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Engineers monitor traffic data for 
outages, faults, etc. and reroute traffic 
or schedule maintenance accordingly.

Often aided by statistical techniques.

Some artifacts are of genuine concern, 
some are innocuous.

Motivation: Telecoms Network Control 



Automating this process is hard

• Combining different knowledge
• Domain expertise
• Actions taken are complex
• Unseen examples and changing 

‘normal’ behaviour

Motivation: Telecoms Network Control 
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but flagging when a non-trivial decision needs to be made. 
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A semi-autonomous approach
We instead consider not trying to make decisions (per se), 
but flagging when a non-trivial decision needs to be made. 

Today’s Focus – Classification with Partial Feedback



Learning to Classify
Pose the decision to flag as a binary classification task.

Each potentially interesting anomaly (𝑡 = 1,2, …) has
• Associated feature vector 𝑥! ∈ ℝ" - size of deviation/extraneous 

variables/baseline deviated from/etc.
• True (initially latent) class 𝐶! ∈ {0,1} – not interesting/interesting

To some extent 𝑥!’s can predict 𝐶!’s – e.g. logistic 
regression-like relationship mediated by parameter 𝜃 ∈ ℝ",

𝐶! 	~	𝐵𝑒𝑟𝑛 𝜎 𝑥!#𝜃 .



Learning to Classify
Offline Binary Classification: Have a history of 𝑥$, … 𝑥% and 
𝐶$, … , 𝐶% and produce estimate 4𝜃%. Predict any future 4𝐶! 
based on 𝑥! and 4𝜃% .

Online Binary Classification: Little or no historic data. 
Iteratively observe 𝑥!, predict 4𝐶! , observe true 𝐶!, and 
update estimate 4𝜃! .

Online Binary Classification with Partial Feedback: Same 
setting as online – but only observe true 𝐶! if 4𝐶! = 1.



Online Binary Classification with Partial 
Feedback, or ‘Apple Tasting’.



Apple Tasting

• Learning to identify good and bad apples (Helmbold et 
al. 1992, 2000).

• Aim: let all good apples through, remove all bad apples.
• Class only revealed by taste – which destroys the apple:
• Desirable for bad apples. Wasteful for good apples.



Apple Tasting

• Learning to identify good and bad apples (Helmbold et 
al. 1992, 2000).

• Aim: let all good apples through, remove all bad apples.
• Class only revealed by taste – which destroys the apple:
• Desirable for bad apples. Wasteful for good apples.

• Challenge is that to maximise accuracy, some good 
apples must be removed for sake of learning – but which 
ones and how many?



Balancing Exploration and Exploitation

• Repeatedly face the following question:
• Given observed features 𝑥!, and a guess of the class 
𝑃(𝐶! = 1) (based on a 4𝜃!) do we choose treat as a 
good or bad apple? 



Balancing Exploration and Exploitation

• Repeatedly face the following question:
• Given observed features 𝑥!, and a guess of the class 
𝑃(𝐶! = 1) (based on a 4𝜃!) do we choose treat as a 
good or bad apple?

• Why not just use best guess all the time?
• Could work brilliantly -  if 𝑥& sequence is sufficiently 

variable, if you start with good data
• Could also fail catastrophically – initialise 4𝜃 poorly and 

only observe data which confirms bias.
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Balancing Exploration and Exploitation

• Superior methods ensure we have enough data to 
maintain a good estimate of 4𝜃!.

• Two main techniques:
• Confidence bounds - only treat as a good apple if 

we’re very certain it’s good (effectively shift 4𝜃! to the 
limit of some region Θ! such that 𝑃 𝜃 ∈ Θ! > 1 − 𝛿)

• Randomisation – add (appropriate) noise to 4𝜃!, so 
that sometimes an estimated label 4𝐶! will be flipped 
(encouraging exploration)

• Both converge to using 4𝐶! once 4𝜃! is well estimated.



Thompson Sampling

• Initialise with a prior distribution 𝜋#(𝜃)
• At time 𝑡 = 1, 2, …
• Draw a sample 2𝜃! from the current posterior 𝜋!$%(𝜃)
• Treat 2𝜃! as the true parameter and estimate 3𝐶( 2𝜃!) based on 𝑥!.
• If 3𝐶 2𝜃! = 1 
• Remove the apple/show anomaly to human
• Observe 𝐶! and update the belief distribution to 𝜋!(𝜃).

• If 3𝐶 2𝜃! = 0
• Let apple/anomaly pass
• Observe nothing and set 𝜋! 𝜃 = 𝜋!$%(𝜃).
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Theoretical Aspects

Formalise the trade-off through Bayesian regret:

𝐵𝑅𝑒𝑔 𝑇 = 𝐸&! :
!'%

(
ℓ#𝕀 𝐶! = 0, =𝐶! = 1 + ℓ%𝕀{𝐶! = 1, =𝐶! = 0} ,

where ℓ# and ℓ% are false positive and false negative costs resp.
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any 𝜃 ∈ [0,1]" (Bartok et al., 2014). We show optimality up to 
logarithmic terms for Thompson Sampling:
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Theoretical Aspects

An optimal algorithm will have Bayesian regret of order O 𝑑𝑇  for 
any 𝜃 ∈ [0,1]" (Bartok et al., 2014). We show optimality up to 
logarithmic terms for Thompson Sampling:

𝐵𝑅𝑒𝑔() 𝑇 = 𝑂 𝑑𝑇 log(𝑇)	 .

