest UCB in the slot with
the kth largest position bias (or estimated position bias if position biases are unknown) for each
k ∈ [K]. Then, however, the algorithms will repeatedly use this action in each round until a no-click
event is observed. This is in contrast to the traditional approach of calculating new UCBs in every
round.

Algorithm 2 Epoch-UCB algorithm for known position biases

Initialise with l = 0, and Q0 = 0. Iteratively perform the following for t ∈ [T ],

If Qt−1 = 0

• Set l← l + 1

• Calculate UCBs. For j ∈ [J ] compute,

αUCBj,l = ᾱj(l − 1) +

√
4 min(1, 2ᾱj(l − 1)) log(Jl2/2)

Λj,l−1
+

4 log(Jl2/2)

Λj,l−1
.

• Select an action at ∈ argmaxa∈A rαUCB
l

(a) which is optimal with respect to the UCB vector

αUCB
l := (αUCB1,l , . . . , αUCBl,J ), and observe click variable Qt

otherwise, set action at = at−1, and observe click variable Qt.

In Algorithm 2 we present our Epoch-UCB method for the variant of MNL-LTR with known
position biases. In each epoch l ∈ [L] the algorithm computes a UCB, αUCBj,l for each item j ∈ [J ].

10



This UCB is constructed using the concentration results of Lemma 3 to give an upper bound on αj
with high probability. The min(1, 2ᾱj,l−1) term allows the UCB to adapt to whichever of (9) and
(10) gives the tighter bound.

To state our algorithm for the setting where position biases are unknown define αEM : NK×J ×
NK×J → [0, 1]J be the function which takes click and selection count matrices as inputs and returns
the EM estimates for attractiveness parameters α. In effect, αEM represents the application of
Algorithm 1.

Algorithm 3 Epoch-UCB algorithm for unknown position biases

Initialise with l = 0 and Q0 = 0. Iteratively perform the following for t ∈ [T ],

If Qt−1 = 0

• Set l← l + 1. Compute EM estimators and finite difference bounds,

αEM
l = αEM (N(l − 1), Ñ(l − 1)) (14)

αEM
l,kj = αEM (N(l − 1) + εkj , Ñ(l − 1)), ∀k, j : Ñkj ≥ 1 (15)

β2
1,l,j =

∑
k,s:Ñks≥1

(
αEMl−1,j − αEMl−1,ks,j

)2
Ñks, ∀j ∈ [J ] (16)

• Calculate UCBs. For j ∈ [J ] compute,

αUCBj,l = αEMj,l +
√

36β2
1,j,L log(Jl2).

• Select an action at ∈ argmaxa∈A rαUCB
l

(a), which is optimal with respect to the UCB vector,
and observe click variable Qt.

otherwise, set action at = at−1, and observe click variable Qt.

In Algorithm 3 we give our policy for the setting where position biases are not known. Its
structure is similar to Algorithm 2, but the computation of the UCBs is more involved as it involves
finite difference gradients. In each epoch l ∈ [L], estimates of the MLEs, αEM

l , are computed via
Algorithm 1 as in (14). Our approach proceeds to calculate further estimates of the attractiveness
parameters but on modified data, as in (15). For each item-position pair that has been selected
at once, i.e. each k, j with Ñkj ≥ 1, we compute αEM

l,kj , parameter estimates based on l epochs of
data but with Nkj incremented by 1. A sum of the squared finite differences is then computed as
in (16), which is used in the UCB inspired by Corollary 1. This is in place of a supremum bound
on the sum of squared differences over all possible outcomes, which would be difficult to compute
in practice.

5 Regret Bounds

In this section we give upper and lower bounds on the regret for MNL-LTR algorithms. Proposition
1 gives our upper bound on the regret incurred by Algorithm 2 when the position biases are known.
Proposition 2 gives a lower bound on the regret of any algorithm, in terms of SK =

∑K
k=1 λk, and

11



SK,2 =
∑K

k=1 λ
2
k. The proofs of both results are given in the appendix - Proposition 1 in Appendix

C, and Proposition 2 in Appendix D.

Proposition 1 The regret in T rounds of the the Epoch-UCB approach, Algorithm 2, for any
MNL-LTR problem where the item attractiveness parameters satisfy αj ≤ α0 = 1, j ∈ [J ] and the
position biases λk ≤ 1, k ∈ [K] are known satisfies

Reg(T ) = O

(√
log(JT 2)JKT

mink∈[K] λk

)
.

Proposition 2 The regret of any algorithm for the MNL-LTR problem with position biases 1 ≥
λ1 > λ2 > · · · > λK > 0 satisfying SK,2 > 1 and J ≥ 4K items with attractiveness parameters
αj ∈ (0, 1], j ∈ [J ], is lower bounded as

Reg(T ) = Ω

√JTS2
K,2

SK

 . (17)

The upper and lower bounds in the known position bias case match in their order with respect
to J and T (up to logarithmic factors) and match exactly with respect to K when all position
biases are 1. Otherwise the gap with respect to K depends on the relative values of the position
biases.

For the case of unknown position biases, the more complex form of the UCBs prohibits a full
regret analysis. The precise order of the UCB with respect to the the number of times an item has
been displayed is unclear, and the usual union bounds over the magnitudes of the UCBs cannot be
meaningfully computed. For a lower bound in this setting, we may replace the S2

K,2/SK term with

its largest value and realise an Ω(
√
JTK) bound.

6 Experiments

We now conduct empirical comparisons on three instances of MNL-LTR:

(a) There are K = 4 slots with position biases λ = (1, 0.3, 0.2, 0.1). There are J = 6 items with
attractiveness parameters α = (0.3, 0.28, 0.26, 0.24, 0.22, 0.2).

(b) There are K = 3 slots with position biases λ = (1, 0.2, 0.9). There are J = 4 items with
attractiveness parameters α = (0.05, 0.1, 0.15, 0.2).

(c) There are K = 6 slots with position biases λ = (1, 0.9, 0.7, 0.3, 0.5, 0.7) and J = 30 items,
four having attractiveness parameter 1, two having attractiveness parameter 0.8, and the
remaining twenty-four having attractiveness parameter 0.1.

We consider both Algorithm 2 which knows the position biases and Algorithm 3 where the position
biases are inferred. We will refer to the former as Epoch-UCB, and the latter as Epoch-UCB UPB
(Unknown position biases) in what follows. Experimental results suggest that while the Epoch-
UCB UPB algorithm does eventually learn the optimal actions, it can be overly conservative.
We therefore also investigate a modification, Epoch-UCB* UPB, which is identical to Algorithm 3

except the UCB for item j ∈ [J ] in epoch l ∈ [L] is calculated as αUCBj,l = αEMj,l +0.5
√
β2

1,j,L log(
√
Jl).

12



We compare our algorithms to a range of alternative approaches. Firstly, we have a further
known-position-bias epoch-based approach, Epoch-UCB-W. This uses the coefficients we would
expect from adapting the weaker concentration inequalities used in Agrawal et al. (2019). Epoch-
UCB-W is identical to Algorithm 2 except it calculates UCB index for item j ∈ [J ] in epoch l ∈ [L]
as:

αUCBj,l = ᾱj,l−1 +

√
48 min(1, 2ᾱj,l−1) log(

√
Jl/
√

2)

Λj,l−1
+

48 log(
√
Jl/
√

2)

Λj,l−1
.

Second, we also consider the TopRank algorithm of Lattimore et al. (2018). This algorithm
can operate without knowledge of the position biases, but assumes that the slots are of decreasing
attractiveness. TopRank has a markedly different structure to Epoch-UCB. TopRank maintains
a hierarchical partition of the item set, such that the items sit in strata based on their perceived
attractiveness. In each round the displayed list is constructed by randomising the order of the
n1 ≥ 1 items in the top strata and assigning these to the first n1 slots, then randomising the order
of the n2 ≥ 1 items in the second strata, assigning these to the next n2 slots, and proceeding in
such a fashion until all K slots are filled. Items are demoted to lower strata if they have received
sufficiently fewer clicks than another item in their strata.

As discussed in Section 1.4, the other LTR approaches that we are aware of are all designed
with factored click models in mind, and do not carry performance guarantees to the MNL-LTR
setting. We do however investigate the Position Bias Upper Confidence Bound (PBUCB) algorithm
of Lagrée et al. (2016), which is based on the position bias click model. This algorithm can use
our position bias parameters in terms of its model, but will underestimate the α parameters as it
expects that multiple items may be clicked by a user - i.e. its inference model is inconsistent with
the MNL data generating process. Further modifications would be necessary to deploy a version of
this algorithm if the position biases were not known.

Finally, we compare to the UCB approach described in Appendix F. This approach, which
we refer to as ‘MNL-bandit’ in the figures, ignores some of the LTR structure, and treats the
unknown position bias version of the problem as a constrained MNL bandit problem. It learns the
product parameters γj,k = λkαj individually and avoids the need for running the EM algorithm. As
discussed in Appendix F it does have sublinear regret guarantee, but must perform more exploration
than other approaches due to being overparameterised.

Note that, problems (b) and (c) give examples where the optimal ordering of items is not in
decreasing order of attractiveness. In (b) for instance, the final slot, not the second slot, has the
second-to-largest position bias. In the unknown position bias variant of this problem, Epoch-UCB
UPB and Epoch-UCB* UPB can adapt to this as they actively learn the position biases, but
algorithms assuming decreasing position bias, such as TopRank, cannot.

The aforementioned algorithms were applied to problems (a) and (b) over 50000 decision-making
rounds, over 40 replications. For problem (c) we use 8000 decision-making rounds, and 40 replica-
tions, since the optimal action can be learned more quickly. Figures 1, 2, and 3 display the results,
in two forms: the mean regret accumulated through time in their left panes and the distribution
of regret in the final rounds in their right. We focus only on the distribution in the final rounds
as the results are such that plotting error bars with the each of the seven mean trajectories would
make the graphs difficult to read.

