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Abstract

This paper considers the posterior contraction of non-parametric Bayesian inference on
non-homogeneous Poisson processes. We consider the quality of inference on a rate function λ,
given non-identically distributed realisations, whose rates are transformations of λ. Such data
arises frequently in practice due, for instance, to the challenges of making observations with
limited resources or the effects of weather on detectability of events. We derive contraction rates
for the posterior estimates arising from the Sigmoidal Gaussian Cox Process and Quadratic
Gaussian Cox Process models. These are popular models where λ is modelled as a logistic and
quadratic transformation of a Gaussian Process respectively. Our work extends beyond existing
analyses in several regards. Firstly, we consider non-identically distributed data, previously
unstudied in the Poisson process setting. Secondly, we consider the Quadratic Gaussian Cox
Process model, of which there was previously little theoretical understanding. Thirdly, we provide
rates on the shrinkage of both the width of balls around the true λ in which the posterior mass is
concentrated and on the shrinkage of posterior mass outside these balls - usually only the former
is explicitly given. Finally, our results hold for certain finite numbers of observations, rather than
only asymptotically, and we relate particular choices of hyperparameter/prior to these results.

1 Introduction

The non-homogeneous Poisson process (NHPP) is the most widely used model for inference on point
process data. It is parameterised by a non-negative rate function λ and satisfies the key property
that the expected number of events in any area is equal to the integral of the rate function over
that area. A Gaussian Cox process (GCP) is a nonparametric Bayesian version of the NHPP model
where λ is modelled as a transformation of a Gaussian process (GP). In this paper we consider
two classes of GCP, the Sigmoidal GCP (SGCP) of (Adams et al., 2009) and the Quadratic GCP
(QGCP) of (Lloyd et al., 2015). In the SGCP the rate function is modelled as a multiple of a
logistic transformation of a GP. In the QGCP the rate function is modelled as the square of a
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GP. This paper is concerned with the quality of posterior inference on λ arising from these models.
Specifically we are interested in the rate at which the expected posterior mass the models assign to
functions far from the true λ decreases.

The GCP is a model over functions and is defined on some space of non-negative functions Λ.
Given a true rate function λ0 ∈ Λ, observed data X1:n collected over n ∈ N timesteps, and a relevant
distance dn(λ, λ′) defined for all λ, λ′ ∈ Λ, we look for results of the form

Eλ0
(

Π
(
λ ∈ Λ : dn(λ, λ0) ≥ εn|X1:n

))
≤ fn (1)

for decreasing sequences εn, fn, where Π(·|X1:n) denotes the posterior probability mass and Eλ0
denotes expectation with respect to the probability measure implied by λ0. The sequences εn, fn
define the rate of posterior contraction of a model. If such a bound holds for certain εn, fn → 0 as
n→∞ this displays that the model is consistent. However, we are also interested in the order of
the sequences and for which n results of the form (1) can be identified.

Asymptotic consistency results of the form

Eλ0
(

Π
(
λ ∈ Λ : dn(λ, λ0) ≥ εn|X1:n

))
→ 0

as n→∞ are prevalent in the Bayesian nonparametrics literature; for example (Kirichenko and
Van Zanten, 2015) gives such a result for i.i.d. X1:n under the SGCP and a broader family of GCPs
which have a smooth and bounded link function. Such asymptotic results are undoubtedly useful
contributions to the understanding Bayesian models and inference, however they provide limited
support to finite-time analyses thereof. We extend beyond existing results in four important regards
by

1. Providing results for independent non-identically distributed (i.n.i.d.) data,

2. Providing results for the QGCP model as well as the SGCP,

3. Providing a rate on the shrinkage of the posterior mass fn (as well as on εn), and

4. Providing results for finite values of n, not only asymptotically, and relating specific choices of
hyperpriors (and parameters) to these results.

Studying i.n.i.d. data is in contrast to the majority of previous studies of non-parametric
inference on NHPPs. However, ours is an important, practically-relevant setting. Commonly when
observing point process data, the detection of events may be imperfect. This may be due to visibility
conditions, unreliable signals or the fallability of observation equipment. A result of this is that
while events may occur independently and according to a stationary process, the distribution of
observed events can vary as data is collected. Equally, different subsections of a region of interest
may be observed at different rates by design. Data collectors may be more readily able to gather
data in a particular region, resources may be too costly to gather the same quality of information
everywhere or multiple sub-investigations may be combined to form a joint dataset. As the GCP
models are typically used to model situations with underlying spatial smoothness and covariance
structure, a unified analysis is still desirable, however existing contraction results only handle the
setting where an entire region of interest has been observed uniformly. The results we obtain in
this paper apply to the setting where (whether through design or imprecision) different rates of
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observation have been applied at different locations. Therefore, we present results that are more
relevant to the practical settings in which GCP models are utilised than those which consider only
identically distributed data.

The QGCP model has recently received attention in the literature (Lloyd et al., 2015; John and
Hensman, 2018) as a model for NHPP inference, due to the ability to carry out fast and accurate
inference. Previously however, there was little theoretical understanding of the model. We provide
theoretical foundations for this new variant of the GCP model. This is non-trivial since the link
function in the QGCP is not bounded, in contrast with the SGCP. Consequently, we find the rate
of contraction to be lower for the QGCP than for the traditional SGCP.

Providing a rate fn on the shrinkage of the posterior mass for finite values of n is also an
important development. A trend in the existing literature is to focus on the asymptotic results and
present that if the width of a ball around the true rate is chosen to decrease at the correct rate
(with respect to the number of observations) then the probability of lying outside this ball tends
to 0 as the number of observations goes to infinity. Such results are typically cleaner, and clearly
demonstrate the consistency of a method, while the finite-time result can usually be extracted from
the proofs provided for such results if desired. If the rate fn is explicitly given or can be inferred, it
is often only specified as holding for “sufficiently large” n. Inferring the rate fn and determining
the order of n that qualifies as sufficiently large, can be challenging to users of these results. By
explicitly giving a form of fn and quantifying the values of n (in terms of functions of the chosen
hyperparameters) for which it is valid, we present a more informative set of results that are useful
for end-users of this theory.

One use case of these results is in the theory of sequential decision making problems. In sequential
sensor placement problems such as that studied in (Grant et al., 2019), decision makers adaptively
select intervals over which to observe events subject to costs on the length of the interval, with an
overall aim of maximising a cumulative reward. To do so optimally, balancing between exploring
undersampled regions and “exploiting” - making repeated samples of areas where the rate is known
to be high - is required. To understand the optimal balance of exploration and exploitation, one
must understand the rate at which the inference model used contracts. Previous work on these
problems has relied on assuming simpler inference models to obtain performance guarantees (Grant
et al., 2018, 2019). Guarantees on the contraction of Cox process posteriors with rates on the
posterior mass will be important in the design and analysis of more sophisticated approaches to
these problems.

Another use for these results is in experimental design and resource planning problems. It is
valuable for decision-makers to know the expected level of uncertainty in a rate function given a
certain number of observations. They can then appropriately design sampling strategies or deploy
resources to collect information in a way that is tailored to achieving a certain level of confidence in
the inference.

In the remainder of this section, we discuss related work in GCPs and general contraction results
for Bayesian models. In Section 2 we formally introduce our GCP models and notation. Section 3
includes all our main theoretical results and proofs, and in Section 4 we conclude with a discussion.
Throughout we have aspired to make our assumptions transparent and demonstrate how they can
be met. In Appendix H we verify that all assumed conditions can be satisfied for finite numbers of
observations.
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1.1 Related Literature

The Cox process (Cox, 1955) is a class of doubly stochastic process where the rate function of
an non-homogeneous Poisson process (see e.g. (Møller and Waagepetersen, 2003)) is modelled as
another stochastic process. The Gaussian Cox process (GCP), as mentioned above, is a particular
subset of this class where the rate function of the NHPP is modelled via a transformation of a
Gaussian process (Williams and Rasmussen, 2006). Three main transformations have been proposed
yielding three main models. Firstly, the Log-Gaussian Cox Process (LGCP) of (Rathbun and
Cressie, 1994) and (Møller et al., 1998) where λ is modelled as an exponential transformation of
a GP. Secondly, the Sigmoidal-Gaussian Cox Process (SGCP) of (Adams et al., 2009) where λ is
modelled as a multiple of a logistic transformation of a GP. Finally, the Quadratic-Gaussian Cox
Process (QGCP) of (Lloyd et al., 2015) where λ is modelled as a quadratic transformation of a GP.
We focus on the SGCP and QGCP models, as (for reasons discussed fully in Section 4) the LGCP
model requires separate techniques to derive a contraction result.

General results for the contraction of posterior density estimates given i.i.d. data are available
thanks to the seminal papers (Ghosal et al., 2000) and (Ghosal and Van Der Vaart, 2001). The link
between density estimation and function estimation is exploited in (Belitser et al., 2015) to extend
this work to show contraction rates for Bayesian Poisson process inference subject to appropriate
prior conditions. Furthermore, (Belitser et al., 2015) proposes a spline based prior satisfying these
conditions. The result of (Belitser et al., 2015) and GP concentration results of (van der Vaart and
van Zanten, 2009) are used by (Kirichenko and Van Zanten, 2015) to show an asymptotic rate of
posterior contraction for the SGCP - (Kirichenko and Van Zanten, 2015) is the existing work most
similar to our contribution. However we are able to move beyond i.i.d. data to the independent
non-identically distributed (i.n.i.d.) case, thanks to the work of (Ghosal and Van Der Vaart, 2007)
in deriving contraction results for posterior density estimates under such data.

2 Model

In this section we introduce the data generating model and two prior models considered in the
paper, along with other relevant notation required to understand our main results.

