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Determining an optimal selection 
and positioning of website 
content to maximise the number 
of clicked items over time.

• Novelty in a click model which 
allows simultaneous consideration 
with prominence weighting
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Ranking content for user satisfaction has roots in information retrieval
• Search engine optimisation
• Rank by perceived relevance

More recently: learn the optimal ranking through sequential 
recommendations and feedback (learning to rank)
• Underlying attractiveness unknown
• Display a set of items
• Observe click or no click (click model differentiates approach – 

Chuklin et al. (2015))
• Update estimates of item attractiveness and repeat

(Online) Learning to Rank



We formulate a multinomial logit 
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We formulate a multinomial logit 
choice model with position effects.

Each position 𝑖 has an associated 
weight 𝜆! ∈ (0,1], and item 𝑗 has an 
attractiveness 𝛼" ∈ (0,1].

A no-click option is endowed with 
dummy weights 𝜆# = 1, 𝛼# = 1.
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A click indicator 𝐶 is modelled as a 
random variable on {0,1,2, . . , 𝐾} with 
distribution dependent on the 
ordered item list 𝒂 = 𝑎$, … , 𝑎% .

𝑃 𝐶 = 𝑘	 𝒂) =
𝛼&'𝜆'

1 + ∑"($% 𝛼&" 𝜆"

𝑃 𝐶 = 0	 𝒂) =
1

1 + ∑"($% 𝛼&" 𝜆"
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Aim is to design an effective algorithm to select lists of items 
𝒂 = (𝑎#, … , 𝑎$)	from a set 𝒜 without initial knowledge of 𝜶 and 𝝀.

Objective to maximise expected clicks over 𝑇 sets of 
recommendations – or equivalently minimise regret

min
𝒂𝟏,…,𝒂𝑻⊂𝒜

0
*+#

,
max
𝒂∈𝒜

𝑃 𝐶* ≠ 0	 𝒂) −𝑃 𝐶* ≠ 0	 𝒂*)

Requires a balance between exploration and exploitation.

Learning to Rank with Multinomial 
Logit Choice



Optimism in the face of uncertainty is widely deployed technique for 
online learning

Underlying optimisation problem:  max
.∈𝒜

𝐸(𝑅𝑒𝑤𝑎𝑟𝑑 𝑎 )
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Optimistic approach is:  max
.∈𝒜

�̂�.,* + 𝐵.,* largest optimistic value

Key decision is the form of the 𝐵.,* term.

When rewards are independent across actions we derive 𝐵.,* from simple 
finite-time concentration results, e.g. Chernoff-Hoeffding bound.

• 𝑃 |�̂�.,* − 𝜇| > 𝐵 ≤ exp − /0#

∑$ 𝕀 3$+.

• Choosing 𝐵.,* = 2log(𝑡)/∑4 𝕀{𝐴4 = 𝑎} guarantees optimal regret 
scaling (details not for today).

Optimism in the Face of Uncertainty



Design of a suitable optimistic approach is more complex where 
estimates of unknown parameters are not just sample averages.

Likelihood for our MNL choice model is

ℒ 𝐶!, … , 𝐶"; 𝛼!, … , 𝛼#, 𝜆!, … , 𝜆$ =)
%&!

"
1

1 + ∑'&!$ 𝛼(! ' 𝜆'

𝕀{+!&,}

)
'&!

$ 𝛼(!(')𝜆'
1 + ∑'&!$ 𝛼(! ' 𝜆'

𝕀{+!&'}

Sufficiently complex that we have no closed form for MLEs and estimate 
them via an EM algorithm - finite-time concentration inequalities are 
elusive.