Across all three problems we find that our Epoch-UCB and the PBUCB algorithms generally
perform best. This is to be expected as they have access to the known position biases and assume a
position based model. Our improved coefficients for the known position-bias setting are seen to have
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Figure 1: Performance of algorithms on problem (a). The left panel shows the mean cumulative
regret trajectory for each algorithm over 50000 rounds. The right panel shows the distribution of
regret by algorithm at the end of 50000 rounds.
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Figure 2: Performance of algorithms on problem (b). The left panel shows the mean cumulative
regret trajectory for each algorithm over 50000 rounds. The right panel shows the distribution of
regret by algorithm at the end of 50000 rounds.
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a substantial benefit as Epoch-UCB-W is much more conservative than Epoch-UCB. Indeed Epoch-
UCB-W even suffers worse performance than TopRank which can identify the correct ordering of
items despite not knowing the true click model.

In the unknown position bias setting, we see that the unmodified Epoch-UCB UPB approach
is also overly conservative, but the approach with modified coefficients Epoch-UCB* UPB is not
much worse than the best known position bias algorithms. TopRank does not know the click model
but performs well when the position biases are decreasing in the slot index. In problems (b) and
(c) where the position biases do not fit this assumption TopRank can identify the top K items
reliably, but incurs a linear regret due to repeatedly ordering these suboptimally.

Problem (c) most clearly demonstrates the issue with the MNL-bandit approach. Here, K
and J are much larger than in problems (a) and (b), and the MNL-bandit approach continues
to explore long after Epoch-UCB* UPB has reached the point of mostly exploiting near-optimal
actions. This is due to the fact that the MNL-bandit approach aims to collect data to estimate
JK = 180 different parameters, whereas Epoch-UCB* UPB utilises the known click model such it
only estimates J +K − 1 = 35 (assuming λ1 = 1). This example displays that although the MNL-
bandit approach has a sublinear regret guarantee, as shown in Appendix F, it may be inappropriate
in practice.

7 Conclusion

In this paper, we have proposed and analysed the multinomial logit choice variant of the learning to
rank problem. Distinct from other model-based treatments of learning to rank, our model captures
the behaviour of a user who makes a decision over a set of alternatives, rather than making a
sequence of independent decisions.

We proposed upper confidence bound approaches for the problem in two informational settings
- where the effects of rank are known and unknown respectively. Both of these approaches are
derived from new concentration theory. In the known position bias setting, we have derived a
verified a Bernstein moment condition on the moments of the Geometric distribution and provided
new martingale inequalities for geometric random variables. In the unknown position bias setting
we have provided new functional inequalities for geometric data, giving concentration results for
numerical maximum likelihood estimators. Further we have provided upper and lower bounds
on regret in the known position bias setting, and simulations to display the effectiveness of our
approaches.

Our proposed framework makes few assumptions beyond the MNL choice, which is a long-
standing popular model in decision theory and may be applicable in numerous domains. Our
concentration results are also of potential interest in other areas. Further, we lay a groundwork
for further study of MNL-type LTR problems. Future work may consider randomised approaches,
utilising similar posterior approximations as in Agrawal et al. (2017), or recently proposed boot-
strapping techniques as in Kveton et al. (2019). The development of algorithms for a contextual
variant of the problem, or with more complex or alternatively structured actions (perhaps bespoke
to particular settings) would also seem to be worthy avenues to follow in the extension of this work.
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A Proof of Geometric Martingale Concentration

In this section, we provide proofs of Theorem 1 and Lemma 3, which comprise the concentration
results relevant to the known position bias setting. The following result is a key component of the
proof of Theorem 1. It gives a Bernstein-like bound for heavy-tailed martingale data.

Lemma 4 (Theorem 1.2A of de la Peña (1999)) Let {dj ,Fj} be a martingale difference se-
quence with E(dj | Fj−1) = 0, E(d2

j | Fj−1) = σ2
j , for each j, and V 2

n =
∑n

j=1 σ
2
j . Furthermore

assume that

E(|dj |k | Fj−1) ≤ k!

2
σ2
j c
k−2 a.e (18)

or P (|dj | ≤ c | Fj−1) = 1, for k > 2, 0 < c <∞. Then for all x, y > 0,

P

( n∑
j=1

dj ≥ x, V 2
n ≤ y for some n

)
≤ exp

(
−x2

2(y + cx)

)
.

A.1 Proof of Theorem 1

Firstly, we demonstrate that a geometric martingale difference sequence meets the conditions of
Lemma 4. Define, Zi =

∑i
j=1(Yi − µi) and Wi = Zi − Zi−1. By definition {Zi}∞i=1 is a martingale

and {Wi}∞i=2 is a martingale difference sequence. Immediately, from the distribution of Yi, i ∈ [n],
we have E(Wi | Fi−1) = 0 and E(W 2

i | Fi−1) = V ar(Yi | Fi−1) = µ2
i + µi.

The higher-order central moments of the Geometric distribution lack a closed-form expression
which makes checking condition (18) more complex. Our technique relies on two main steps: we
identify a bound on the cumulants of the Geometric distribution, and we use a link between the
central moments and cumulants from Combinatorics to realise a central moment bound, given in
the following lemma.

Lemma 5 The central moments µn, n ≥ 1 of the Geometric random variable with parameter p
satisfy

µn ≤
!n(1− p)

pn

where !m denotes the number of derangements of an integer m ≥ 1, defined recursively as

!m = (m− 1)(!(m− 1)+!(m− 2))

where !0 = 1 and !1 = 0.

The proof of Lemma 5 is given in Section A.3. It uses the property that the the central moments of
any distribution may be expressed in terms of the cumulants κk of the distribution via incomplete
exponential Bell polynomials. In particular, we have,

E(W k
i | Fi−1) =

k∑
m=1

Bk,m(0, κ2, . . . , κk−m+1), (19)
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where the summands Bk,m are incomplete exponential Bell polynomials (see e.g. Chapter 11 of
Charalambides (2002)). For integers n ≥ m ≥ 1 and arguments x1, . . . , xn−m+1 ∈ Zn−m+1 these
polynomials are defined as

Bn,m(x1, . . . , xn−m+1) =
∑ n!

j1!j2! . . . jn−m+1!

(
x1

1!

)j1(x2

2!

)j2
. . .

(
xn−m+1

(n−m+ 1)!

)jn−m+1

, (20)

where the sum is over all sequences j1, j2, . . . , jn−m+1 of non-negative integers such that
∑n−m+1

i=1 ji =
m and

∑n−m+1
i=1 iji = n.

The bound in Lemma 5 can be adapted to the form required for condition (18). We have the
following relationship between the number of derangements and the factorial,

!n =

[
n!

e

]
≤ n!

2

where [·] is the nearest integer function. It follows that

E(W k
i |Fi−1) ≤ k!(1− p)

2pk
=
k!

2

1− p
p2

1

pk−2
. (21)

Thus, the central moments of the Geometric random variable Xi satisfy (18) with σ2 = 1−p
p2

and

c = 1/p.
Thus from Lemma 4 we have, for some n ≥ 1, and any x > 0,

P

( n∑
i=1

Yi − µi ≥ x
)
≤ exp

(
−x2

2
(∑n

i=1 σ
2
i + x/(mini pi)

)).
Therefore if, for C > 0, x = 2 log(C)/(mini pi) +

√
2
∑n

i=1 σ
2
i log(C), we have

P

( n∑
i=1

Yi − µi ≥ x
)
≤ exp

− 4 log2(C)
(mini pi)2

+
4
√

2
∑n

i=1 σ
2
i log3(C)

mini pi
+ 2

∑n
i=1 σ

2
i log(C)

4 log(C)
(mini pi)2

+
2
√

2
∑n

i=1 σ
2
i log(C)

mini pi
+ 2

∑n
i=1 σ

2
i


≤ exp

(
− log(C)

)
= C−1

By symmetry we have the same bound on P
(∑n

i=1 µi − Yi ≥ x
)
, and the statement of (7) follows.

Now consider,

P
(

2
n∑
i=1

Yi ≤
n∑
i=1

µi

)
= P

( n∑
i=1

µi −
n∑
i=1

Yi ≥
∑n

i=1 µi
2

)
≤ P

( n∑
i=1

µi −
n∑
i=1

Yi ≥ δ
n∑
i=1

µi

)
,

for any δ ∈ [0, 1/2]. Choosing

δ =

2 log(C)

mini pi
+

√√√√2

n∑
i=1

σ2
i log(C)

 (

n∑
i=1

µi)
−1,
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and noting δ ≤ 1/2 when
∑n

i=1 µi > 4 log(C)/(mini pi) +
√

8
∑n

i=1 σ
2
i log(C), we have by Lemma 4

and a similar manipulation to that used in the proof of (7), that

P

(
2

n∑
i=1

Yi ≤
n∑
i=1

µi

)
≤ C−1.

Furthermore, since σ2
i = µ2

i + µi ≤ 2µi (as µi ≤ 1), we have also that

P

(
4

n∑
i=1

Yi ≤
n∑
i=1

σ2
i

)
≤ C−1.

It follows that

P

( n∑
i=1

Yi − µi ≥

√√√√8
n∑
i=1

Yi log(C) +
2 log(C)

mini pi

)

≤ P
( n∑
i=1

Yi − µi ≥

√√√√2

n∑
i=1

σ2
i log(C) +

2 log(C)

mini pi
and 4

n∑
i=1

Yi ≤
n∑
i=1

σ2
i

)

≤ P
( n∑
i=1

Yi − µi ≥

√√√√2
n∑
i=1

σ2
i log(Jl2/2) +

2 log(C)

mini pi

)
+ P

(
4

n∑
i=1

Yi ≤
n∑
i=1

σ2
i

)
≤ 2C−1.