2.1 Likelihood

We consider an NHPP with bounded non-negative rate function λ0 on [0, 1]d. We suppose that n
independent realisations of the NHPP X̃1, ..., X̃n are generated. Each realisation j consists of a
collection mj of points {X̃1

j , ..., X̃
mj
j } ∈ [0, 1]d. We write

X̃j =

mj∑
i=1

δX̃i
j
, j = 1, ..., n

where δx denotes the Dirac measure at x. By the definition of the NHPP model, each realisation
j is distributed such that the number of points in any set R ⊆ S, denoted X̃j(R) follows a
Poisson distribution with mean

∫
B λ(s)ds. Furthermore X̃j(R1), X̃j(R2) are independent if the sets

R1, R2 ⊆ S are disjoint.
Under our model, the realisations X̃1, ..., X̃n are not directly observed. Instead, so-called filtered

realisations X1:n = X1, ..., Xn are observed. The events in a filtered realisation Xj are a subset
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of the events in the corresponding raw realisation X̃j . The relationship between X1:n and X̃1:n is
governed by a set of filtering functions γ1:n = γ1, ..., γn.

Each filtering function γj : [0, 1]d → [0, 1] evaluated at a point s ∈ S gives the probability of
observing an event in X̃j given that it has occurred at location s. Every event that occurs in X̃j is
observed or not independently according to these probabilities.

By standard results, Xj is distributed according to an NHPP with rate γiλ0. That is to say, the
n filtered realisations Xi:n are then realisations of independent, non-identically distributed NHPPs
with rates γ1λ0, ..., γnλ0 respectively.

It follows that the likelihood of a particular set of observations X1:n = X1, ..., Xn given a rate
function λ and filtering functions γ1:n can be written

L(X1:n|λ0, γ1:n) =
n∏
j=1

exp

(∫
S
γj(s)λ0(s)dXj(s)−

∫
S

(γj(s)λ0(s)− 1)ds

)
,

using the law of the realisation Xj as given by Proposition 6.1 of (Karr, 1986). We note that the
case of i.i.d. data as considered in (Kirichenko and Van Zanten, 2015) and (Gugushvili et al., 2018)
is a special case of this model, where γj(x) = 1,∀x ∈ [0, 1]d, ∀j = 1, . . . , n.

2.2 Prior Models

In this paper we consider two Bayesian models of the Poisson process where the rate function λ0 is
modelled a priori as a transformation of a Gaussian process. Under the SGCP model (Adams et al.,
2009), the true rate function is modelled a priori as

λ(s) = λ∗σ(g(s)) = λ∗(1 + e−g(s))−1 s ∈ S (2)

where λ∗ > 0 is a scalar hyperparameter endowed with an independent Gamma prior and g is a
zero-mean GP. The sigmoidal transformation σ is bounded in [0, 1] so the hyperparameter λ∗ models
the maximum of the rate function, ||λ0||∞. The QGCP model (Lloyd et al., 2015) uses a more
straightforward transformation. The rate function is modelled a priori as

λ(s) = (g(s))2 s ∈ S (3)

where again, g is a GP.
For both models, we specify certain additional properties of the GP to support our subsequent

analyses. These conditions are standard in the posterior contraction literature (van der Vaart and
van Zanten, 2008, 2009; Kirichenko and Van Zanten, 2015). We require that the covariance kernel f
of the GP g, can be given in its spectral form by

Ef(s)f(s′) =

∫
e−i<ξ,l(s

′−s)>µ(ξ)dξ, s, s′ ∈ S. (4)

Here l > 0 is an (inverse) length scale parameter and µ is a spectral density on Rd such that the
map a 7→ µ(aξ) on (0,∞) is decreasing for every ξ ∈ Rd and that satisfies∫

eδ||ξ||µ(dξ) <∞
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for some δ > 0. Condition (4) is satisfied, for instance, by the squared exponential covariance
function

Ef(s)f(s′) = e−l
2||s−s′||2 , s, s′ ∈ S

since it corresponds to a centred Gaussian spectral density.
The length scale parameter should have a prior πl on [0,∞) which satisfies

C1x
q1 exp(−D1x

d logq2 x) ≤ πl(x) ≤ C2x
q1 exp(−D2x

d logq2 x) (5)

for positive constants C1, C2, D1, D2, non-negative constants q1, q2, and every sufficiently large x > 0.
In particular if ld is endowed with a Gamma(a, b) prior, then

πl(x) =
bad

Γ(a)
xda−1 exp(−bxd)

for x > 0, and thus (5) is satisfied with C1 = C2 = bad
Γ(a) , D1 = D2 = b, q1 = da− 1, and q2 = 0. We

will assume a Gamma prior on ld in the remainder of the paper for ease of analysis and presentation,
but note that similar results are obtainable for other choices.

Finally, for the SGCP model we assume a positive, continuous prior pλ∗ for λ∗ on [0,∞) satisfying∫ ∞
λ′

pλ∗(x)dx ≤ C0e
−c0(λ′)κ (6)

for some constants c0, C0, κ > 0 and all λ′ > 0. This condition is satisfied by, for instance, choosing
a Gamma prior on λ∗.

2.3 Additional Notation

In the following section, we will derive results on the posterior distribution of λ0|X1:n under the
two models. We will denote the prior distributions as Π(·) and the posteriors as Π(·|X1:n). Certain
results will be valid for the class of all continuous functions on [0, 1]d, which will be denoted C([0, 1]d),
and others will hold for the class of all α-Hölder continuous functions on [0, 1]d denoted Cα[0, 1]d.

Contraction results will inevitably depend on the particular filtering functions γ1:n, therefore it
is convenient to define versions of standard distances averaged with respect to γ1:n. We have the
averaged infity norm

Γn,∞(λ, λ′) =
1

n

n∑
i=1

||λγi − λ′γi||∞ =
1

n

n∑
i=1

sup
x∈[0,1]d

|λ(x)γi(x)− λ′(x)γi(x)|,

averaged L2 norm

Γn,2(λ, λ′) =
1

n

n∑
i=1

||λγi − λ′γi||2 =
1

n

n∑
i=1

∫
[0,1]d

(λ(x)γi(x)− λ′(x)γi(x))2dx,

and square rooted averaged L2 norm

Γ
1/2
n,2 (λ, λ′) =

1

n

n∑
i=1

||
√
λγi −

√
λ′γi||2 =

1

n

n∑
i=1

∫
[0,1]d

(
√
λ(x)γi(x)−

√
λ′(x)γi(x))2dx,

for rate functions λ, λ ∈ C([0, 1]d). Using these definitions we can guarantee a rate of convergence
appropriate to the level of filtering.

Finally let N(ε,S, l) denote the ε-covering number of a set S with respect to distance l.
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3 Posterior Contraction Results

In this section we state our results on the finite-time contraction of the posterior of the QGCP and
SGCP models. Our results assert that given n realisations of the NHPP, the expected posterior
mass concentrated on functions outside a Hellinger-like ball of a given width will not exceed a
transformation of the width of the ball. Theorem 1 gives the result for the QGCP, and Theorem 2
for the SGCP.

Theorem 1 Suppose that λ0 ∈ Cα([0, 1]d) for some α > 0 and λ0 : [0, 1]d → [λ0,min,∞). Suppose
that the filtering functions γ1:n are known. Then for all sufficiently large M,n > 0 the posterior
under the QGCP satisfies

Eλ0

(
Π
(
λ :

1

n

n∑
i=1

||
√
λγi −

√
λ0γi||2 ≥

√
2Mεn|X1:n

))
= õ
(
n
−d

4α+d
)

(7)

for εn = 2
√
||λ0|∞n−α/(4α+d)(log(n))ρ+d+1 + n−2α/(4α+d)(log(n))2ρ+2d+2 with ρ = 1+d

4+d/α .

Theorem 2 Suppose that λ0 ∈ Cα([0, 1]d) for some α > 0 and λ0 : [0, 1]d → [λ0,min, λ0,max].
Suppose that the filtering functions γ1:n are known. Then for all sufficiently large M,n > 0 the
posterior under the SGCP satisfies

Eλ0

(
Π
(
λ :

1

n

n∑
i=1

||
√
λγi −

√
λ0γi||2 ≥

√
2Mεn|X1:n

))
= õ
(
n
−d

2α+d
)

(8)

for εn = n−α/(2α+d)(log(n))ρ+d+1 with ρ = 1+d
2+d/α .

In each case analytical results free from “little-o” notation and a specific value for the “sufficiently
large” conditions on M and n are given in the proofs in Sections 3.2 and 3.3.

The key difference between the two results is that for the QGCP we can only guarantee
convergence on larger ball widths εn and at a slower rate fn. Notice that under the QGCP the ball
width is õ(n−α/(4α+d)) and the contraction rate is õ(n−d/(4α+d)), whereas for the SGCP the ball
width is õ(n−α/(2α+d)) and the contraction rate is õ(n−d/(2α+d)).

In the simplest setting where λ0 ∈ C1([0, 1]) - i.e. where we consider Lipschitz smooth functions
on d = 1 - this means we have a contraction rate of õ(n−1/5) on balls of width õ(n−1/5) for the
QGCP and a contraction rate of õ(n−1/3) on balls of width õ(n−1/3) for the SGCP. The result on
the SGCP is therefore tighter in two senses, we are able to say that the posterior mass shrinks
quicker than for the QGCP and on the probability of being in a larger subspace (since the ball
width εn is smaller, the area outside the ball is larger).

The different results arise as a consequence of the different transformation functions. For the
posterior to contract at a given rate, we must demonstrate that the prior model satisfies certain
properties related to this rate. Both models are built upon a GP g, and by considering the properties
of g, we can verify that the SGCP and QGCP prior models meet the necessary conditions.

The results of (van der Vaart and van Zanten, 2009) demonstrate that for g as described in
Section 2, relevant properties of g can be shown, i.e. that the prior mass g assigns to certain
parts of the function space is bounded by sequences of a known form. It follows that appropriate
transformations of these sequences can be used to show that the SGCP and QGCP priors also assign
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their prior mass across the function space in the required manner. The transformed sequences give
rise to our ball widths εn which in turn influence the contraction rate. Since the SGCP and QGCP
involve different transformations of g, we also require different transformations of the sequences for
which desirable properties of g hold, and therefore different results are obtained.