This compares favourably to greedy heuristics (𝑂 𝑇 ), and optimism 
based approaches (Bartok and Szepesvari, 2012):

𝐵𝑅𝑒𝑔*+,$)-./ 𝑇 = 𝑂 𝑑0log(𝑇) 𝑇	 .



A (very sketchy) Proof Sketch

The expected regret in a single round 𝑡,

𝐸&! ℓ#𝕀 𝐶! = 0, =𝐶! = 1 + ℓ%𝕀{𝐶! = 1, =𝐶! = 0} .

Depends on probabilities of drawing a bad-sample, 

𝑃&!( 3𝐶 2𝜃! = 1|𝐶! = 0) and 𝑃&!( 3𝐶 2𝜃! = 0|𝐶! = 1). 

In turn, governed by expectation of |𝑥! 2𝜃! − 𝑥!𝜃|, (depends on 𝜋!).
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The expected regret in a single round 𝑡,

𝐸&! ℓ#𝕀 𝐶! = 0, =𝐶! = 1 + ℓ%𝕀{𝐶! = 1, =𝐶! = 0} .

Depends on probabilities of drawing a bad-sample, 

𝑃&!( 3𝐶 2𝜃! = 1|𝐶! = 0) and 𝑃&!( 3𝐶 2𝜃! = 0|𝐶! = 1). 

In turn, governed by expectation of |𝑥! 2𝜃! − 𝑥!𝜃|, (depends on 𝜋!).

When 𝜋! is well concentrated, few mistakes (𝜎(𝑥!𝜃) ≈
ℓ!

ℓ!2ℓ"
). 

When 𝜋! is dispersed, tend to misclassify. If sufficiently many 𝐶! = 0, 
then these errors bring information… and 𝜋! concentrates.
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Obtain an observation if 3𝐶 2𝜃! = 1, and update 𝜋. 
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A Caveat

• Draw a sample 2𝜃! from the current posterior 𝜋!$%(𝜃)
• Treat 2𝜃! as the true parameter and estimate 3𝐶( 2𝜃!) based on 𝑥!. 

Obtain an observation if 3𝐶 2𝜃! = 1, and update 𝜋. 

• Bayesian inference for logistic regression is famously intractable.

• The previous theory depends* on 2𝜃! being an exact sample from 
𝜋!$%(𝜃).

• When 𝑑 is modest to large, rejection sampling can be highly 
inefficient, so we settle for an MCMC approximation.



Polya-Gamma Augmentation

• Posterior on 𝜃 in logistic regression is intractable:

𝜋! 𝜃 ∝ 𝜋(𝜃)O
3'%

! exp 𝑥3(𝜃
*#

(1 + exp(𝑥3(𝜃))

• PG-Augmentation (Polson et al., 2012) adds Polya-Gamma latent 
variables.
• Infinite sum of Gamma random variables, holding convenient 

identity for data augmentation.

• Admits a 2-stage Gibbs Sampler, where the PG-variables are 
sampled via rejection sampling with ≥ 0.9992 acceptance prob.



Polya-Gamma Thompson Sampling

Similar to Dumitrascu et al. (2018) we embed PG-Gibbs within 
Thompson Sampling.

• At time 𝑡 = 1, 2, …
• Draw 𝑀 samples { V𝜃!

4}4'%5 via Gibbs Sampling initialised with 
2𝜃!$%5 , targeting the current posterior 𝜋!$%(𝜃)

• Treat 2𝜃!5 as true parameter and estimate 3𝐶( 2𝜃!5) based on 𝑥!.
• If 3𝐶 2𝜃!5 = 1 
• Observe 𝐶! and update the target distribution to 𝜋!(𝜃).

• If 3𝐶 2𝜃!5 = 0
• Observe nothing and set 𝜋! 𝜃 = 𝜋!$%(𝜃).



Polya-Gamma Thompson Sampling

Clearly 𝑴 is important. As 𝑀 → ∞, this algorithm becomes equivalent 
to TS with exact sampling. 
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Polya-Gamma Thompson Sampling

Clearly 𝑴 is important. As 𝑀 → ∞, this algorithm becomes equivalent 
to TS with exact sampling. 

For finite 𝑀, the finite-time BReg guarantee does not extend*.

However,
• “Draw 𝑀 samples { V𝜃!

4}4'%5 via Gibbs Sampling initialised with 2𝜃!$%5 , 
targeting the current posterior 𝜋!$%(𝜃).”

• If 𝜋! − 𝜋!$% → 0 as 𝑡 → ∞, then { V𝜃!
4}4'%5 , { 2𝜃!2%

4}4'%5 , …  behaves 
like an infinite length chain in the limit.

• We can show asymptotic consistency of PGTS.



Summary
We’ve put anomaly detection and online classification 
(Apple Tasting via Thompson Sampling) together to 
produce a semi-autonomous algorithm.

𝑥%, … , 𝑥! Labels

Anomalies

THOMPSON 
SAMPLING



Summary
We’ve put anomaly detection and online classification 
(Apple Tasting via Thompson Sampling) together to 
produce a semi-autonomous algorithm.

The approach allows us to automate where possible, 
without large amounts of initial labelled data, and 
continues to learn as it proceeds.

We have a theoretical guarantee* on the Bayesian regret.
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Open Problems
There is a utility to utilising approximate sampling within TS.

How do we choose 𝑀 to balance practical (computational 
cost) and theoretical (regret guarantees) aspects?

When is a costly rejection sampler better?

Do we need to use the exact posterior at all?
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