By symmetry we have the high-probability same bound on
∑n

i=1 µi − Yi, and the statement of (8)
follows. �

A.2 Proof of Lemma 3

We recall that the number of clicks on item j ∈ [J ] in an epoch l ∈ [L] is a geometric random
variable with parameter pj,l =

∑K
k=1 I{alk = j}(1 + λkαj)

−1, as such

pj,l ∈

[(
1 + max

k
λkαj

)−1

,

(
1 + min

k
λkαj

)−1
]
⊆ [0.5, 1]

for an epoch where j ∈ al. Thus, the sequence of click counts is a sequence of Geometric random
variables of the form considered in Theorem 1. It follows from Theorem 1, specifically equation
(7), that for any item j ∈ [J ] the sum of clicks on that item in L epochs obeys,∣∣∣∣ L∑

l=1

K∑
k=1

I{alk = j}nlk −
L∑
l=1

K∑
k=1

I{alk = j}λkαj
∣∣∣∣ ≤

√√√√2
L∑
l=1

σ2
j,l log (JL2/2) + 4 log

(
JL2/2

)
,

with probability at least 1− 4/JL2. As per their definition in equation (4) the estimators ᾱj(l) are
weighted sums of these click counts, and therefore we have for any j ∈ [J ], l ∈ [L], and a1:l such
that

∑l
s=1

∑K
k=1 I{ask = j} > 0,

∣∣∣∣ᾱj(l)− αj∣∣∣∣ ≤
√

2
∑l

s=1 σ
2
j,s log(Jl2/2)∑l

s=1

∑K
k=1 λkI{ask = j}

+
4 log(Jl2/2)∑l

s=1

∑K
k=1 λkI{ask = j}

, (22)
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with probability at least 1− 4/Jl2. Notice that

σ2
j,l = µ2

j,l + µj,l ≤ 2µj,l = 2αj

K∑
k=1

I{alk = j} ≤ 2
K∑
k=1

I{alk = j},

and thus we also have, for all j ∈ [J ] and l ∈ [L],

P

(
|ᾱj(l)− αj | >

√
4 log(Jl2/2)∑l

s=1

∑K
k=1 λkI{ask = j}

+
4 log(Jl2/2)∑l

s=1

∑K
k=1 λkI{ask = j}

∣∣∣∣∣ a1:l

)
≤ 4

Jl2
.

Fixing j and l and considering the unconditioned probability, the result stated in equation (9)
follows via a union bound.

Similarly, it follows from equation (8) that the data adaptive bound below holds with probability
at least 1− 6/JL2,∣∣∣∣ L∑

l=1

K∑
k=1

I{alk = j}nlk −
L∑
l=1

K∑
k=1

I{alk = j}λkαj
∣∣∣∣

≤

√√√√8
L∑
l=1

K∑
k=1

I{alk = j}nlk log (JL2/2) + 4 log
(
JL2/2

)
,

Then by a similar union bound we have the result (10) as stated.
Finally, we consider the probability in equation (11). We have, for Λj,l and l such that Λj,l >

4 log(Jl2/2)/αj ,

P

(
ᾱj(l) > 2αj +

4 log(Jl2/2)

Λj,l

)
≤ P

(
ᾱj(l)− αj >

√
4αj log(Jl2/2)

Λj,l
+

4 log(Jl2/2)

Λj,l

)
≤ 2

Jl2
,

with the final inequality using Lemma 1 once again. �

A.3 Proof of Lemma 5

First, we give a recurrence relation for the cumulants of the Geometric distribution. This will
be used to verify the Bernstein condition for the central moments. These results may also be of
independent interest.

Lemma 6 The cumulants κn, n ≥ 1 of the Geometric random variable with parameter p satisfy,

κn =

n∑
i=1

(−1)n−i
hn,i
pi

(23)

where the coefficients hn,i, n ≥ 1, i ≤ n are recursively defined positive integers satisfying

hn,1 = 1 ∀n ≥ 1

hn,i = ihn−1,i + (i− 1)hn−1,i−1 ∀n ≥ 3, i ∈ {2, . . . , n− 1}
hn,n = (n− 1)hn−1,n−1 ∀n ≥ 1.
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Proof: Firstly we note that the cumulants of the Geometric distribution with parameter p satisfy
the recurrence relation

κk = (p− 1)
dκk−1

dp
, κ1 =

1− p
p

. (24)

The second and third cumulants follow immediately from (24) as

κ2 = (p− 1)
dκ1

dp
= (p− 1)

(
−1

p2

)
=
−1

p
+

1

p2
,

κ3 = (p− 1)
dκ2

dp
= (p− 1)

(
1

p2
− 2

p3

)
=

1

p
− 3

p2
+

2

p3
.

Thus we may verify that κ3 satisfies the definition in (23). Now assume that κn matches the
definition in (23) for some fixed n > 3 and consider κn+1. We have from (24) the following,

κn+1 = (p− 1)
dκn
dp

= (p− 1)

n∑
i=1

(−1)n+1−i ihn,i
pi+1

=

n∑
i=1

[
(−1)n+1−i ihn,i

pi
− (−1)n+1−i ihn,i

pi+1

]

= (−1)n
hn,1
p

+

n∑
j=2

[
(−1)n+1−j jhn,j

pj
− (−1)n−j

(j − 1)hn,j−1

pj

]
− (−1)

nhn,n
pn+1

= (−1)n
hn,1
p

+
n∑
j=2

[
(−1)n+1−j(jhn,j + (j − 1)hn,j−1

)
pj

]
+
nhn,n
pn+1

,

thus proving the statement by induction. �
Considering this form of the cumulants (23), and the nature of the Bell polynomial (20), it is

apparent that the nth central moment µ̄n may also be written as O((1/p)n) polynomials, with some
non-negative, integer coefficients fn,1, . . . , fn,n (to be specified later). Specifically, we may write

µ̄n =

n∑
i=1

(−1)n−i
fn,i
pi
. (25)

Next, we introduce a relevant property of a sequence of non-negative integers, and give a lemma
showing that the coefficients of the cumulants and central moments have this property.

Definition 1 (Alternating Partial Sum (APS)) A sequence of n > 0 non-negative integers,
h1, . . . , hn is called APS if for all k ∈ [n]

k∑
i=1

(−1)n−ihi

{
≥ 0, when (n− k) mod 2 = 0,

≤ 0, when (n− k) mod 2 = 1.

Lemma 7 For any integer n ≥ 3, and Geometric random variable X with parameter p, both the
coefficients of the polynomial expression for the cumulants of X, hn,1, . . . , hn,n, and the coefficients
of the polynomial expression for the central moments of X, fn,1, . . . , fn,n are APS sequences.
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The full proof of Lemma 7 is in the next subsection. The proof has two main steps. First we
show that the sequence hn,1, . . . , hn,n is APS for any n from its recursive formula. Second, we show
that the sequence fn,1, . . . , fn,n can be written as a linear combination of APS sequences (derived
from multiplying together cumulants in the Bell polynomial). This linear combination operation
preserves the APS property, and thus the sequence fn,1, . . . , fn,n is also APS.

The proof of Lemma 5 follows from application of Lemma 7. First, we demonstrate that
fn,n =!n. Recall that the central moments µn are defined in terms of the cumulants as

µn =
n∑

m=1

Bn,m(0,
2∑
i=1

(−1)2−ih2,i

pi
, . . . ,

n−m+1∑
i=1

(−1)n−m+1−ihn−m+1,i

pi
). (26)

It follows that the leading order coefficient fn,n of the polynomial expression for µn can be expressed
in terms of incomplete Bell polynomials of the leading order coefficients of the preceding cumulants,
i.e.

fn,n =
n∑

m=1

Bn,m(0, h2,2, . . . , hn−m+1,n−m+1) =
n∑

m=1

Bn,m(0, 1!, 2!, . . . , (n−m)!) (27)

where the second equality follows from Lemma 6. The above definition of fn,n coincides with a
complete Bell polynomial, such that we have

fn,n = Bn(0, 1!, 2!, . . . , (n− 1)!)

=
∑

j2,...,jn
2j2+···+njn=n

n!

j2! . . . jn!

(
1!

2!

)j2
. . .

(
(n− 1)!

n!

)jn

=
∑

j2,...,jn
2j2+···+njn=n

n!

j2! . . . jn!

(
1

2

)j2
. . .

(
1

n

)jn
=!n. (28)

The final equality follows from the observation that each of the summands in the penultimate
expression are the number of permutations in the group of all permutations of n integers with cycle
structure 2j23j3 . . . njn . By definition this sum is the number of derangements of n.