More informally, the issue is that by applying a quadratic transformation to the GP over a
logistic one, prior mass is dispersed more across the function space and the resulting posterior takes
longer to contract around the true λ0.

3.1 Contraction of NHPP models under general priors

Before we prove Theorems 1 and 2 we introduce a third result which gives a sufficient set of conditions
on prior models to attain posterior contraction at a known rate under i.n.i.d. observations. Theorem
3 extends Theorem 1 of (Ghosal and Van Der Vaart, 2007) to apply to for Poisson processes. The
extension is in the same manner as the result of (Belitser et al., 2015) extends Theorem 2 of (Ghosal
and Van Der Vaart, 2001) for i.i.d. Poisson process realisations. In addition we retain the rate on
the shrinkage of the posterior mass, as well as on the ball width, unlike these earlier papers.

Theorem 3 Assume that λ0 : [0, 1]d → [λ0,min,∞) and that filtering functions γ1:n are known.
Suppose that for positive sequences δ, δ̄n → 0, such that nmin(δn, δ̄n)2 →∞ as n→∞, it holds that
there exist subsets Λn ⊂ C(S), some n0 ∈ N, and constants c1, c2, c3 > 0, c4 > 1, and c5 > c2 + 2
such that

Πn

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c1e

−c2nδ2n (9)

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,Γn,2

)
≤ c3nδ̄

2
n (10)

Πn(Λ \ Λn) ≤ c4e
−c5nδ2n . (11)

for all n ≥ n0 where Λn,ε =
{
λ ∈ Λn : hn(pλ, pλ0) ≤ ε

}
, and hn(pλ, pλ0), is given by

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− Eλγi

(√
p(X(i)|λ, γi)
p(X(i)|λ′, γi)

))
.

Then for εn = max(δn, δ̄n) and any C > 0, J ≥ 1,M ≥ 2,

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X1:n

)]
≤ 1

C2nε2n
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1
e−(c2M2J2/4−C−1)nε2n (12)

for n ≥ max(n0, n1, n2, n3) where n1 = arg min{n : εn ≤ λmin}, n2 = arg min{n : εn ≤ 1√
2M
}, and

n3 = arg min{n : e−nε
2
nKM

2/4 ≤ 1/2}.

We prove this theorem in Section 3.4. This establishes that given the prior model satisfies
certain conditions, the expected posterior mass assigned to rate functions outside an order εn width
ball around λ0 (measured with respect to an averaged L2 distance) decreases at rate o((nε2n)−1)
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for sufficiently large n. The conditions on the prior model are standard and are inherited from
the conditions of Theorem 4 of (Ghosal and Van Der Vaart, 2007) required to show posterior
contraction in a density estimation setting. Condition (9), the prior mass condition, ensures that
a sufficient proportion of the prior mass is assigned to functions close to λ0. Condition (10), the
entropy condition, and condition (11), the remaining mass condition, together prescribe that there
exist subsets of the function space such that the entropy of these subsets is not too large, but the
probability of lying outside these is also small.

Equipped with this general result, we are now in a position to prove Theorems 1 and 2 by
demonstrating that the QGCP and SGCP models meet conditions (9), (10), and (11).

3.2 Proof of Theorem 1: Contraction of the QGCP model

To prove Theorem 1 we verify that the QGCP model described in Section 2 meets the conditions of
Theorem 3. The following sections handles each condition in turn. Throughout we have

δn = 2
√
||λ0||∞n−α/(4α+d) logρ(n) + n−2α/(4α+d) log2ρ(n), (13)

δ̄n = 2
√
||λ0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n). (14)

3.2.1 Prior Mass Condition

The first condition, the so-called prior mass condition (9) does not rely on the existence of particular
subsets Λn, and can be verified by the following lemma, which we prove in Appendix A.

Lemma 4 If λ0 = g2
0 where g0 ∈ Cα([0, 1]d) for some α > 0 then under the QGCP model there

exist constants c1, c2 > 0 for δn as defined in (13) such that the prior satisfies

Π(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e
−c2nδ2n

for all n ≥ 3.

Then consider that since γi ∈ [0, 1] for all i = 1, ..., n,

Γn,∞(λ, λ0) =
1

n

n∑
i=1

||λγi − λ0γi||∞ ≤ ||λ− λ0||∞. (15)

Thus, by Lemma 4 we have that there exist constants c1, c2 > 0 such that

Πn

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ Πn(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e

−c2nδ2n ,

satisfying condition (9).

3.2.2 Definition of Sieves

We now define the subsets Λn for which the QGCP satisfies the constraints of Theorem 3. Let,

Λn = (Gn)2 (16)
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where

Gn =

[
βn

√
ζn
χn

Hζn
1 + κnB1

]
∪
[ ⋃
a≤χn

(βnHa
1) + κnB1

]
, (17)

B1 is the unit ball in C([0, 1]d) with respect to the uniform norm, and Hl
1 is the unit ball of the

RKHS Hl of the GP g with covariance as given in (4). We define the sequences involved as follows,

ζn = L2n
1
d

2α+d
4α+d (log(n))2ρ/d + L3n

1
d
α+d
4α+d (log(n))3ρ/d + L4n

1
d

d
4α+d (log(n))4ρ/d

βn = L5n
1
2

2α+d
4α+d (log(n))2ρ+ d+1

2 + L6n
1
2
α+d
4α+d (log(n))3ρ+ d+1

2 + L7n
1
2

d
4α+d (log(n))4ρ+ d+1

2

κn =
1

3
δ̄n, χn =

δ̄n

6τ
√
dβn

,

for constants

L2 > (8c5||λ0||∞)/D1, L3 > (8c5

√
||λ0||∞)/D1, L4 > 2c5/D1

such that L2 + L3 + L4 > max(A, e) and

L5 ≥ max

(√
16K5Ld2K

1+d
1

log2ρ(3)
,
√

32||λ0||∞c5, L
1/3
2

( 8 max(1,
√
||λ0||∞)

(3/36
√

2)3/2d1/4
√

2τ

)2/3
)

L6 ≥ max

(√
16K5Ld3K

1+d
1

log3ρ(3)
,

√
32
√
||λ0||∞c5

)
, L7 ≥ max

(√
16K5Ld4K

1+d
1

log4ρ(3)
,
√

8c5

)
,

such that L5 + L6 + L7 >
4L1 max(1,

√
||λ0||∞)

3
√
||µ||

, and L2L
3
5 >

(
8 max(1,||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

where L1 = 1/(36
√

2)

and K1 = log
( 3(L2+L3+L4)

min(1,2
√
||λ0|∞)

)
+ 2αd+2α+d

4αd+d2
+ (4ρ− ρ/d− d− 1).

The definition of Gn and these sequences is important as it allows general GP results of (van der
Vaart and van Zanten, 2009) to be applied. The extensive conditions on the constants are important
to ensure that the results hold for finite values of n.

3.2.3 Entropy Condition

The following lemma allows us to verify condition (10) which stipulates that the log entropy of the
subsets Λn is not too large. The proof of this lemma is provided in Appendix C. In particular it
exploits an existing bound on the covering number of Gn with respect to the infinity norm from
(van der Vaart and van Zanten, 2009).

Lemma 5 For Λn defined as in (16), a constant L1 > 0, and δ̄n as defined in (14), there exists a
constant c3 > 0 such that

logN(L1δ̄n,
√

Λn, || · ||2) ≤ c3nδ̄
2
n,

for all n such that

4||λ0||∞ log2d+2−2ρ(n) ≥
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li

4||λ0||3/2∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

10



and

2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1

√
||λ0||∞ + L1

)
≤ 4||λ0||∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)−log

(
n(6α+d)/(4α+d) log6ρ(n)

)
.

To apply Lemma 5, notice that 1
n

∑n
i=1 ||γi × ·||2 ≤ || · ||2 since the functions γi ∈ [0, 1] for all

i = 1, ..., n. It follows that

N

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ N

(
δ

36
√

2
,
√

Λn,δ, || · ||2
)
≤ N

(
δ

36
√

2
,
√

Λn, || · ||2
)
. (18)

As any ε-covering number is decreasing in ε, it follows by Lemma 5 that

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ c3nδ̄

2
n.

Thus we have satisfied constraint (10).

3.2.4 Remaining Mass Condition

Finally, Lemma 6 below is sufficient to validate condition (11) directly. Its proof is given in Appendix
D.

Lemma 6 Under the QGCP model, with Λn as defined in (16), and δn as defined in (13) there
exist constants c4 > 0, c5 ≥ c2 + 4 such that

Π(λ : λ /∈ Λn) ≤ c4e
−c5nδ2n ,

for all n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.

3.2.5 Conlcuding the Proof

By Lemmas 4, 5, and 6 and the definitions of δn and δ̄n therein we have that the conditions of
Theorem 3 are satisfied. Thus, for the QGCP model

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X̃1:n

)]
≤ 1

C2nε2n
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1
e−(c2M2J2/4−C−1)nε2n

holds with εn = max(δn, δ̄n) = δ̄n for any C > 0, J ≥ 1,M ≥ 2. Specific values of the remaining
constants can be extracted from Lemmas 4, 5, 6, and 11.

