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Abstract

We consider a variant of online binary classification where a learner sequentially assigns
labels (0 or 1) to items with unknown true class. If, but only if, the learner chooses label 1
they immediately observe the true label of the item. The learner faces a trade-off between
short-term classification accuracy and long-term information gain. This problem has previously
been studied under the name of the ‘apple tasting’ problem. We revisit this problem as a
partial monitoring problem with side information, and focus on the case where item features
are linked to true classes via a logistic regression model. Our principal contribution is a study
of the performance of Thompson Sampling (TS) for this problem. Using recently developed
information-theoretic tools, we show that TS achieves a Bayesian regret bound of an improved
order to previous approaches. Further, we experimentally verify that efficient approximations to
TS and Information Directed Sampling via Pélya-Gamma augmentation have superior empirical
performance to existing methods.

Keywords: Partial Monitoring, Binary Classification, Thompson Sampling, Information-Directed
Sampling, Pdlya-Gamma Augmentation

1 Introduction

Binary classification is a fundamental problem in statistics, machine learning, and many applica-
tions. Its online version, wherein a learner iteratively guesses the classes of items and has their
true classes revealed has also been well-studied (e.g. Angluin, 1988; Littlestone, 1990; Cesa-Bianchi
et al., 1996; Ying and Zhou, 2006). In this paper, we study a variant of the stochastic online binary
classification where the true class is only revealed for items guessed to belong to a particular fixed
class, irrespective of whether that guess is correct.

Such a problem has previously been studied under the name of the ‘Apple Tasting Problem’,
inspired by a toy problem of learning to visually identify bad or rotten apples in a packaging plant
(Helmbold et al., 1992, 2000). In this example, a learner considers apples one by one and makes
a choice whether or not to taste the apple based on its appearance - apples are either good or
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bad and their quality can, to some extent, be determined by their appearance. The learner wishes
to minimise the number of good apples tasted (as a tasted apple cannot be sold), and maximise
the number of bad apples tasted (as this prevents bad produce going to market - the learner is
willing to sacrifice their own taste buds for profit). The difficulty of the problem enters through
the aspects that the learner does not know the function relating appearance to quality and only
receives information on the quality of the apple if they taste it.

Apples aside, conceptually similar problems may arise in numerous settings. For instance,
in quality control settings products arrive to a decision-maker sequentially. Products may be
satisfactory or faulty, and the decision-maker can determine this by investigating the product,
subject to a further cost. It may be prohibitively costly to investigate every product but it is also
important to identify and remove faulty products, to avoid greater costs further down the line.
To balance their costs the decision-maker must make sufficiently many investigations to learn the
characteristics of faulty products.

As another example, companies monitoring credit card fraud sequentially observe transactions,
a small proportion of which are fraud. There is effectively no cost to allowing a non-fraudulent
transaction to proceed, but costs are associated with investigating a transaction (whether fraudulent
or not) and with allowing a fraudulent transaction to proceed. The natural aim is to allow genuine
transactions to continue unimpeded, and investigate the fraudulent transactions, but immediate
information on the class of a transaction can only be gathered through investigation.

More broadly, problems of this flavour can arise in a range of online monitoring and supervised
learning settings: such as filtering spam emails (Sculley, 2007), classifying traffic on networks, and
label prediction in many contexts. An understanding of optimal algorithms for these sequential
classification tasks is therefore valuable to decision-makers in a wide range of applications. The
next section introduces a mathematical framework for the apple tasting problem.

1.1 Logistic Contextual Apple Tasting

We consider an online binary classification task taking place over T rounds. In each round t €
[T] = {1,...,T}, an item arrives with associated feature vector z; € X C R? This item has a
latent class C; € {0, 1}, which is modelled as having a stochastic dependence on the feature vector
x;, and an unknown parameter vector #* € © C R?. Note that #* does not vary with ¢, and that
O is known. Throughout this paper, the distribution of the class in round ¢ is given as

Cy | xy ~ Bern(a(xze*)),

where o denotes the logistic function®, such that o(z) = (1 +e7%)71, 2 € R.

Also in round ¢, an agent, who we call ‘the learner’, guesses the class of the item with feature
vector z;. The guessed class is represented by A; € {0,1}. If A; =1, (a loss indicative of) the true
class C} is revealed. If A; = 0, no feedback is received. It is known that if the true class is C; = 0,
choosing A; = 0 incurs zero loss, and A; = 1 incurs a loss of one. If Cy = 1, choosing A; = 1 incurs
loss 111 > 0, which represents the cost of intervention, and A; = 0, incurs cost lgy > l11.