The second stage of the proof is to demonstrate that µ̄n ≤ fn,n/pn. First, we note that if p = 1
then the Geometric variable X has P (X = 0) = 1. Thus, by the definition of µ̄n as a central
moment, if p = 1 then µ̄n = 0. This implies that the alternating sum of polynomial coefficients
fn,1, . . . , fn,n must be 0 for any n, i.e.

n∑
i=1

(−1)n−ifn,i = 0,

and in particular, that

fn,n =

n−1∑
i=1

(−1)n−ifn,i. (29)

As p ≤ 1 by definition, the APS property of fn,1, . . . , fn−1 tells us that

n−1∑
i=1

(−1)n−1−i fn,i
pi
≥ 1

pn−1

n−1∑
i=1

(−1)n−1−ifn,i. (30)
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We verify this by considering that

n−1∑
i=1

(−1)n−1−ifn,i =

n−1∑
i=1

(−1)n−1−ipn−1−ifn,i +

n−1−i∑
i=1

(−1)n−1−i(1− pn−1−i)fn,i

≤
n−1∑
i=1

(−1)n−1−ipn−1−ifn,i,

where the inequality holds since the second sum is negative. Dividing both sides by pn−1 gives (30).
We then complete the proof by bounding µ̄n as follows

µ̄n =
n∑
i=1

(−1)n−i
fn,i
pi

=
fn,n
pn

+
n−1∑
i=1

(−1)n−i
fn,i
pi

≤ fn,n
pn
− fn,n
pn−1

=
fn,n(1− p)

pn
=

!n(1− p)
pn

,

where the inequality follows from (30) and (29), and the final equality follows from (28). �

A.4 Proof of Lemma 7

Firstly we show by induction that the sequences hn,1, . . . , hn,n are APS for all n ≥ 3.
Consider first the case of n = 3. We have, as defined in Lemma 6, that h3,1 = 1, h3,1 − h3,2 =

1−3 = −2, and h3,1−h3,2 +h3,3 = 1−3 + 2 = 0. Thus all of the non-negativity and non-positivity
conditions are satisfied and the sequence h3,1, h3,2, h3,3 is APS. We now assume for some fixed
m ≥ 4 that hm,1, . . . , hm,m is APS, and proceed to consider the sequence hm+1,1, . . . , hm+1,m+1.

By definition we have hm,1 = 1 and hm+1,m+1 = m!. Thus the APS conditions are satisfied for

k = 1 and k = m+ 1. We proceed to consider
∑k

i=1(−1)m+1−ihm+1,k for k ∈ {2, . . . ,m}. We have,

k∑
i=1

(−1)m+1−ihm+1,i = (−1)mhm,1 +
k∑
i=2

(−1)m+1−i[ihm,i + (i− 1)hm,i−1

]
= (−1)m+1−kkhm,k. (31)

Since all hm,k, m ≥ 2, k ≤ m are positive integers, (31) is positive when m + 1 − k mod 2 = 0
and negative when m+ 1− k mod 2 = 1. Thus the APS conditions are satisfied for the sequence
hm+1,1, . . . , hm+1,m+1 given hm,1, . . . , hm,m is APS. Thus, by induction, the sequences hn,1, . . . , hn,n
are APS for all n ≥ 3.

We next show two properties of APS sequences. Firstly, we have the property that addition
preserves APS.

Property 1 (Preservation of APS under addition) If a1, . . . , an and b1, . . . , bn are APS se-
quences, then the sequence a1 + b1, . . . , an + bn is APS.

To verify, consider first j ≤ n : n− j mod 2 = 0, we have

j∑
i=1

(−1)n−i(ai + bi) =

j∑
i=1

(−1)n−iai +

j∑
i=1

(−1)n−ibi ≥ 0,
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since a1, . . . , an and b1, . . . , bn are both APS. Similarly, for j ≤ n : n− j mod 2 = 1 we have

j∑
i=1

(−1)n−i(ai + bi) =

j∑
i=1

(−1)n−iai +

j∑
i=1

(−1)n−ibi ≤ 0,

showing that (a1 + b1, . . . , an + bn) are APS.
The second property states that if two polynomials (in the same variable) have APS coefficients,

the product of these polynomials has APS coefficients.

Property 2 (Preservation of APS under polynomial multiplication) Let a1, . . . , an and b1, . . . , bm
be APS for n,m ∈ N, with

∑n
i=1(−1)n−iai = 0 and

∑m
i=1(−1)m−ibi = 0. Then, the sequence of

polynomial coefficients c1, . . . , cn+m such that

n+m∑
i=1

(−1)n+m−icix
i =

( n∑
i=1

(−1)n−iaix
i

)( m∑
i=1

(−1)m−ibix
i

)
, x ∈ R

are APS.

To verify this, consider

n+m∑
i=1

(−1)n+m−icix
i =

(
anx

n − an−1x
n−1 + · · ·+ (−1)n−1a1x

) m∑
j=1

(−1)m−jbjxj

=
m∑
j=1

(−1)m−jbj
(
anx

n+j − an−1x
n−1+j + · · ·+ (−1)n−1a1x

1+j
)

=
m∑
j=1

n+m∑
i=1

(−1)n+m−id
(j)
i xi

for coefficients d
(j)
i , j ∈ [m], i ∈ [n+m], defined as follows

d
(j)
i =


0, i < 1 + j

ai−jbj , i ∈ {1 + j, . . . , n+ j}
0, i > n+ j

Now, since a1, . . . , an is APS and has
∑n

i=1(−1)n−iai = 0, we have

k∑
i=1

(−1)n+m−id
(j)
i =


0, k < 1 + j∑k−j

i=1 (−1)n−iai, k ∈ {1 + j, . . . , n+ j}
0, k > n+ j

for all j ∈ [m]. Thus the sequence {d(j)
i }

n+m
i=1 is APS for each j ∈ [m] and by Property 1, the

coefficients c1, . . . , cn+m are also APS.
Using the result that hn,1, . . . , hn,n is APS for any n ≥ 3 and the above properties, we will show

that the sequences fn,1, . . . , fn,n are also APS for all n ≥ 3. Firstly, we recall the definition of the
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central moments in terms of cumulants,

µ̄n =
n∑
k=1

∑
j2,...,jn:
j2+...jn=k

2j2+···+njn=n

n!

j2! . . . jn!

(
κ2

2!

)j2(κ3

3!

)j3
. . .

(
κn
n!

)jn
.

Since κ2 = O(p−2), κ3 = O(p−3), and κn = O(p−n), each summand is o(p−n), and may be written
as a polynomial

n∑
i=1

(−1)n−i
Ji
pi

=
n!

j2! . . . jn!

(
κ2

2!

)j2(κ3

3!

)j3
. . .

(
κn
n!

)jn
where J1, . . . , Jn are (possibly zero or negative) coefficients which are a function of variables
j2, . . . , jn, the order n of the moment in question, and the sequences hm,1, . . . , hm,n for all m ≤ n.
It follows by Property 2 that the coefficients J1, . . . Jn are APS. Finally since the coefficients
fn,1, . . . , fn,n can be written as sums of the J coefficients over the valid combinations of j2, . . . , jn,
we have by Property 1 that the coefficients fn,1, . . . , fn,n are APS. �

B Proof of Maximum Likelihood Concentration

In this section we provide proofs of Theorem 2 and Corollary 1 giving our result on the concentration
of the maximum likelihood estimators in the unknown position bias setting.

B.1 Proof of Theorem 2

The first step of the proof is derive a bound on the relative entropy of functions with respect to the
product measure. We make use of the following result from Joulin and Privault (2004). It gives a
logarithmic Sobolev inequality tailored to functions of a univariate Geometric distribution.

Theorem 3 (Theorem 3.7 (Joulin and Privault, 2004)) Let π denote the law of a Geometric
random variable with parameter p. Let 0 < b < − log(1 − p) and let f : N → R such that
|d+f | = maxk∈N |f(k + 1)− f(k)| ≤ b for all k ∈ N. We have

Entπ

(
ef
)
≤ (1− p)eb

p(1−
√

(1− p)eb)
Eπ
(
|d+f |2ef

)
.

The chain rule for differential entropy (see e.g. Theorem 8.6.2 of Cover and Thomas (2012))
states that for a series of random variables X1, . . . , Xn with joint distribution µn,

Entµn (X1, . . . , Xn) =
n∑
l=1

Entµl (Xl | X1, . . . , Xl−1) .

Using this result we may extend the univariate bound in Theorem 3 in both dimensions to a bound
under product measure. Specially, for every function G : Nd×n → R, satisfying DGli ≤ bli for
constants 0 < bli < − log(1− pli) i ∈ [d], l ∈ [n], we have

Entµn
(
eG
)
≤ max

i∈[d],l∈[n]

(1− pli)ebli

pli(1−
√

(1− pli)ebli)
Eµn

(
d∑
i=1

n∑
l=1

|d+Gli|2eG
)
. (32)
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In particular, under the assumptions of the theorem statement, this holds for F , with maxl,i bli = β2.
We now follow the so-called Herbst’s method (Davies and Simon, 1984; Aida et al., 1994) to

achieve a deviation inequality on F . For ease in what follows we introduce the function MG : R→ R
with

MG(b) = max
i∈[d],l∈[n]

(1− pli)eb

pli(1−
√

(1− pli)eb)
, b ∈

(
0, max
i∈[d],l∈[n]

− log(1− pli)
)
. (33)

Further we let p̄ be the parameter attaining the maximum in (33), i.e.

p̄ = argmax
pli:i∈d,l∈[n]

(1− pli)eb

pli(1−
√

(1− pli)eb)
,

for any valid b.
Applying (32) to ηF for every 0 < η ≤ − log(1 − p̄)/(2β2) and substituting the definition for

entropy we have,

Eµn
(
ηFeηF

)
− Eµn

(
eηF
)

log
(
Eµn

(
eηF
))
≤MG(ηβ2)Eµn

(
n∑
l=1

d1∑
i=1

η2|F (X + εli)− F (X)|2eηF
)
.

Exploiting the assumed bound (12), and introducing the notation H(η) = Eµn
(
eηF
)

we may then
rewrite the above display as,

ηH ′(η)−H(η) log (H(η)) ≤ η2β2
1MG(ηβ2)H(η).