Then, so long as M and J are sufficiently large, the second, third and fourth terms on the RHS

of equation (12) decay much more quickly than the first and the bound is õ(n
−d

4α+d ) as stated, for all
n such that the conditions of Theorem 3 and Lemmas 5 and 6 are met. �

11



3.3 Proof of Theorem 2: Contraction of the SGCP model

Like the proof of Theorem 1, the proof of Theorem 2 relies on demonstrating the the SGCP model
described in Section 2 meets the conditions of Theorem 3. In (Kirichenko and Van Zanten, 2015) the
conditions of Theorem 1 of (Belitser et al., 2015) - the asymptotic and i.i.d. analogue of Theorem 3
- are verified for the SGCP model. However certain asymptotic arguments are used in said proof. In
the following sections we handle each condition of Theorem 3 in turn under our setting. Throughout
we have

δn = n−α/(2α+d)(log(n))(1+d)/(2+d/α) (19)

δ̄n = n−α/(2α+d)(log(n))(1+d)/(2+d/α)+d+1 (20)

3.3.1 Prior Mass Condition

For the SGCP model, the prior mass condition (9) can be verified by the following lemma which we
prove in Appendix E.

Lemma 7 If λ0 = ||λ0||∞σ(g0) where g0 ∈ Cα([0, 1]d) for some α > 0 then under the SGCP model
there exist constants c1, c2 for δn as defined in (19) such that the prior satisfies

Π(λ : ||λ− λ0||∞ ≤ δn) ≥ c1e
−c2nδ2n

for all n ≥ 3.

Then, by (15) and Lemma 7 we have that there exist constants c1, c2 > 0 such that

Π

(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c1e

−c2nδ2n

and we have shown condition (9) is satisfied under the SGCP model.

3.3.2 Definition of Sieves

We now define the sets Λn such that the remaining coniditions hold. Consider,

Λn =
⋃
λ≤λn

λσ(Gn) (21)

where

Gn =

[
βn

√
ζn
χn

Hζn
1 + κnB1

]
∪
[ ⋃
a≤χn

(βnHa
1) + κnB1

]
, (22)

B1 is the unit ball in C([0, 1]d) with respect to the uniform norm, and Hl
1 is the unit ball of the

RKHS Hl of the GP g with covariance as given in (4). Though the structure of the sieves Gn is the
same as in the proof of Theorem 1, the sequences are defined differently, as below

ζn = L8n
1

2α+d (log(n))2ρ/d, βn = L9n
d

2(2α+d) (log(n))d+1+2ρ,

λn = L10n
d

κ(2α+d) (log(n))4ρ/κ, κn =
1

3
δ̄n, χn =

κn

2τ
√
dβn

,

12



for constants

L8 > max

(
A, 1,

(
2c5

D1

)1/d
)
, L9 ≥

√
8c5, L10 >

(
c5

c0

)1/ρ

such that

L8L
3
9L

3/2
10 >

2

(6cL1)3/2τ
√
d
, L9L

1/2
10 >

1

6cL1

√
||µ||

,

where L1 = 1/(36
√

2), c = 2−5/2, and κ is a positive constant.

3.3.3 Entropy Condition

The following lemma will allow us to verify condition (10). We prove it in Appendix F.

Lemma 8 For Λn as defined in (21), a constant L1 > 0 and δ̄n as defined in (20), there exists a
constant c3 > 0 such that

logN(L1δ̄n,
√

Λn, || · ||2) ≤ c3nδ̄
2
n,

for all n such that

log2d+2(n) > K1L
d
8

(
log(

√
2τL8L3

9L
3/4
10 d

1/4) +
κ(6d+ 6α+ 2) + 3d

4κ(2α+ d)
log(n)

+ log
(

log3ρ/2+3ρ/κ+ρ/d−d−1(n)
))1+d

(23)

n
d

2α+d > max

(
2 log(12cL1L9L

1/2
10 ), 2 log(L1L

1/2
10 )

)
+ 1. (24)

Then, as in the proof of Theorem 1, using (18) and Lemma 8 we have

sup
δ>δ̄n

logN

(
δ

36
√

2
,
√

Λn,δ,
1

n

n∑
i=1

||γi × ·||2
)
≤ c3nδ̄

2
n,

verifying condition (10).

3.3.4 Remaining Mass Condition

Finally, Lemma 9 below is sufficient to validate condition (11) directly. Its proof is given in Appendix
G.

Lemma 9 Under the SGCP model, with Λn as defined in (21), and δn as defined in (20) there
exist constants c4 > 0, c5 ≥ c2 + 4 such that

Π(λ : λ /∈ Λn) ≤ c4e
−c5nδ2n

for all n such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

, (25)

n
d

2α+d >
1

c5

(
log(Lq1−d+1

8 ) + 1
)
, (26)
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3.3.5 Concluding the Proof

Thus, the three conditions (9), (10), and (11) of Theorem 3 are satisfied by the SGCP model, and
we have

Eλ0

[
Πn

(
λ : Γ

1/2
n,2 (λ, λ0) ≥

√
2JMεn|X̃1:n

)]
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4

+ 2e−(M2/2−c′3)nε2n +
2

c′1
e−(c′2M

2J2/4−C−1)nε2n

with εn = max(δn, δ̄n) = δ̄n. Then, so long as M and J are sufficiently large, the second, third and
fourth terms on the RHS of equation (12) decay much more quickly than the first and the bound

is õ(n
−d

2α+d ) as stated, for all n such that the conditions of Theorem 3 are met and that (23), (24),
(25), and (26) hold. �

3.4 Proof of Theorem 3: Generic contraction in NHPPs

The proof of Theorem 3 depends on a general result for convergence of posterior parameter estimation
given i.n.i.d. observations. Such a result is given in (Ghosal and Van Der Vaart, 2007), but without
a finite time rate on the probability. We restate their result below as Theorem 10 but with a rate
included.

Consider as in Ghosal and Van Der Vaart (2007), a model in which a parameter θ0 ∈ Θ gives
rise to a i.n.i.d sequence of data. The data at time i are drawn independently from the data at other
times from a distribution P θi , which we assume admits a density pθi with respect to a dominating
measure.

We define the following subsets of the parameter space for n ≥ 1 and k > 1

Bn(θ0, ε; k) =

{
θ ∈ Θ :

1

n

n∑
i=1

Ki(θ0, θ) ≤ ε2,
1

n

n∑
i=1

Vk,0;i(θ0, θ) ≤ Ckεk
}

whereKi(θ0, θ) =
∫
pθ0i log(pθ0i /p

θ
i )dµ is the Kullback-Leibler divergence and Vk,0;i(θ0, θ) =

∫
pθ0i | log(pθ0i /p

θ
i )−

K(θ0, θ)|kdµ is a variance discrepancy measure. Furthermore, let dn be the averaged Hellinger
distance, defined by

d2
n(θ, θ′) =

1

n

n∑
i=1

∫
(
√
pθ,i −

√
pθ′,i)

2dµi.

Our modified version of Theorem 4 of (Ghosal and Van Der Vaart, 2007) is as below.

Theorem 10 Suppose Yi ∼ P θi independently for i = 1, ..., n and let dn be defined as the average
Hellinger distance. Further, suppose that for a sequence εn → 0 such that nε2n is bounded away from
0, some k > 1, all sufficiently large j ∈ N, constants c1, c2, c3 > 0, and sets Θn ⊂ Θ, the following
conditions hold:

14



Πn(θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn)

Πn(B∗n(θ0, εn; k))
≤ c1e

c2nε
2
nj

2

4 (27)

Πn(Θ \Θn)

Πn(B∗n(θ0, εn; k))
= o(e−2nε2n) (28)

sup
ε>εn

logN

(
ε

36
,
{
θ ∈ Θn : dn(θ, θ0) < ε

}
, dn

)
≤ c3nε

2
n. (29)

Then for any C > 0, J ≥ 1, and M ≥ 2,

Eθ0Πn(θ : dn(θ, θ0) ≥ JMεn|Y (n)) ≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4

+ 2e−(M2/2−c3)nε2n +
2

c1
e−(c2M2J2/4−C−1)nε2n

for all n such that e−nε
2
nM

2/4 ≤ 1/2 .

The proof of Theorem 10 is a modification of proof of Theorem 4 of (Ghosal and Van Der Vaart,
2007). We replace arguments that hold in the limit with finite-time versions and handle the
introduction of the constants c1, c2, c3, assumed to be 1 in (Ghosal and Van Der Vaart, 2007). We
can set the constant K present in the original theorem to 1/2 since we are dealing with the Hellinger
distance.

Proof of Theorem 10: By Lemmas 9 and 10 of (Ghosal and Van Der Vaart, 2007) and given
conditions (27), (28), and (29), we have for n such that e−nε

2
nM

2/4 ≤ 1/2 any M ≥ 2, J ≥ 1 and
C > 0,

Eθ0Πn(θ : dn(θ, θ0) ≥ JMεn|Y (n))

≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 +
e−(M2/2−c3)nε2n

1− e−M2nε2n/2
+
∑
j≥J

1

c1
e−nε

2
n(c2M2j2/4−C−1)

≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
1

c1
e−nε

2
n(c2M2J2/4−C−1)

∞∑
j=0

(
e−nε

2
n(c2M2/4)

)j2
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
1

c1
e−nε

2
n(c2M2J2/4−C−1)

∞∑
j=0

(
e−nε

2
n(c2M2/4)

)j2
≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
e−nε

2
n(c2M2J2/4−C−1)

c1(1− e−nε2nc2M2/4)

≤ 1

Ck(nε2n)k/2
+ e−M

2nε2n/4 + 2e−(M2/2−c3)nε2n +
2

c1
e−(c2M2J2/4−C−1)nε2n . �

To apply Theorem 10 we define averaged versions of the Hellinger distance, KL divergence
and variance measure. Let pλγi(N) = p(X(i)|λ, γi) and we define the averaged Hellinger distance
hn(pλ, pλ′) by

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− Eλγi

(√
pλγi(N)

pλ′γi(N)

))
,
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the averaged KL-divergence as

kn(pλ, pλ′) = − 1

n

n∑
i=1

Eλ′γi

(
log
( pλγi(N)

pλ′γi(N)

))
,

and variance measure as

vn(pλ, pλ′) =
1

n

n∑
i=1

V arλ′γi

(
log
( pλγi(N)

pλ′γi(N)

))
.