OFU for Multinomial Logit



We can learn 𝜆 parameters relatively easily since each slot is used. 
When 𝐽 > 𝐾 we want to ensure appropriate exploration of items. We 
want a (non-asymptotic) result like

𝑃 U𝛼5,*678 − 𝛼5 > 𝐵	|	𝒂𝟏, … , 𝒂𝒕 ≤ 𝑓 𝐵, 𝒂𝟏, … , 𝒂𝒕 .
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We can learn 𝜆 parameters relatively easily since each slot is used. 
When 𝐽 > 𝐾 we want to ensure appropriate exploration of items. We 
want a (non-asymptotic) result like

𝑃 U𝛼5,*678 − 𝛼5 > 𝐵	|	𝒂𝟏, … , 𝒂𝒕 ≤ 𝑓 𝐵, 𝒂𝟏, … , 𝒂𝒕 .

Combine two ideas:
• Batched decision-making (Agrawal et al. (2017, 2019))
• Functional concentration inequalities (Bobkov and Ledoux (1998), 

and Joulin and Privault (2004))
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In the setting where 𝜆$ = ⋯ = 𝜆% = 1, 
a pattern of repeatedly displaying 
the same item set until a no-click is 
observed is used (Agrawal et al. 
2017, 2019).
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In the setting where 𝜆$ = ⋯ = 𝜆% = 1, 
a pattern of repeatedly displaying 
the same item set until a no-click is 
observed is used (Agrawal et al. 
2017, 2019).

Benefit is that 𝑁), 𝑁* , 𝑁+ are then 
Geometric r.v.s conditional on 𝒂.
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In the setting where 𝜆$ = ⋯ = 𝜆% = 1, 
a pattern of repeatedly displaying 
the same item set until a no-click is 
observed is used (Agrawal et al. 
2017, 2019).

Benefit is that 𝑁), 𝑁* , 𝑁+ are then 
Geometric r.v.s conditional on 𝒂.
• Allows for MLEs which are 

amenable to the derivation of 
concentration results.
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In our setting, the batched decision making gives independent 
Geometric r.v.s at the item-slot combination level, but no closed form 
MLEs. We instead view the MLEs as functions of sums of 𝑁@5.

Using logarithmic Sobolev inequalities (Joulin and Privault (2004)) we 
derive functional confidence intervals specific to the click model

𝑃 U𝛼5,7678 − 𝛼5 > 36𝛽5,7 log(𝐽𝐿) < 2/𝐽𝐿/

where 𝛽5,7	is a sum of finite difference gradients of 𝛼678 viewed as a 
function of the 𝑁@5s.

Functional Concentration Inequalities



In epoch 𝑙 = 1,2, …

• Compute MLEs U𝛼5,A678	∀𝑗,	and c𝜆@,A678

• For 𝑗 = 1,… , 𝐽 and 𝑘 = 1,… , 𝐾

• Compute MLEs with 𝑁5@,A ← 𝑁5@,A + 1, 	 f𝛼5.5@,A678

• Compute 𝛽5,A	∀𝑗 using the f𝛼5.5@,A678 s

• Compute UCBs g𝛼5,A = U𝛼5,A + 36𝛽5,A log(𝐽𝑙)

• Choose an action which maximises the optimistic reward by pairing 

the largest g𝛼5,A items with the most valuable slots until all slots are 

filled.

Optimistic Algorithm



Online learning optimal selections 
with MNL choice + position effects.

Future work:
• User Personalisation
• Covariates/latent factors

• Optimism for intractable MLEs

Conclusions

www.learningtorank.org



Key References & Contact
• Agrawal, S., Avadhanula, V., Goyal, V., Zeevi, A. (2019). MNL-Bandit: A 

Dynamic Learning Approach to Assortment Selection. Operations 
Research

• Chuklin, A., Markov, I., and Rijke, M. d. (2015). Click models for web search. 
Synthesis Lectures on Information Concepts, Retrieval, and Services 

• Grant, J.A., Leslie D.S. (2020). Learning to Rank Under Multinomial Logit 
Choice. In Submission, arXiv:2009.03207. 

• Joulin, A., Privault, N. (2004). Functional Inequalities for Discrete Gradients 
and an Application to the Geometric Distribution. ESAIM: Probability and 
Statistics.

j.grant@lancaster.ac.uk  @james_a_grant 