We then set K(η) = 1
η log(H(η)), with K(0) = H ′(0)/H(0) = Eµn(F ) and observe,

K ′(η) ≤ η2β2
1MG(ηβ2)H(η)

η2H(η)
= β2

1MG(ηβ2) ≤ β2
1MG

(
− log(1− p̄)

2

)
since MG is an increasing function. We will define M := MG

(
−log(1−p̄)

2

)
for convenience. As such

we may bound K(η) ≤ Eµn(F ) + ηβ2
1M , and derive the exponential inequality,

Eµn
(
eηF
)
≤ exp

(
ηEµn (F ) + η2β2

1M
)
, 0 < η ≤ − log(1− p̄)

2β2
. (34)

Finally, we apply a Chernoff bound to F , and substitute (34), giving,

Pµn (F ≥ Eµn(F ) + δ) ≤ exp
(
ηEµn (F ) + η2β2

1M − ηEµn(F )− ηδ
)

which when minimised over η ∈ (0,− log(1− p̄)/(2β2)], yields the stated result. �

B.2 Proof of Corollary 1

The function αEM which computes the EM estimates of α, is posed as a function from NK×J×NK×J
to [0, 1]J , where the input matrices are of the form of N(L) and Ñ(L). Recall that we have
αEM (N(L), Ñ(L)) = αEM where αEM are the EM estimates of α derived from Algorithm 1. For
the purposes of this proof we will define ᾱEM : NK×L× [J ]K×L → [0, 1]J , which computes the same
αEM estimates but via an alternative arrangement of the input data.
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Let N̄(L) be the K × L matrix whose lth column (l ∈ [L]) is nl, which we recall is the vector
of clicks per slot in epoch l. Let Ā(L) be the K × L matrix whose lth column (l ∈ [L]) is al the
action vector in epoch l. Define ᾱEM such that ᾱEM (N̄(L), Ā(L)) = αEM (N(L), Ñ(L)) = αEM .

Then, for fixed Ā(L), the restriction of ᾱEM to its jth output, ᾱEMj , is, a function from NK×L

to [0, 1]. It also follows from the definitions above that E(ᾱEMj ) = αj . Finally since the entries of

the (non-fixed) input matrix N̄(L) are Geometric random variables, the function ᾱEMj fits within
the framework of Theorem 2. We therefore have that

P
(
|αEMj (N(L), Ñ(L))− αj | ≥ δ

)
= P

(
|ᾱEMj (N̄(L), Ā(L))− αj | ≥ δ

)
≤ exp

{
−δ2

4β2
1,L,jM

}
where

β1,j,l = sup
X∈NK×L

√√√√ L∑
l=1

K∑
k=1

∣∣∣ᾱEMj (X + εlk)− ᾱEMj (X)
∣∣∣2 (35)

for any X ∈ NK×L.
We recall that M = MG(maxk∈[K],l∈[L]− log(1−pkl)/2). Specifically in the context of our MNL-

LTR problem, we have pkl ∈ [1/2, 1) for all k ∈ [K], l ∈ [L]. Thus, M ≤
√

0.5/(0.5(1−(0.5)1/4)) ≤ 9.
Rearranging the exponential inequality and substituting a bound on M we therefore have,

P

(
|αEMj (N(L), Ñ(L))− αj | ≥

√
72β2

1,L,j log(
√
JL)

)
≤ 2

JL2
. �

B.3 Bound on Finite Difference Parameter

In this section, we derive a bound on the sensitivity parameter β1,j,l which enables an analysis of
the regret. We first derive an alternative expression for β1,j,l to that in (35) in terms of the αEM

functions, as oppose to the ᾱEM functions, as

β1,j,l = sup
N∈NK×J

√√√√ J∑
i=1

K∑
k=1

Ñki

∣∣∣αEMj (N, Ñ)− αEMj (N + εki, Ñ)
∣∣∣2.

Bounding the finite differences with partial derivatives, we have the following bound on the sensi-
tivity parameter,

β1,j,l ≤ sup
N∈NK×J

√√√√ J∑
i=1

K∑
k=1

Ñki max
nki∈[Nki,Nki+1]

(
∂αEMj
∂Nki

∣∣∣∣
Nki=nki

)2

. (36)

In what follows we shall obtain a further analytical bound on this expression in order to relate the
sensitivity parameter to the selected actions and number of rounds.

For the purposes of this section, let θ = (α,λ−1) denote the length J + K − 1 vector of the
unknown parameters in the unknown position biases model. As before, N and Ñ are J×K matrices
of click- and play-counts for each item-slot combination. We will suppress dependence on L for
brevity in this section. In order to express gradients with respect to click counts conveniently, we
introduce the notation n to represent a vectorised version of N. Here element m of n corresponds
to element N(m mod K),dm/Ke of the matrix N.

30



For a given pair n, Ñ, the maximum likelihood estimate,

θ∗(n, Ñ) ∈ argmax
θ∈[0,1]J+K−1

`
(
θ; n, Ñ

)
,

is found where ∇θ`(θ; n, Ñ) = 0. It then follows from the continuous differentiability of the
likelihood, and an application of the Implicit Function theorem that the gradient of the maximiser
with respect to the click vector n, within an open neighbourhood of a particular solution θ∗0 may
be written,

∇nθ
∗(n, Ñ) = −

[
∇θθ`

(
θ; n, Ñ

)]−1
∇θn`

(
θ; n, Ñ

)
. (37)

Elements of∇nθ
∗, a (J+K−1)×JK matrix provide the gradient of maximum likelihood estimators

with respect to particular click counts. We will use these to derive a bound on β1,j,L.
The gradient vector ∇θ` has entries,

∂`

∂αj
=

K∑
k=1

Nkj

αj
−
λk(Nkj + Ñkj)

(1 + αjλk)
,

∂`

∂λk
=

J∑
j=1

Nkj

λk
−
αj(Nkj + Ñkj)

(1 + αjλk)
.

and the Hessian ∇θθ` contains second derivatives of the following form

∂2`

∂α2
j

=
K∑
k=1

λ2
k(Nkj + Ñkj)

(1 + αjλk)2
−
Nkj

α2
j

,
∂2`

∂λ2
k

=
J∑
j=1

α2
j (Nkj + Ñkj)

(1 + αjλk)2
−
Nk,j

λ2
k

,
∂2`

∂αjλk
= −

(Nkj + Ñkj)

(1 + αjλkj)2
,

with ∂2`/∂αj∂α
′
j = 0 where j 6= j′ and ∂2`/∂λk∂λ

′
k = 0 where k 6= k′. Finally, the elements of

∇θn are the second derivatives,

∂2`

∂αj∂Nkj
=

1

αj
− λk

(1 + αjλk)
,

∂2`

∂λk∂Nkj
=

1

λk
− αj

(1 + αjλk)
, (38)

and ∂2`/∂αjNkj′ = 0 for j 6= j′ and ∂2`/λkNk′j = 0 for k 6= k′.
It follows that the gradient of a particular attractiveness parameter estimate α∗j with respect

to a particular click count Nkl, with k ≥ 2, may be written,

∂α∗j
∂Nkl

= −
J∑
s=1

(
∇−1

θθ

)
js

∂2`

∂αs∂Nkl
−

K∑
m=2

(
∇−1

θθ

)
j,J+m−1

∂2`

∂λm∂Nkl

=

{
−
(
∇−1

θθ

)
jj

∂2`
∂αj∂Nkj

−
(
∇−1

θθ

)
j,J+k−1

∂2`
∂λk∂Nkj

, if j = l

−
(
∇−1

θθ

)
j,J+k−1

∂2`
∂λk∂Nkl

, if j 6= l.
(39)

where ∇−1
θθ denotes the inverse Hessian. In the case of leading slot, k = 1, with fixed attractiveness

parameter λ1 = 1, we have gradient,

∂α∗j
∂N1l

=

{
−
(
∇−1

θθ

)
jj

∂2`
∂αj∂N1j

, if j = l

0, if j 6= l.
(40)

We proceed to bound these gradients uniformly, and apply said bounds to derive a bound on β1,j,l.
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By definition of the matrix inverse, utilising the sparsity of ∇θθ, and with a view to evaluating
(37) we may write elements of the row vector (∇−1

θθ )j·, for any j ∈ [J ], as solutions to the system
of equations,

(
∇−1

θθ

)
jj

∂2`

∂α2
j

+

K∑
k=2

(
∇−1

θθ

)
j,J+k−1

∂2`

∂λk∂αj
= 1,

(
∇−1

θθ

)
ji

∂2`

∂α2
i

+
K∑
k=2

(
∇−1

θθ

)
j,J+k−1

∂2`

∂λk∂αi
= 0, i ∈ [J ] \ {j},

(
∇−1

θθ

)
j,J+k−1

∂2`

∂λ2
k

+

J∑
s=1

(
∇−1

θθ

)
j,s

∂2`

∂λk∂αs
= 0, k ∈ [K] \ {1}.

So long as this system is non-singular, the linearity of the derivatives in play counts Ñ·· can be used
to establish the order of the inverse Hessian terms. In particular, we have,∣∣∣∣∣ ∂2`

∂α2
j

∣∣∣∣∣ = Ω
(
Ñ1j , Ñ2j , . . . ÑKj

)
, j ∈ [J ],

∣∣∣∣ ∂2`

∂λ2
k

∣∣∣∣ = Ω
(
Ñk1, Ñk2, . . . ÑkJ

)
, k ∈ [K] \ {1},∣∣∣∣ ∂2`

∂λk∂αj

∣∣∣∣ = Ω
(
Ñkj

)
, j ∈ [J ], k ∈ [K] \ {1}.

It follows, since there are more elements of Ñ than of the row vector (∇−1
θ,θ)j· that,∣∣∣(∇−1

θθ

)
ji

∣∣∣ = O
(
Ñ−1

1i , Ñ
−1
2i , . . . , Ñ

−1
Ki

)
, j ∈ [J ], i ∈ [J ],∣∣∣(∇−1

θθ

)
j,J+k−1

∣∣∣ = O
(
Ñ−1
k1 , Ñ

−1
k2 , . . . , Ñ

−1
kJ

)
, j ∈ [J ], k ∈ [K] \ {1}.