Through component-wise application of the relations in Section A.1 of (Belitser et al., 2015) we
have deterministic expressions for these quantities as

h2
n(pλ, pλ′) =

1

n

n∑
i=1

2

(
1− exp

{
− 1

2

∫
Ri

(√
λ(t)γi(t)−

√
λ′(t)γi(t)

)2
dt

})
,

kn(pλ, pλ′) =
1

n

n∑
i=1

(∫
Ri

(λ(t)− λ′(t))γi(t)dt+

∫
Ri

λ′(t)γi(t) log
(λ′(t)
λ(t)

)
dt

)
,

vn(pλ, pλ′) =
1

n

n∑
i=1

∫
Ri

λ′(t)γi(t) log2
(λ′(t)
λ(t)

)
dt.

Lemma 1 of (Belitser et al., 2015) gives bounds on the non-averaged versions of these quantities,
but as the bounds will hold for each component of the average, we can trivially extend these results
to give the following inequalities:

1√
2n

n∑
i=1

(
||
√
λγi −

√
λ′γi||2 ∧ 1

)
≤ hn(pλ, pλ′) ≤

√
2

n

n∑
i=1

(
||
√
λγi −

√
λ′γi||2 ∧ 1

)
(30)

kn(pλ, pλ′) ≤
3

n

n∑
i=1

||
√
λγi −

√
λ′γi||22 + vn(pλ, pλ′) (31)

1

n

n∑
i=1

||
√
λγi −

√
λ′γi||22 ≤

1

4n

n∑
i=1

∫
Ri

γi(s)(λ(s) ∨ λ′(s)) log2
( λ(s)

λ′(s)

)
ds

(32)

where for numbers x and y, the minimum is denoted x ∧ y and the maximum is denoted x ∨ y.
By assumption, λ0 is bounded away from 0. It follows that any λ ∈ Λ with ||λ0−λ||∞ ≤ λmin is

also bounded away from 0, and that by the results (31) and (32) above kn(pλ0 , pλ) and vn(pλ0 , pλ)
are both bounded by a constant times the averaged uniform norm 1

n

∑n
i=1 ||λ0γi−λγi||∞. Therefore

for n ≥ n1 the ball

B∗n(εn) =

{
λ ∈ Λ : kn(pλ0 , pλ) ≤ ε2n, vn(pλ0 , pλ) ≤ ε2n

}
is bounded by a multiple of the ball{

λ ∈ Λ :
1

n

n∑
i=1

||λ0γi − λγi||∞ ≤ εn
}
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for εn ≤ λmin. It follows that for n ≥ n1, the condition (9) implies

Πn(B∗n(δn)) ≥ c1e
−c2nδ2n . (33)

By (30) we have that

N

(
ε

36
,Λn,ε, hn

)
≤ N

(
ε

36
√

2
,
√

Λn,ε,
1

n

n∑
i=1

|| · ||2
)

where Λn,ε =
{
λ ∈ Λn : hn(pλ, pλ0) ≤ ε

}
. Thus the condition (10) implies (29).

Combining these results we have

Πn(λ ∈ Λn : jδn < hn(pλ, pλ0) ≤ 2jδn)

Πn(B∗n(δn))
≤ 1

Πn(B∗n(δn))
≤ c1e

c2nδ2n

by (33) to satisfy condition (27), and

Πn(Λcn)

Πn(B∗n(δn))
≤ c4e

−c5nδ2n

c1e−c2nδ
2
n

= o(e−2nδ2n)

by (11) and (33) for c5 − c2 ≥ 2 to satisfy (28). Thus all the conditions of Theorem 10 are satisfied
by the assumptions of Theorem 3 and the conclusion of Theorem 10 carries forward to Theorem 3
where we choose k = 2. �

4 Conclusion

We have derived finite time rates on the posterior contraction of the QGCP and SGCP models given
i.n.i.d observations. This allows us to quantify the contraction of posterior estimates in the setting
where events are not detected perfectly or the observation region is not sampled uniformly. As well
as a new consistency result for the QGCP model, and the innovations of studying i.n.i.d data over
i.i.d., the presentation of explicit rates on the posterior mass for the contraction of non-homogeneous
Poisson process models is new. These results are of theoretical importance and practical interest in
problems such as sequential decision making and experimental design.

We found that the SGCP model admitted a much tighter analysis than the QGCP model. For
the simple setting of 1-dimensional 1-Hölder smooth rate functions, the SGCP model can be shown
to have convergence of the near-optimal order õ(n−1/3). Our best result for the QGCP model only
shows convergence of order õ(n−1/5). This discrepancy arises because of the different link functions
used in the two models. In comparison to the bounded sigmoid function, the quadratic function
induces a larger space of rate functions when the GP is transformed - meaning that wider sieves
are required to give the desired results and the contraction guarantees are looser. Guarantees on
the tightness of these bounds are currently unavailable, but this work provides some evidence to
suggest that the SGCP model is superior to the QGCP in terms of rate of posterior contraction
at least. This is an observation that would merit further empirical and analytical study in to
the relationship between the models. We did not consider the LGCP model in this work as its
exponential link function makes it very difficult to adapt the existing GP results of (van der Vaart
and van Zanten, 2009) into meaningful results in the NHPP posterior contraction setting. In
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particular, the high probability bound {||g− g0||∞ ≤ ηβn} on the GP model, does not imply a useful
bound on ||eg − eg0 ||∞ - the distance to be bounded in the prior mass condition for the LGCP -
that gives useful contraction results.

We have focussed on particular choices of smoothness class, the link function used within the
GCP construction and the width of the balls used in the contraction rate statements. There is of
course potential to expand on these results by studying other choices. We believe however that the
choices we have are consistent with the most common modelling choices in implementation of GCPs
and useful for relating our results to the existing literature on posterior contraction of Bayesian
nonparametric models.

A Proof of Lemma 4

Proving Lemma 4 relies on a bound on the uniform norm in the GP space. The following lemma
gives a particular prior mass result which holds for all n > 0 and uses a general term ηβ,n which fits
with the analysis of both the SGCP and QGCP models.

Lemma 11 If g0 ∈ Cα([0, 1]d) for some α > 0, then there exist constants c1, c2 > 0 such that

Π
(
||g − g0||∞ ≤ ηβ,n

)
≥ c1e

−c2nηββ,n

for ηβ,n = n−α/(βα+d)(log(n))ρβ and ρβ = 1+d
β+d/α for all n ≥ 3 where β > 1.

Furthermore, we rely on the following simple result which allows us to move between probabilistic
bounds on the uniform norm of the GP and the squared GP.

Lemma 12 Let w1 and w2 be functions defined on [0, 1]d such that ||w2||∞ is finite, and c be a
positive constant. Given the standard definition of the uniform norm, we have the following relation:{

||w1 − w2||∞ ≤ c
}
⇒
{
||w2

1 − w2
2||∞ ≤ 2c||w2||∞ + c2

}
.

We prove Lemma 11 in Appendix B and prove Lemma 12 below.

Proof of Lemma 12:

We have:

||w1 − w2||∞ ≤ c
⇒ w1(x) ≤ w2(x) + c ∀ x ∈ S
⇒ w2

1(x) ≤ w2
2(x) + 2cw2(x) + c2 ∀ x ∈ S

⇒ ||w2
1 − w2

2|| ≤ 2c||w2||∞ + c2. �

Proof of Lemma 4:

Recall the defintion δn = 2ηn||g0||∞ + η2
n, with ηn = η4,n. By definition we have:

Π
(
λ : ||λ− λ0||∞ ≤ δn

)
= Π

(
g : ||g2 − g2

0||∞ ≤ 2ηn||g0||∞ + η2
n

)
≥ Π

(
g : ||g − g0||∞ ≤ ηn

)
≥ c1e

−c2nη4n ≥ c1e
−c2nδ2n ,
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Here, the first inequality is due to Lemma 12. The second is by application of Lemma 11 and the
third is by definition of δn. �

B Proof of Lemma 11

We will utilise the following result from Section 5.1 of (van der Vaart and van Zanten, 2009), which
holds for a constant H depending only on g0 and µ, a constant K2 depending only on g0, µ, α, d
and D1 and any ε > 0

Π
(
||g − g0||∞ ≤ 2ε

)
≥ C1 exp

{
−K2

(
1

ε

)d/α(
log

(
1

ε

))1+d}(
H

ε

) q1+1
α

.

Recall that C1, D1, and q1 are constants from the assumption (5) on the length scale of the GP
prior.

Substituting the particular form of ε = εn = n−α/(βα+d)(log(n))ρ and ρ = 1+d
β+d/α from Lemma 11

into the above we have:

Π
(
||g − g0||∞ ≤ εn

)
≥ C1 exp

{
− 2

d
αK2n

d
βα+d (log(n))

− d
α

1+d
β+d/α

(
log

(
2n

α
βα+d (log(n))

− 1+d
β+d/α

))1+d
}

×

(
2Hn

α
βα+d (log(n))

− 1+d
β+d/α

) q1+1
α

,

defining Z(n) =
(
Hn

α
βα+d (log(n))

− 1+d
β+d/α

) q1+1
α

and expanding the logarithm,

= C1Z(n) exp

{
− 2

d
αK2n

d
βα+d (log(n))

− d
α

1+d
β+d/α

(
α

βα+ d
log(2n)− (log(n))

1+d
β+d/α

)1+d
}

≥ C1Z(n) exp

{
− 2

d
αK2n

d
βα+d (log(n))

− d
α

1+d
β+d/α

(
α

βα+ d
log(2n)

)1+d
}

using 2 log(n) ≥ log(2n) for n ≥ 2

≥ C1Z(n) exp

{
− 21+d/αK2n · n−

βα
βα+d (log(n))

(1+d)
β+d/α−d/α
β+d/α

}

= C1Z(n) exp

{
− 21+d/αK2nε

β
n

}

letting K3 = minn≥3(Z(n))

≥ C1K3 exp

{
− 21+d/αK2nε

β
n

}
= c1e

−c2nεβn ,

where c1 = C1K3, and c2 = 21+d/αK2. �
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C Proof of Lemma 5

As
√

Λn = Gn, the covering numbers N(L1δ̄n,
√

Λn, || · ||2) and N(L1δ̄n,Gn, || · ||2) are equivalent. It
follows that

N(L1δ̄n,
√

Λn, || · ||2) ≤ N(L1δ̄n,Gn, || · ||∞).

Defining Gn as in (17) allows us to use the following result, (5.4) of (van der Vaart and van Zanten,
2009):

logN(L1δ̄n,Gn, || · ||∞) ≤ mζdn
(

log
33/2d1/4β

3/2
n
√

2τζn

(L1δ̄n)3/2

)1+d

+ 2 log
6βn
√
||µ||

L1δ̄n

for ||µ|| the total mass of the spectral measure µ, τ2 as the second moment of µ, positive constant
m depending only on µ and d, and given

(3/L1)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n , (3/L1)βn
√
||µ|| > δ̄n.

By the definitions of βn, and ζn we have that

mζdn

(
log

33/2d1/4β
3/2
n
√

2τζn

(L1δ̄n)3/2

)1+d

≤ nδ̄2
n

2 log
6βn
√
||µ||

L1δ̄n
≤ nδ̄2

n,

for the values of n specified in the statement of Lemma 5. It follows that the lemma is satisfied
with c3 = 2. �

D Proof of Lemma 6

Firstly note that Π(λ /∈ Λn) = Π(g /∈ Gn). By a simplification of (5.3) of (van der Vaart and van
Zanten, 2009) to account for our assumption that q2 = 0, we have

Π(g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8

δ̄n < δ0 for small δ0 > 0, and βn, ζn, and δ̄n satisfying

β2
n > 16K5ζ

d
n

(
log
(3ζn
δ̄n

))1+d

, ζn > 1,

for a constant K5 depending only on µ and g. The definitions of βn, δn and ζn give us the following
relations, for a constant c5 = c2 + 4

D1ζ
d
n ≥ 2c5nδ

2
n, β

2
n ≥ 8c5nδ

2
n, ζ

q1−d+1
n ≤ ec5nδ2n ,

with the final of these holding for values of n as specified in the statement of Lemma 6. Using these
we can obtain the necessary result as follows:

Π(λ : λ /∈ Λn) = Π(g : g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8

≤ C1e
c5nδ2ne−2c5nδ2n + e−c5nδ

2
n

=
(
C1 + 1

)
e−2c5nδ2n

≤ c4e
−(c2+4)nδ2n

for c4 = C1 + 1. �
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E Proof of Lemma 7

Under the SGCP model we have

Π

(
(λ∗, g) : ||λ∗σ(g)− λ0||∞ ≤ δn

)
≥ Π

(
λ∗ : |λ∗ − 2||λ0||∞| ≤

δn
2

)
Π

(
g : ||σ(g)− σ(g0)||∞ ≤

δn
4||λ0||∞

)
.

By the assumption that λ∗ has a positive continuous density, the first term on the RHS of the
inequality can be bounded below by a constant times δn, which can itself be lower bounded by a
constant for finite n. The second term can be bounded below by Πn(||g − g0||∞ ≤ δn/(16||λ0|∞))
since 1/4 is the Lipschitz constant of the sigmoid transformation. Thus, by Lemma 11 (given in
Appendix A) we have:

Π
(
λ : Γn,∞(λ, λ0) ≤ δn

)
≥ c′0Π

(
g : ||g − g0||∞ ≤

δn
16||λ0||∞

)
≥ c′1e−nc

′
2δ

2
n

for positive constants c′1, c
′
2, showing condition (9) is satisfied under the SGCP model.

F Proof of Lemma 8

Define ψn = δ̄n/(2L1

√
λn). We have

logN(L1δ̄n,
√

Λn, || · ||2) = logN(2ψn
√
λn,
√

Λn, || · ||2)

≤ logN(ψn
√
λn, [0, λn],

√
| · |) + logN(ψn/c,Gn, || · ||∞)

≤ log
1

ψn
+ logN(ψn/c,Gn, || · ||∞) (34)

for c = 2−5/2, the Lipschitz constant of
√
σ.

Then, as in the proof of Lemma 5, by equation (5.4) of (van der Vaart and van Zanten, 2009),
we have for Bn > 0,

logN(Bnδ̄n,Gn, || · ||∞) ≤ mζdn
(

log
33/2d1/4β

3/2
n
√

2τζn

(Bnδ̄n)3/2

)1+d

+ 2 log
6βn
√
||µ||

Bnδ̄n
(35)

subject to the conditions

(3/Bn)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n , (3/Bn)βn
√
||µ|| > δ̄n, ζn > A

for a constant A > 0. These conditions hold by defintion for n as specified by (23), with Bn =
(2cL1

√
λn)−1. Then, combining (34) and (35) we have

logN
(
L1δ̄n,

√
Λn, || · ||2

)
≤ log

2L1

√
λn

δ̄n
+mζdn

(
log

(6cL1)3/2d1/4β
3/2
n
√

2τλnζn

δ̄
3/2
n

)1+d

+ 2 log
12cL1βn

√
λn||µ||

δ̄n
.
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For n as specified by (24), we have

log
2L1

√
λn

δ̄n
< nδ̄2

n,

mζdn

(
log

(6cL1)3/2d1/4β
3/2
n
√

2τλnζn

δ̄
3/2
n

)1+d

< nδ̄2
n,

2 log
12cL1βn

√
λn||µ||

δ̄n
< nδ̄2

n.

Thus for n satisfying (23) and (24) we have

logN

(
L1δ̄n,

√
Λn, || · ||2

)
≤ 3nδ̄2

n

proving Lemma 8 with c3 = 3. �

G Proof of Lemma 9

As in (Kirichenko and Van Zanten, 2015), we may decompose the probability of interest

Π
(
λ : λ /∈ Λn

)
= Π

(
(λ∗, g) : λ∗σ(g) /∈ Λn

)
≤
∫ λn

0
Π
(

(λ∗, g) : λ∗σ(g) /∈ Λn

)
pλ∗(λ)dλ+

∫ ∞
λn

pλ∗(λ)dλ

≤ Π
(
g : g /∈ Gn

)
+ C0e

−c0λρn ,

by the assumption (6). As utilised in the proof of Lemma 6, equation (5.3) of (van der Vaart and
van Zanten, 2009) states that

Π(g /∈ Gn) ≤ C1ζ
q1−d+1
n e−D1ζdn + e−β

2
n/8

given conditions

β2
n > 16K5ζ

d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

, ζn > 1

which are satisfied by our earlier definitions, for a constant K5 depending only on µ and g. Then
for n as specified by equations (25) and (26), we have the following results

c0λ
ρ
n > c5nδ

2
n, D1ζ

d
n ≥ 2c5nδ

2
n, ζq1−d+1

n ≤ ec5nδ2n , β2
n ≥ 8c5nδ

2
n.

The required result then follows. �

H Verifying conditions on sieves

Throughout the analysis the sequences used in defining the sieves are subject to numerous conditions
and assumptions, in order that we may demonstrate the conditions of Theorem 3 are met for the
GCP models. By choosing L2:10 as specified in the main body, these conditions are met by definition
for values of n as specified. There are numerous such conditions to verify, and doing so can be
non-trivial. In this section we show the link between the conditions and constraints on L2:10, n and
demonstrate fully that the necessary results hold.
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H.1 QGCP model

Recall, the definitions of the following sequences:

δn = 2||g0||∞n−α/(4α+d) logρ(n) + n−2α/(4α+d) log2ρ(n),

δ̄n = 2||g0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n)

ζn = L2n
(2α+d)/(4αd+d2) log2ρ/d(n) + L3n

(αd+d2)/(4αd+d2) log3ρ/d(n) + L4n
d/(4α+d) log4ρ/d(n)

βn = L5n
(2α+d)/(8α+2d) log2ρ+(d+1)/2(n) + L6n

(α+d)/(8α+2d) log3ρ+(d+1)/2(n)

+ L7n
d/(8α+2d) log4ρ+(d+1)/2(n)

with L2, ..., L7 satisfying

L2 + L3 + L4 > max(A, e)

L2L
3
5 >

(
8 max(1, ||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

L5 + L6 + L7 >
4L1 max(1, ||g0||∞)

3
√
||µ||

L2 ≥ (8c5||g0||2∞)/D1

L3 ≥ (8c5||g0||∞)/D1

L4 ≥ 2c5/D1

L5 ≥ max

(√
16K5Ld2K

1+d
1

log2ρ(3)
,
√

32||g0||2∞c5

)

L6 ≥ max

(√
16K5Ld3K

1+d
1

log3ρ(3)
,
√

32||g0||∞c5

)

L7 ≥ max

(√
16K5Ld4K

1+d
1

log4ρ(3)
,
√

8c5

)
for n ≥ max(3, n3, n4, n5). Here n3 is the smallest integer n such that

4||g0||2∞ log2d+2−2ρ(n) ≥
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li
4||g0||3∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

n4 is the smallest integer n such that

2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1||g0||∞ + L1

)
≤ 4||g0||2∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)−log

(
n(6α+d)/(4α+d) log6ρ(n)

)
and n5 is the smallest integer n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.
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In the remainder of this subsection, we show that the following conditions, which are all
restatements of required results in our main analysis, hold for the sequences described above.