Expanding the terms of the bound (36), using the expressions (39) and (40), we have

βi,j,L ≤ sup
N∈NK×J

(
Ñ1j max

n1j∈[N1j ,N1j+1]

[
−
(
∇−1

θθ

)
jj

∂2`

∂αj∂N1j

]2

+
∑
i 6=j

K∑
k=2

Ñki max
nki∈[Nki,Nki+1]

[
−
(
∇−1

θθ

)
j,J+k−1

∂2`

∂λk∂Nki

]2

+

K∑
k=2

Ñkj max
nkj∈[Nkj ,Nkj+1]

[
−
(
∇−1

θθ

)
jj

∂2`

∂αj∂Nkj
−
(
∇−1

θθ

)
j,J+k−1

∂2`

∂λk∂Nkj

]2
)1/2

.

Since the second derivatives which mix parameter and click derivatives (those of the form ∂2`/∂α·∂N··
and ∂2`/∂λ·∂N·· defined in (38)) are independent of N and Ñ, there exists a constant C > 0 such
that,

β1,j,L ≤ C

(
K∑
k=1

Ñkj
1

(maxk Ñkj)2
+

J∑
i=1

K∑
k=1

Ñki
1

(maxk,i Ñki)2

)1/2

= O

(√
K

maxk Ñkj

+
JK

maxk,i Ñki

)
.

JG: The idea is then that this can be used to give a regret bound that is order-optimal w.r.t.
T . Shouldn’t be too tricky I don’t think as the dependent sampling has been accounted for by this
point, and a version of the regret analysis exists for known position biases.
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C Proof of Regret Upper Bound

In this section we provide a proof of Proposition 1, giving an upper bound on the regret of the
Epoch-UCB algorithm for the known position bias setting. The proof has two main stages. First
we construct an event that all the UCB indices remain in intervals of certain width around the
unknown attractiveness parameters, and verify that this is a high-probability event. We simply
assume that the regret is the worst possible if this event does not occur. Then conditioned on
the high probability event occurring, we utilise bounds on the values of the UCB indices and the
properties of the reward function to bound the regret per epoch, which is aggregated over L epochs
to give the stated regret bound.

C.1 Proof of Proposition 1

We begin by defining the regret specifically for an epoch-based algorithm. We have that the T -round
regret as defined in (2) may be rewritten as

Reg(T ) = E
( L∑
l=1

∑
t∈El

R(a∗)−R(al)

)
= E

( L∑
l=1

|El|
(
R(a∗)−R(al)

))
.

We recall that |El|, the number of rounds in epoch l follows a Geometric distribution when condi-
tioned on al, and that al is a deterministic function of the history Hl−1. As such we may use the
the law of conditional expectations to replace |El| with its expectation. We have

Reg(T ) = E

(
L∑
l=1

E
(
|El|
(
R(a∗)−R(al)

)
| Hl−1

))
= E

( L∑
l=1

(
1 +

K∑
k=1

λkα
l
k

)(
R(a∗)−R(al)

))
.

To aid readability, we will define ∆Rl =
(

1 +
∑K

k=1 λkα
l
k

)(
R(a∗)− R(al)

)
for each epoch l ∈ [L]

so that we have

Reg(T ) = E
( L∑
l=1

∆Rl
)
.

Next, we define a series of events Bl, l ∈ [L] which concern the value of the UCBs, as follows,

Bl =
J⋃
j=1

{
αUCBj,l /∈

[
αj , αj + (1 +

√
2αj)

√
8 log(Jl2/2)

Λj,l
+

4(2 +
√

2) log(Jl2/2)

Λj,l

]}
.

We can bound the probability of this event using the concentration results derived in Lemma 3.
Specifically, we have that

P (Bl) =

J∑
j=1

P (αUCBj,l < αj) + P

(
αUCBj,l > αj + (1 +

√
2αj)

√
8 log(Jl2/2)

Λj,l
+

4(2 +
√

2) log(Jl2/2)

Λj,l

)

≤
J∑
j=1

3

Jl
+ P

(
|ᾱUCBj,l − αj | > (1 +

√
2αj)

√
8 log(Jl2/2)

Λj,l
+

4(2 +
√

2) log(Jl2/2)

Λj,l

)
(41)
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since P (αUCBj,l < αj) is bounded for each j ∈ [J ] whether min(1, 2ᾱj,l) is 1 or 2ᾱj,l. Fixing j ∈ [J ]
and considering a single summand from (41) we have,

P

(
|ᾱUCBj,l − ᾱj(l)|+ |ᾱj(l)− αj | > (1 +

√
2αj)

√
8 log(Jl2/2)

Λj,l
+

4(2 +
√

2) log(Jl2/2)

Λj,l

)

≤ P
(
|ᾱUCBj,l − ᾱj(l)| >

√
16αj log(Jl2/2)

Λj,l
+

4(1 +
√

2) log(Jl2/2)

Λj,l

)

+ P

(
|ᾱj(l)− αj | >

√
8 log(Jl2/2)

Λj,l
+

4 log(Jl2/2)

Λj,l

)

≤ P
(√

4 min(1, 2ᾱj,l) log(Jl2/2)

Λj,l
+

4 log(Jl2/2)

Λj,l
>

√
16αj log(Jl2/2)

Λj,l
+ (1 +

√
2)

4 log(Jl2/2)

Λj,l

)
+

4

Jl

= P

(√
4 min(1, 2ᾱj,l) log(Jl2/2)

Λj,l
>

√
16αj log(Jl2/2)

Λj,l
+

4
√

2 log(Jl2/2)

Λj,l

)
+

4

Jl

≤ P
(

8ᾱj,l log(Jl2/2)

Λj,l
>

16αj log(Jl2/2)

Λj,l
+

32 log2(Jl2/2)

Λ2
j,l

)
+

4

Jl

= P

(
ᾱj,l > 2αj +

4 log(Jl2/2)

Λj,l

)
+

4

Jl
≤ 6

Jl
. (42)

The first inequality uses the triangle inequality, the second an application of equation (9), the third
bounds by replacing the minimum with the 2ᾱj,l term, and the final uses (11). It follows, combining
(41) and (42), that for any l ∈ [L], P (Bl) ≤ 9/l.

Having established Bl as a low probabilitiy event we will decompose the regret according to Bl,
and bound it separately under the events Bl and ¬Bl. Under Bl we will resort to trivial bounds on
regret coming from the maximum of the reward function, but these will make limited contribution
to the overall expected regret, since Bl occurs with low probability. On ¬Bl, the parameters are
bounded in a way that we can exploit to bound the per-round regret with quantities leading to an
optimal overall bound. Specifically, we have for l ∈ [L],

E
(
∆Rl) = E

(
∆RlI{Bl}+ ∆RlI{¬Bl}

)
≤ (K + 1)P (Bl) + E

(
∆RlI{¬Bl}

)
≤ 9(K + 1)

l
+ E

((
1 +

K∑
k=1

λkα
l
k

)(
R(a∗)−R(al)

)
I{¬Bl}

)
. (43)

Since the reward function R is monotonically increasing in the attractiveness parameter vector,
and under ¬Bl we have αUCBj,l ≥ αj for all j ∈ [J ], it follows that we also have

R(a,αUCB
l ) ≥ R(a,α), ∀a ∈ A,

under ¬Bl. We also have by definition of the UCB algorithm that R(al,αUCB
l ) ≥ R(a∗, ᾱl), and

thus under ¬Bl we have

R(a∗)−R(al) ≤ R(al,αUCB
l )−R(al,α)
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=

∑K
k=1 λkα

UCB
l,alk

1 +
∑K

k=1 λkα
UCB
l,alk

−
∑K

k=1 λkαalk
1 +

∑K
k=1 λkαalk

≤

∑K
k=1 λk(α

UCB
l,alk

− αalk)

1 +
∑K

k=1 λkα
UCB
l,alk

≤

∑K
k=1 λk(α

UCB
l,alk

− αalk)

1 +
∑K

k=1 λkαalk

(44)

Thus, combining (43) and (44) we have the following bound on per-round regret,

E
(
∆Rl

)
≤ 9(K + 1)

l
+ E

(
K∑
k=1

λk

(
(1 +

√
2)

√
8 log(Jl2/2)

Λalk,l
+

4(2 +
√

2) log(Jl2/2)

Λalk,l

))
.

It follows that

Reg(T ) ≤ E

(
L∑
l=1

[
9(K + 1)

l
+

K∑
k=1

λk

(
(1 +

√
2)

√
8 log(Jl2/2)

Λalk,l
+

4(2 +
√

2) log(Jl2/2)

Λalk,l

)])

≤ 9(K + 1)(log(T ) + 1) + E

(
L∑
l=1

K∑
k=1

(√
48 log(Jl2/2)

λK
∑l

s=1 I{alk ∈ as}
+

14 log(Jl2/2)

λK
∑l

s=1 I{alk ∈ as}

))

≤ 9(K + 1)(log(T ) + 1) +
14J

λKK
log(JT 2/2)(log(T ) + 1)

+ E

(
L∑
l=1

K∑
k=1

√
48 log(Jl2/2)

λK
∑l

s=1 I{alk ∈ as}

)

≤
(

9(K + 1) +
14J

λKK
log(JT 2/2)

)
(log(T ) + 1) +

√
48 log(JT 2)JKT

λK
. �

D Proof of Regret Lower Bound

Proof: We first introduce some further notation. For each action a ∈ A, a fixed position bias vector
λ, and some constant ε ∈ (0, 1/2] to be fixed later, define the attractiveness parameter vector
τ a ∈ (0, 1]J+1 such that

τa,j =


1, j = 0,

1
SK

+ ελk
SK,2

, j = ak, k ∈ [K],
1
SK
, otherwise.

(45)

Let Pa and Ea denote the law and expectation with respect to the parametrisation αj = τa,j . Under
Pa, the action a is optimal. We will also make use of additional laws Pa\j′ and expectations Ea\j′
for j′ ∈ a, for each a ∈ A. Under Pa\j′ we set αj = τj , for all j 6= j′ and have αj′ = 1/SK . Further,
for j ∈ a, introduce the notation a−1(j) to refer to the slot in which action a places item j - i.e.
aa−1(j) = j.
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For a fixed a ∈ A, consider the per-round regret under the problem with parameters τ a. We
have, for any t ∈ [T ],

Ea(r(a)− r(at)) = Ea

1 + ε

2 + ε
−

1 + ε
SK,2

∑K
k=1 λk

∑
j∈a λa−1(j)I{ak,t = j}

2 + ε
SK,2

∑K
k=1 λk

∑
j∈a λa−1(j)I{ak,t = j}


= Ea

 ε− ε
SK,2

∑K
k=1 λk

∑
j∈a λa−1(j)I{ak,t = j}

(2 + ε)
(

2 + ε
SK,2

∑K
k=1 λk

∑
j∈a λa−1(j)I{ak,t = j}

)


≥ Ea

ε− ε
SK,2

∑K
k=1 λk

∑
j∈a λa−1(j)I{ak,t = j}
7

 .

It follows that in T rounds, the regret satisfies

max
α∈(0,1]J

Regα(T ) ≥ max
a∈A

Ea

(
T∑
t=1

r(a)− r(at)

)

≥ 1

|A|
∑
a∈A

Ea

(
T∑
t=1

r(a)− r(at)

)

≥ 1

7|A|
∑
a∈A

Ea

εT − ε

SK,2

K∑
k=1

∑
j∈a

λkλa−1(j)

T∑
t=1

I{ak,t = j}

 . (46)

To further lower bound the RHS expression in (46) we will consider the sum over t ∈ [T ] in isolation.
Define, for k ∈ [K], j ∈ [J ], and t ∈ [T ], the random variable Nk,j(T ) =

∑T
t=1 I{ak,t = j},

counting the number of times item j is displayed in slot k over T rounds. For an a ∈ A, and j ∈ a
the expectation of these random variables has the following property,

Ea(Nk,j(T )) ≤ Ea\j(Nk,j(T )) +
∣∣Ea\j(Nk,j(T ))− Ea(Nk,j(T ))

∣∣
≤ Ea\j(Nk,j(T )) +

T∑
s=0

s
∣∣Pa\j(Nk,j(T ) = s)− Pa(Nk,j(T ) = s)

∣∣
≤ Ea\j(Nk,j(T )) + T

T∑
s=0

∣∣Pa\j(Nk,j(T ) = s)− Pa(Nk,j(T ) = s)
∣∣

≤ Ea\j(Nk,j(T )) + T ||Pa\j − Pa||TV

≤ Ea\j(Nk,j(T )) + T

√
KL(Pa\j || Pa)

2
.

Here the final inequality uses Pinsker’s inequality. This decomposition is typical of standard regret
lower bound analysis.

We now turn our attention to the KL divergence term KL(Pa\j || Pa). By the Law of Total
Entropy (see e.g. Theorem 2.5.3 of Cover and Thomas (2012)), we have

KL(Pa\j || Pa) =

T∑
t=1

KL
(
Pa(Qt | Q1, . . . , Qt−1) || Pa\j′(Qt | Q1, . . . , Qt−1)

)
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=

T∑
t=1

∑
a′∈A:j∈a′

I{at = a′}KL(Pa(Q | a′) || Pa\j′(Q | a′))

≤
K∑
k=1

Nk,j(T ) max
a′∈A:a′k=j

KL(Pa(Q | a′) || Pa\j(Q | a′)) (47)

Here we also use the property that any algorithm gives a deterministic mapping from Q1:t−1 to at -
since even an instance of a ‘randomised’ algorithm can, alternatively, be viewed as a deterministic
algorithm randomly selected from a (potentially infinitely large) population of algorithms.

The following lemma, whose proof is given in the appendix, bounds the contribution to the KL
divergence from a single round.

Lemma 8 For two actions a,a′ ∈ A, and an item j ∈ a such that an = j and a′n′ = j for some
(possibly equal) n, n′ ∈ [K], we have the following bound on the KL divergence between Pa(Q | a′)
and Pa\j′(Q | a′), the marginal distributions on Q | a′ implied by the laws Pa and Pa\j,

KL
(
Pa(Q | a′) || Pa\j(Q | a′)

)
≤

17ε2λ2
a′−1(j)

SK

S2
K,2

. (48)

Thus, combining the decomposition of KL divergence in (47) and the bound on per-round KL
divergence in (48) we have for any j ∈ a,

KL(Pa || Pa\j) ≤
K∑
k=1

Nk,j(T )
17ε2λ2

kSK
S2
K,2

.

Moreover, for any k ∈ [K], j ∈ a,

Eτ (Nk,j(T )) ≤ E¬j(Nk,j(T )) + T

√
17ε2λ2

1TSK
2S2

K,2

.

Then combining with (46) we have that the regret is lower bounded, similarly to in Chen and Wang
(2018), as,

Reg(T ) ≥ 1

7|A|
∑
a∈A

εT − ε

SK,2

K∑
k=1

λk
∑
j∈a

λa−1(j)Ea(Nk,j(T ))


≥ εT

7
− 1

7|A|
∑
a∈A

 ε

SK,2

K∑
k=1

∑
j∈a

λkλa−1(j)Ea\j(Nk,j(T ))


− 1

7|A|
∑
a∈A

ε2T 3/2

S2
K,2

K∑
k=1

∑
j∈a

λkλa−1(j)

√
17λ2

1SK
2


≥ εT

7
− εKT

7J
− ε2T 3/2

7J

√
17SK
2S2

K,2

Finally, we complete the proof by choosing ε = O(
√
JSK,2/

√
TSK) and using the assumption that

K ≤ J/4. �
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D.1 Proof of Lemma 8

In this section we provide a proof of Lemma 8, which helps to complete the proof of the regret
lower bound, Proposition 2. Lemma 8 gives a bound on the KL divergence between the marginal
distributions over a single click variable, under (particular) different attractiveness parameter vec-
tors. The proof makes use of the following result, originally given as Lemma 3 in Chen and Wang
(2018), bounding the KL-divergence between categorical random variables.

Lemma 9 (Lemma 3 of Chen and Wang (2018)) Suppose P is a categorical distribution on
[M ]0 with parameters p0, . . . , pM , such that if X ∼ P , P (X = m) = pm for m ∈ [M ]0. Suppose
also that Q is an equivalently defined categorical distribution with parameters q0, . . . , qM , and we
have δm = pm − qm for m ∈ [M ]0. Then

KL(P || Q) ≤
M∑
m=0

δ2
m

qm
.

Proof of Lemma 8: We begin by deriving expressions for the parameters pk := Pa(Q = k | a′),

p0 =
1

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am}
,

pk =

λk
SK

+ ελk
∑K

m=1
λm
SK,2

I{a′k = am}

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am}
, k ∈ [K],

and qk := Pa\j(Q = k | a′),

q0 =
1

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
,

qk =

λk
SK

+ ελk
∑K

m=1
λm
SK,2

I{a′k = am, m 6= n}

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
, k ∈ [K].

To apply Lemma 9 we consider the differences in these parameters. For the no-click event we have

p0 − q0 =
−ελnλn′

SK,2

(
2 + ε

∑K
l=1 λl

∑K
m=1

λm
SK,2

I{a′l = am}
)(

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
) .

For k ∈ [K] such that k 6= n′ we have

pk − qk =

λk
SK

+ ελk
∑K

m=1
λm
SK,2

I{a′k = am}

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am}
−

λk
SK

+ ελk
∑K

m=1
λm
SK,2

I{a′k = am, m 6= n}

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
,

=
−ελkλnλn′SKSK,2

− ε2 λ
2
kλnλn′
S2
K,2(

2 + ε
∑K

l=1 λl
∑K

m=1
λj
SK,2

I{a′l = am}
)(

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
) .
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Finally for the slot n′ in which item j is placed we have

pn′ − qn′ =

λn′
SK

+ ε
λnλn′
SK,2

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am}
−

λn′
SK

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am,m 6= n}

=

λnλn′
SK,2

(
2ε+ ε2

∑K
l=1

∑K
m=1

λlλm
SK,2

I{a′l = am,m 6= n}
)
− ε λnλ2n′

SKSK,2(
2 + ε

∑K
l=1 λl

∑K
m=1

λm
SK,2

I{a′l = am}
)(

2 + ε
∑K

l=1 λl
∑K

m=1
λm
SK,2

I{a′l = am, m 6= n}
) .

It follows, subsequent to some further algebra, that we have

(p0 − q0)2

q0
≤
ε2λ2

nλ
2
n′

8S2
K,2

,
(pk − qk)2

qk
≤

7ε2λkλnλ
2
n′

8S3
K,2/SK

, and
(pn′ − qn′)2

qn′
≤

9ε2λnλ
2
n′

8S2
K,2/SK

.

As such, we have the following by Lemma 9, and the assumption that SK,2 ≥ 1

KL(Pa(Q | a′) || Pa\j(Q | a′)) ≤
ε2λ2

nλ
2
n′

8S2
K,2

+
K∑
k=1

7ε2λkλnλ
2
n′

8S3
K,2/SK

I{k 6= n′}+
9ε2λnλ

2
n′

8S2
K,2/SK

≤
17ε2λ2

n′SK

S2
K,2

. �

E Proofs of Technical Lemmas

In this section we provide proofs of the remaining technical lemmas arising in the main text.

E.1 Proof of Lemma 1

The probability of a no-click event given action al is given as

p0(al) = P (Qt = 0|at = al) =
1

1 +
∑K

k=1 λkα
l
k

.