ζn > max(A, 1) (36)

(3/L1)3/2d1/4β3/2
n

√
2τζn > 2δ̄3/2

n (37)

(3/L1)βn
√
||µ|| > δ̄n (38)

mζdn

(
log

(
(3/L1)3/2d1/4β

3/2
n
√

2τζn

δ̄
3/2
n

))1+d

≤ nδ̄2
n (39)

2 log

(
6βn
√
||µ||

L1δ̄n

)
≤ nδ̄2

n (40)

β2
n > 16K5ζ

d
n

(
log

(
3ζn
δ̄n

))1+d

(41)

D1ζ
d
n

(
logq2(ζn)

)
≥ 2c5nδ

2
n (42)

β2
n ≥ 8c5nδ

2
n (43)

ζq1−d+1
n ≤ exp(c5nδ

2
n), (44)

H.1.1 Verifying (36)

For n = 3, log(n) > 1 thus ζn > L2 + L3 + L4 for all α ∈ [0, 1], and d ≥ 1. It follows that (36) is
satisfied for n = 3 given L2 + L3 + L4 > max(A, e). To show it holds for all n > 3 we simply note
that ζn is an increasing function.

H.1.2 Verifying (37)

First consider,

δ̄n = 2||g0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n)

≤ 4 max(1, ||g0||∞)n−α/(4α+d) log2ρ+2d+2(n)

⇒ 2δ̄3/2
n ≤ (4 max(1, ||g0||∞))3/2n−3α/(8α+2d) log3ρ+3d+3(n))3/2

= (4 max(1, ||g0||∞))3/2n−3α/(8α+2d) log3ρ+3(d+1)/4(n) log9(d+1)/4(n)

Let z1 = (3/L1)3/2d1/4
√

2τ ,

z1

√
β3
nζn ≥ z1 log4ρ+3(d+1)/4(n)

√(
L5n

2α+d
8α+2d + L6n

α+d
8α+2d + L7n

d
8α+2d

)3(
L2n

2α+d

4αd+d2 + L3n
α+d

4αd+d2 + L4n
d

4αd+d2
)

≥ z1 log3ρ+3(d+1)/4(n)

√
L3

5L2n
6α+3d
8α+2d .

Thus values of L2, L5 such that

z1

√
L2L3

5n
6α+3d
16α+4d

+ 3α
8α+2d > 8 max(1, ||g0||∞) log9(d+1)/4(n)
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are sufficient to verify (37). For n ≥ 3, d > 1 and α ∈ [0, 1] n
12α+3d
16α+4d > log9(d+1)/4(n) so

L2L
3
5 >

(
8 max(1, ||g0||∞)

(3/L1)3/2d1/4
√

2τ

)2

is a sufficient condition to verify (37).

H.1.3 Verifying (38)

First consider,
L1δ̄n ≤ 4L1 max(1, ||g0||∞)n−α/(4α+d) log2ρ+2d+2(n),

and
3
√
||µ||βn ≥ 3

√
||µ||(L5 + L6 + L7)n(2α+d)/(8α+2d) log2ρ+(d+1)/2(n).

Plainly n(2α+d)/(8α+2d) log2ρ+(d+1)/2(n) > n−α/(4α+d) log2ρ+2d+2(n) for n ≥ 3, so

L5 + L6 + L7 >
4L1 max(1, ||g0||∞)

3
√
||µ||

is a sufficient condition to verify (38).
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H.1.4 Verifying (39)

Consider,

mζdn

(
log

(
33/2d1/4β

3/2
n
√

2τζn

(L1δ̄n)3/2

))1+d

≤ m(Ld2 + Ld3 + Ld4)n
2α+d
4α+d log4ρ(n)

(
3

2
log
( 3βn
L1δ̄n

)
+

1

2
log(2τd1/2ζn)

)1+d

,

≤ m(Ld2 + Ld3 + Ld4)n
2α+d
4α+d log4ρ(n)

(
3

2
log

(
3(L5 + L6 + L7)

2||g0||∞
n

6α+d
8α+2d logρ(n)

)
+

1

2
log(2τ

√
d(L2 + L3 + L4)n

2α+d

4αd+d2 log4ρ/d(n))

)1+d

≤ m(Ld2 + Ld3 + Ld4)

21+d

(
3 log

(3(L5 + L6 + L7)

2||g0||∞

)
+

18α+ 3d

8α+ 2d
log(n) + 3ρ log(log(n))

+ log(2τ
√
d(L2 + L3 + L4)) +

2α+ d

4αd+ d2
log(n) +

4ρ

d
log(log(n))

)1+d

n
2α+d
4α+d log4ρ(n)

=
m(Ld2 + Ld3 + Ld4)

21+d

(
log
(27τ

√
d(L5 + L6 + L7)3

4||g0||3∞
(L2 + L3 + L4)

)
+

(
18αd+ 4α+ 2d+ 3d2

8αd+ 2d2

)
log(n)

+

(
3ρ+

4ρ

d

)
log(log(n))

)1+d

n
2α+d
4α+d log4ρ(n)

≤
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3

4||g0||3∞

4∑
i=2

Li

)
+
(18αd+ 4α+ 2d+ 3d2

8αd+ 2d2
+

3ρd+ 4ρ

d

)
log(n)

)1+d

n
2α+d
4α+d log4ρ(n)

≤
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3

4||g0||3∞

4∑
i=2

Li

)
+

32αd+ 12α+ 2d+ 3d2 + 6αd2

8αd+ 2d2
log(n)

)1+d

n
2α+d
4α+d log4ρ(n)

≤
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3

4||g0||3∞

4∑
i=2

Li

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d

n
2α+d
4α+d log4ρ(n)

and

nδ̄2
n ≥ 4||g0||2∞n

2α+d
4α+d log2ρ+2(d+1)(n)

Condition (39) is then satisfied for all n such that

4||g0||2∞ log2d+2−2ρ(n) ≥
m
∑4

i=2 L
d
i

21+d

(
log
(27τ

√
d(
∑7

i=5 Li)
3
∑4

i=2 Li
4||g0||3∞

)
+
(

4 +
12 + d+ d2

8αd+ 2d2

)
log(n)

)1+d
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H.1.5 Verifying (40)

Consider,

2 log

(
6βn
√
||µ||

L1δ̄n

)
≤ 2 log

(
6
√
||µ||(L5 + L6 + L7)n(2α+d)/(8α+2d) log4ρ+(d+1)/2(n)

(2||g0||∞ + 1)L1n−2α/(4α+d) logρ+(d+1)/2(n)

)
= 2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1||g0||∞ + L1
n(6α+d)/(8α+2d) log3ρ(n)

)
= 2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1||g0||∞ + L1

)
+ log

(
n(6α+d)/(4α+d) log6ρ(n)

)
and

nδ̄2
n = 4||g0||2∞n(2α+d)/(4α+d) log2ρ+2d+2(n) + 4||g0||∞n(α+d)/(4α+d) log3ρ+3d+3(n) + nd/(4α+d) log4ρ+4d+4(n)

≥ 4||g0||2∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)

Therefore, condition (40) holds for all n such that

2 log

(
6
√
||µ||(L5 + L6 + L7)

2L1||g0||∞ + L1

)
≤ 4||g0||2∞n(4α+2d)/(8α+2d) log2ρ+2d+2(n)−log

(
n(6α+d)/(4α+d) log6ρ(n)

)
H.1.6 Verifying (41)

Consider

β2
n = L2

5n
2α+d
4α+d log4ρ+d+1(n) + L2

6n
α+d
4α+d log6ρ+d+1(n) + L2

7n
d

4α+d log8ρ+d+1(n)

and

ζdn

(
log

(
3ζn
δ̄n

))1+d

= (Ld2n
2α+d
4α+d log2ρ(n) + Ld3n

α+d
4α+d log3ρ(n) + Ld4n

d
4α+d log4ρ(n))

×
(

log

(
3L2n

(2α+d)/(4αd+d2) log2ρ/d(n) + 3L3n
(α+d)/(4αd+d2) log3ρ/d(n) + 3L4n

d/(4αd+d2) log4ρ/d(n)

2||g0||∞n−α/(4α+d) logρ+d+1(n) + n−2α/(4α+d) log2ρ+2d+2(n)

))1+d

≤ (Ld2n
2α+d
4α+d log2ρ(n) + Ld3n

α+d
4α+d log3ρ(n) + Ld4n

d
4α+d log4ρ(n))

×
(

log

(
3(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)

min(1, 2||g0||∞)n−2α/(4α+d) logρ+d+1)(n)

))1+d

≤ (Ld2n
2α+d
4α+d log2ρ(n) + Ld3n

α+d
4α+d log3ρ(n) + Ld4n

d
4α+d log4ρ(n))

×

[
log

(
3(L2 + L3 + L4)

min(1, 2||g0||∞)

)
+ log

(
n

2α+d

4αd+d2
+ 2α

4α+d log4ρ−ρ/d−d−1(n)
)]1+d

.

Define

K(n) =

[
log

(
3(L2 + L3 + L4)

min(1, 2||g0||∞)

)
+

2αd+ 2α+ d

4αd+ d2
log(n) + (4ρ− ρ/d− d− 1) log(log(n))

]1+d

≤ log1+d(n)

(
log

(
3(L2 + L3 + L4)

min(1, 2||g0||∞)

)
+

2αd+ 2α+ d

4αd+ d2
+ (4ρ− ρ/d− d− 1)

)1+d

,
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for n ≥ 3. Let K1 =

(
log

(
3(L2+L3+L4)
min(1,2||g0||∞)

)
+ 2αd+2α+d

4αd+d2
+ (4ρ− ρ/d− d− 1)

)
. Grouping terms of

the same order we require the following for all sufficiently large n

L2
5 log2ρ(n) ≥ 16K5L

d
2K1+d

1 ,

L2
6 log3ρ(n) ≥ 16K5L

d
3K1+d

1 ,

L2
7 log4ρ(n) ≥ 16K5L

3
4K1+d

1 ,

to satisfy (41). Thus, the following are sufficient conditions to satisfy (41) for all n ≥ 3

L5 ≥

√
16K5Ld2K

1+d
1

log2ρ(3)
, L6 ≥

√
16K5Ld3K

1+d
1

log3ρ(3)
, L7 ≥

√
16K5Ld4K

1+d
1

log4ρ(3)
.