It follows that nl = |El|−1, the number of clicks before the no-click event in epoch l is a Geometric
random variable with parameter p0(al). It follows, that conditioned on nl, each nlk count may be
viewed as a Binomial random variable,

nlk|nl ∼ Binom(nl, pk),

where

p̃k =
λkαk∑K
v=1 λvαv

,

is the probability of a click on the item in position k, given that there is a click.
The moment generating function of a Binomial random variable is of course well-known, and

we therefore have

Eπ(eθn
l
k) = Enl

(
Eπ(eθn

l
k |nl)

)
= Enl

(
(p̃ke

θ + 1− p̃k)n
l)
.
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We then consider the result that if X is a Geometric random variable with parameter p, then for any

τ such that τ(1−p) < 1 we have E(τX) = p/(1−τ(1−p)). It follows that, for any θ < log(
λkα

l
k+1

λkα
l
k

),

we have

Eπ(eθn
l
k) =

p0

1− (p̃keθ/λk + 1− p̃k)(1− p0)

=
p0

1−
(
p̃k(eθ − 1) + 1

)
(1− p0)

=
p0

1− (1− p0)− λkαlkp0(eθ − 1)

=
1

1− λkαlk(eθ − 1)
,

as stated. We recognise that each nlk | al is an independent geometric random variable, by consid-
ering the moment generating function of the geometric random variable X with parameter p and
density fX(k) = p(1− p)k for k ∈ {0, 1, 2, . . . }, is given as

M(t) =
p

1− et(1− p)
=

1

1− (1−p
p )(et − 1)

,

and is defined only for et(1− p) < 1. �

E.2 Proof of Lemma 2

We will first demonstrate that the log-likelihood function has at most one stationary point on the
parameter space (0, 1]J+K−1, We have that the log-likelihood of data N given Ñ and parameters
α,λ is

logL(N; Ñ,α,λ) =

K∑
k=1

J∑
j=1

Nkj log(αjλk)− (Nkj + Ñkj) log(1 + αjλk). (49)

Consdier the partial derivatives of the log-likelihood,

∂ logL
∂αj

=
K∑
k=1

Nkj − αjλkÑkj

αj(1 + αjλk)
, j ∈ [J ],

∂ logL
∂λk

=
J∑
j=1

Nkj − αjλkÑkj

λk(1 + αjλk)
, k ∈ [K] \ {1}.

The solutions of the system of equations ∂ logL/∂αj = 0, ∂ logL/∂λk = 0, j ∈ [J ], k ∈ [K] \ {1},
coincide with the solutions of,

K∑
k=1

(Nkj − αjÑkj)
∏
m6=k

(1 + αjλm) = 0, j ∈ [J ] (50)

J∑
j=1

(Nkj − λkÑkj)
∏
i 6=j

(1 + αiλk) = 0, k ∈ [K] \ {1}. (51)

We will demonstrate that the log-likelihood has at most one stationary point on (0, 1]J+K−1 by
showing that the system of equations given by (50) and (51) has at most one solution on (0, 1]J+K−1.
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For each j ∈ [J ] consider the LHS of equation (50) with all λ2, . . . , λK fixed in (0, 1]. The result
is an O(αKj ) polynomial, which can be decomposed in to the summation of k O(αKj ) polynomials,

gk(αj) = (Nkj − αjÑkj)
∏
m 6=k(1 + αjλm), k ∈ [K]. We have roots of gk at αj = Nkj/Ñkj and

αj = −1/λm, ∀m 6= k, and notice that gk(αj) has negative leading order term when αj > 0. Notice
that only one of the solutions is positive, and lies in (0, 1] iff 0 < Nkj ≤ Ñkj .

Since each polynomial gk has negative leading order term, it follows that
∑K

k=1 gk(αj) = 0, i.e.
equation (50), also has at most one solution in (0, 1], for fixed λ2, . . . , λK . An analogous argument
applied to equation (51) tells us that there is at most one positive solution value in (0, 1] for each
λk, k ∈ [K] \ {1}, coinciding with all other variables being positive.

This tells us that the system of equations where the partial derivatives are set to zero, has at
most one solution in (0, 1]K+J−1 and as such the log-likelihood function has at most one stationary
point on (0, 1]K+J−1. From this we deduce that the log-likelihood is either monotonic on (0, 1]K+J−1

or unimodal. We have from Wu (1983) that the EM algorithm will converge to the unique MLE if
the log-likelihood is unimodal and continuous, and thus that the EM algorithm, Algorithm 1, will
converge to the MLEs. �

F Independent Product Parameter Model

A perhaps more straightforward approach to the unknown position bias variant of the MNL-LTR
problem would be to exploit the closed-form distribution of the estimators γ̄j,k(L) = Nkj/Ñkj

of product parameters γj,k = αjλk, j ∈ [J ], k ∈ [K] and build UCBs around these parameters
independently. In this section we argue that this is not an appropriate strategy. Specifically,
although such an approach can be shown to eventually learn the optimal action, and indeed have
sublinear regret, the amount of exploration it requires is prohibitively large in comparison to our
proposed strategy.

F.1 An MNL-Bandit Approach to MNL-LTR with Unknown Position Biases

We notice that by modelling the γjk parameters as independent, the unknown position bias variant
of MNL-LTR can also be thought of as a constrained MNL-bandit problem. We can design such
a formulation where the decision-maker is oblivious to the ranking aspect, but the constraints on
their actions ensure that they implicitly assign a single item to a single slot.

In such a setting there are JK objects, indexed Sj,k for j ∈ [J ], k ∈ [K], where selecting object
Sj,k represents placing item j in slot k. Object Sj,k is therefore associated with parameter γjk. In
each round t ∈ [T ] the decision-maker chooses a set St containing K of the objects. The constraints
of the associated MNL-LTR problem are such that in each round exactly one of these objects must
have index k for each k ∈ [K].

Introducing JK further indicator variables xjk(t) = I{Sj,k ∈ St} for each t ∈ [T ], these con-
straints may be expressed as,

J∑
j=1

xj,k(t) = 1 ∀k ∈ [K], and
K∑
k=1

xj,k(t) ≤ 1 ∀j ∈ [J ], ∀t ∈ [T ]. (52)

The first constraint captures the rule that every slot is utilised, and the second constraint captures
the rule that each item is used at most once. A valid set of objects St, satisfying (52), maps in a
one-to-one fashion to a valid action at ∈ A for our MNL-LTR problem.
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Both Agrawal et al. (2017) and Agrawal et al. (2019) derive order-optimal guarantees for con-
strained MNL-bandit algorithms. However, the constraint considered in Agrawal et al. (2017) is
only a simple cardinality constraint - i.e. an upper limit on the number of objects chosen in each
round. Thus the guarantees on the Thompson Sampling approach proposed therein do not carry
to the problem with constraints (52). Agrawal et al. (2019), however, allow for a more general
class of constraints, requiring that constraints may be expressed in the form Ax ≤ b, where A is
a totally unimodular (TU) matrix, and b is an integer-valued vector. The JK × (J + 2K) matrix
A implied by constraints (52) can be shown to be TU. Thus the regret guarantees on the UCB
algorithm proposed in Agrawal et al. (2019) apply directly to the constrained MNL-bandit instance
associated with an MNL-LTR instance.

Algorithm 4 describes a modification of such an algorithm to incorporate our sharper concen-
tration results. Then, the corollary below gives the corresponding order result on regret enjoyed by
this algorithm. The proof of this result is omitted as it follows directly from the observation that
the coefficient matrix implied by constraints (52) is TU, and substituting the concentration results
of Lemma 3 in to the proof of Theorem 1 of Agrawal et al. (2019).

Corollary 2 There exist constants C1, C2 > 0 such that for any MNL-LTR problem where the
item attractiveness parameters satisfy αj ≤ α0 = 1, j ∈ [J ] and the position biases satisfy λ1 = 1,
λk ≤ λ1 k ≥ 2, the regret in T rounds of Algorithm 4 satisfies

Reg(T ) ≤ C1

√
JKT log(JKT 2) + C2JK log2(JKT ).

Although this implies a guarantee on the performance of Algorithm 4 which is near optimal
in its dependence in T , we see that the O(log(T )) term has a worse dependence on JK than, for
instance, the Epoch-UCB algorithm for the known position bias case. This hints to the critical
issue with deploying Algorithm 4, that its exploration cost scales linearly with the product of the
number of items and number of slots. In the experiments in Section 6, in particular problem (c), we
see that even in ’simple’ problems - where the optimal action can be identified quickly - Algorithm
4 is slow to converge.
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Algorithm 4 Epoch-UCB algorithm for MNL-bandit model of MNL-LTR

Initialise with l = 0, and Q0 = 0. Iteratively perform the following for t ∈ [T ],

If Qt−1 = 0

• Set l← l + 1

• Calculate UCBs. For j ∈ [J ], k ∈ [K] compute,

γUCBj,k,l = γ̄j,k(l − 1) +

√
4 min(1, 2γ̄j,k(l − 1)) log(JKl2/2)∑l−1

s=1 I{Sj,k ∈ Sl}
+

4 log(JKl2/2)∑l−1
s=1 I{Sj,k ∈ Sl}

.

• Solve the optimisation problem for object indicator variables

xl = argmax
xj,k,j∈[J ],k∈[K]

J∑
j=1

K∑
k=1

xj,kγ
UCB
j,k,l

s.t.

J∑
j=1

xj,k(t) = 1 ∀k ∈ [K],

K∑
k=1

xj,k(t) ≤ 1 ∀j ∈ [J ]

• Select an action at ∈ A associated with xl ∈ {0, 1}J×K , and observe click variable Qt,

otherwise, set action at = at−1, and observe click variable Qt.
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