H.1.7 Verifying (42)

Consider,

2c5nδ
2
n = 2c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

)
,

and

D1ζ
d
n logq2(ζn) ≥ D1

(
L2n

2α+d
4α+d log2ρ(n) + L3n

α+d
4α+d log3ρ(n) + L4n

d
4α+d log4ρ(n)

)
for ζn > e - i.e. such that log(ζn) ≥ 1. Then condition (36) and L2 ≥ (8c5||g0||2∞)/D1, L3 ≥
(8c5||g0||∞)/D1 and L4 ≥ 2c5/D1 are sufficient conditions to verify (42).

H.1.8 Verifying (43)

Consider,

8c5nδ
2
n = 8c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

)
,

and

β2
n ≥ L2

5n
2α+d
4α+d log2ρ(n) + L2

6n
α+d
4α+d log3ρ(n) + L2

7n
d

4α+d log4ρ(n).

Then (42) is satisfied with L2
5 > 32||g0||2∞c5, L2

6 > 32||g0||∞c5, and L2
7 > 8c5.

H.1.9 Verifying (44)

Consider

exp(c5nδ
2
n) = exp

(
c5

(
4||g0||2∞n

2α+d
4α+d log2ρ(n) + 4||g0||∞n

α+d
4α+d log3ρ(n) + n

d
4α+d log4ρ(n)

))
,

≥ exp

(
4c5||g0||2∞n(2α+d)/(4α+d) log2ρ(n)

)
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and

ζq1−d+1
n ≤

(
L2n

(2α+d)/(4αd+d2) log2ρ/d(n) + L3n
(α+d)/(4αd+d2) log3ρ/d(n) + L4n

d/(4αd+d2) log4ρ/d(n)

)q1
,

≤
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)

)q1
The condition is then satisfied for all n such that

n(2α+d)/(4α+d) log2ρ(n) ≥ q1

4c5||g0||2∞
log
(

(L2 + L3 + L4)n(2α+d)/(4αd+d2) log4ρ/d(n)
)
.

H.2 SGCP model

Recall the definitions of the following sequences:

δn = n−α/(2α+d logρ(n)

δ̄n = n−α/(2α+d logρ+d+1(n)

ζn = L8n
1

2α+d (log(n))2ρ/d,

βn = L9n
d

2(2α+d) (log(n))d+1+2ρ,

λn = L10n
d

κ(2α+d) (log(n))4ρ/κ

with L8, L9, L10 satisfying

L8 > max

(
A, 1,

(
2c5

D1

)1/d
)

L9 ≥
√

8c5

L10 >

(
c5

c0

)1/ρ

L8L
3
9L

3/2
10 >

2

()6cL1)3/2τ
√
d

L9L
1/2
10 >

1

6cL1

√
||µ||

for n ≥ max(3, n6, n7, n8). Here n6 is the smallest integer such that

n
d

2α+d > max

(
2 log(12cL1L9L

1/2
10 ) + 1, log(2L1L

1/2
10 ) + 1,

1

c5

(
log(Lq1−d+1

8 ) + 1
))
,

n7 is the smallest integer such that

log2d+2(n) > mLd8

(
log((6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4)+
κ(6d+ 6α+ 2) + 3d

4κ(2α+ d)
log(n)+log

(
log3ρ/2+3ρ/κ+ρ/d−d−1(n)

))1+d

,

and n8 is the smallest integer such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

.
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In the remainder of this subsection, we show that the following conditions, which are all
restatements of required results in our main analysis, hold for the sequences described above.

(6cL1)3/2d1/4β3/2
n λ3/4

n

√
2τζn > 2δ̄3/2

n (45)

6cL1βn
√
λn||µ|| > δ̄n (46)

ζn > max(A, 1) (47)

mζdn

(
log
((6cL1)3/2λ

3/4
n β

3/2
n d1/4

√
2τζn

δ̄
3/2
n

))1+d

< K3nδ̄
2
n (48)

2 log
(12cL1βn

√
λn||µ||

δ̄n

)
< K4nδ̄

2
n (49)

log
(2L1λ

1/2
n

δ̄n

)
< K5nδ̄

2
n (50)

β2
n > 16K5ζ

d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

(51)

c0λ
ρ
n > c5nδ

2
n (52)

D1ζ
d
n ≥ 2c5nδ

2
n (53)

ζq1−d+1
n ≤ ec5nδ2n (54)

β2
n ≥ 8c5nδ

2
n (55)

In turn we demonstrate that each of the conditions (45) through (55) hold.

H.2.1 Verifying (45)

Consider

(6cL1)3/2d1/4β3/2
n λ3/4

n

√
2τζn

= (6cL1)3/2d1/4L
3/2
9 n

3d
4(2α+d) log

3d+3
4

+3ρ(n)L
3/4
10 n

3d
4κ(2α+d) log3ρ/κ(n)

√
2τL8n

1
2α+d (log(n))2ρ/d

= (6cL1)3/2
√

2τL8L3
9L

3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 1

2(2α+d) log
3d+3

4
+3ρ+3ρ/κ+ρ/d(n)

and

2δ̄3/2
n = 2n

−3α
2(2α+d) log3ρ/2+3(d+1)/2(n)

So (45) can be rewritten:

(6cL1)3/2
√

2τL8L3
9L

3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 3α+1

2(2α+d) log3ρ/2+3ρ/κ+ρ/d− 3d−3
4 (n) > 2,

which holds for L8, L9, L10 such that L8L
3
9L

3/2
10 > 2

(6cL1)3/2τ
√
d
.

H.2.2 Verifying (46)

We may rewrite (46) as

6cL1

√
||µ||L9L

1/2
10 n

1
2 logρ+2ρ/κ−d−1(n) > 1

which holds for all L9, L10 such that L9L
1/2
10 > 1/(6cL1

√
||µ||).
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H.2.3 Verifying (47)

If n ≥ 3 then ζn holds for all L8 ≥ max(A, 1).

H.2.4 Verifying (48)

Consider

mζdn

(
log
((6cL1)3/2λ

3/4
n β

3/2
n d1/4

√
2τζn

δ̄
3/2
n

))1+d

= mLd8n
d

2α+d log2ρ(n) log

(
(6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4n
3d

4(2α+d)
+ 3d

4κ(2α+d)
+ 3α+1

2(2α+d) log3ρ/2+3ρ/κ+ρ/d−d−1(n)

)1+d

and

nδ̄2
n = n

d
2α+d log2ρ+2d+2(n)

Thus (48) holds for all n such that

log2d+2(n) > mLd8

(
log((6cL1)3/2

√
2τL8L3

9L
3/4
10 d

1/4) +
κ(6d+ 6α+ 2) + 3d

4κ(2α+ d)
log(n) + log

(
log3ρ/2+3ρ/κ+ρ/d−d−1(n)

))1+d

H.2.5 Verifying (49)

We may rewrite (49) as

2 log

(
12cL1L9L

1/2
10 n

1
2

+ d
2κ(2α+d) log2ρ/κ+ρ−d−1(n)

)
< n

d
2α+d log2ρ+d+1(n)

which holds for all n such that

n
d

2α+d > 2 log(12cL1L9L
1/2
10 ) + 1.

H.2.6 Verifying (50)

We may rewrite (50) as

log

(
2L1L

1/2
10 n

d
2κ(2α+d)

+ α
2α+d log2ρ/κ−ρ−d−1(n)

)
< n

d
2α+d log2ρ+d+1(n)

which holds for all n such that
n

d
2α+d > log(2L1L

1/2
10 ) + 1.

H.2.7 Verifying (51)

Consider

β2
n = L2

9n
d

2α+d logd+1+4ρ(n)
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and

16K5ζ
d
n

(
log
(λ1/2

n ζn
δ̄n

))1+d

= 16K5D1L
d
8n

d
2α+d log2ρ(n)

(
log
(√L10L8n

2κ+d
2κ(2α+d) log2ρ/κ2+2ρ/d(n)

n
−α

2α+d logρ+d+1(n)

))1+d

= 16K5D1L
d
8n

d
2α+d log2ρ(n)

(
log(

√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)1+d

So (51) can then be rewritten as

L2
9 logd+1+2ρ(n) > 16K5D1L

d
8

(
log(

√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

))1+d

which holds for all n such that

log2ρ(n) >
16K5D1L

d
8

L2
9

(
log(
√
L10L8) + log

(
n

2ακ+2κ+d
2κ(2α+d) logρ(2/κ+2/d−1)−d−1(n)

)
log(n)

)1+d

H.2.8 Verifying (52)

We may rewrite (52) as

c0L
ρ
10n

dρ
κ(2α+d) log4ρ2/κ(n) > c5n

d
2α+d log2ρ(n)

If ρ/κ > 1 this holds for all L10 > (c5/c0)1/ρ.

H.2.9 Verifying (53)

We may rewrite (53) as

D1L
d
8n

d
2α+d log2ρ(n) > 2c5n

d
2α+d log

2+2d
2+d/α (n)

which is satisfied for all L8 > (2c5/D1)1/d.

H.2.10 Verifying (54)

Consider

ζq1−d+1
n = Lq1−d+1

8 n
q1−d+1
2α+d log

2ρ(q1−d+1)
d (n)

and

exp(c5nδ
2
n) = exp

(
c5n

d
2α+d log2ρ(n)

)
.

Then (54) holds for all n such that

n
d

2α+d >
1

c5

(
log(Lq1−d+1

8 ) + 1
)
.
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H.2.11 Verifying (55)

We may rewrite (55) as

L2
9n

d
2α+d logd+1+4ρ(n) ≥ 8c5n

d
2α+d log2ρ(n).

which is satisfied for all L9 ≥
√

8c5.
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