The expected loss of an action a € {0,1} in round ¢ with respect to parameter 6 is then given

!The nature of our work is such that analogous theoretical results should be readily available for other suitably
smooth transforms, e.g. the probit function.



by the function p; : {0,1} x © — R defined as,

o loro (a;j@) , a=0,
pnla,6) = { 1+ (1 — 1)o (z/ ), a=1. M)

We define the optimal action in round ¢ w.r.t. a parameter § € © as

0:(0) € axgmin g (a. ),
ae{0,1}

and let A} = oy (0"), i.e. A; is the action optimal with respect to the true parameter 8* in round t¢.
We are interested in the expected performance of the learner, given they use a particular rule
(or policy) to assign labels. Formally, a policy ¢ is a mapping from a history?,

Ht—l - g(A:L?‘/L‘].? C].A].v v 7At—17 Tt—1, Ct—lAt—17 xt)a

to an action a; € {0,1} for any ¢t € N. The learner’s performance is captured by the Bayesian regret
of the policy ¢ in T rounds,

T
BR(T7 (10) = ]EO <Z ot (Ata 0*) — Mt (A:a 0*)> )
t=1

where this expectation is taken with respect to a prior, mg, on 8* supported on O.

The Bayesian regret measures the difference between the expected loss of an oracle decision
maker who knows the status distribution of each item and acts optimally with respect to this
information, and the expected loss of the learner making decisions according to the policy ¢. We
will be interested in the scaling of the Bayesian regret with respect to T" and to the dimension d of
the context vectors.

We will principally be interested in the performance of the Thompson Sampling (TS) policy.
In round ¢, TS plays the action ay(6;) where 6; is drawn from the posterior distribution m;_1 =
7T0(' | /Htfl).

The idea behind TS - of choosing actions according to the current posterior belief - dates back
as far as Thompson (1933). However it is in the last decade that it has become popular as a
general approach for sequential decision-making problems, and has been shown to achieve optimal
or near-optimal scaling of regret across many settings including multi-armed bandits (Agrawal and
Goyal, 2013a), contextual bandits (May et al., 2012; Agrawal and Goyal, 2013b), structured bandits
(Russo and Van Roy, 2016; Grant and Leslie, 2020), and a linear variant of finite partial monitoring
(Tsuchiya et al., 2020).

1.2 Partial Monitoring

To fully characterise our logistic apple tasting problem and its best achievable regret, it is useful
to cast the problem as part of the broader partial monitoring (PM) framework. The apple tasting
problem is one of the simplest examples of a PM problem. Specifically, our proposed model is an
example of PM with side information, as considered in Bartok and Szepesvari (2012).

2We use ¢ here to denote the sigma-algebra to avoid overloading notation. Notice, in particular that H:—1 includes
the round t feature vector x;.



It can also be shown that subject to a rescaling of the loss matrix (Antos et al., 2013; Lienert,
2013), our framework coincides with a logistic contextual bandit (Filippi et al., 2010) with only
two actions in each round (one always being a zero vector). The present problem however is a
very specific instance of this much broader framework, and a bespoke treatment of apple tasting is
therefore useful as a complement to existing theory for the much more general setting (Dong et al.,
2019; Faury et al., 2020).

A general PM problem with side information is formalised as a tuple G = (L, ®,F), where
L € RVXM i5 g loss matrix, ® € 3V*M is a feedback matrix®, and F is a set of possible mappings
from contexts to outcome distributions. In our case,

(0 Iy /00
L_(1 ZH) andcp_(l ln),

and F is the set of logistic functions parameterised by 6 € ©.

In each of a series of rounds ¢ € [T], a context z; € X is drawn (not necessarily at random). The
learner observes the context and then chooses an action n; € [N]. An outcome m; € [M] is drawn
from the distribution f(z;) and the learner receives loss Ly, n,, and observes feedback ®,, ,,. In
our problem, n; corresponds to the choice of label, m; is the true class, and the losses and feedbacks
are the corresponding entries of L and ®.

The best achievable regret in PM problems is well understood in a minimax sense. In particular,
for both stochastic (Bartdk et al., 2011, 2014) and adversarial (Bartdék et al., 2010; Antos et al.,
2013) finite PM (where M and N are finite), it has been shown that all games can be classified as
either ‘trivial’, ‘easy’, ‘hard’, or ‘hopeless’ based on (L, ®), and have associated minimax regret of
order ©(1), ©(VT), ©(T?/3), or O(T) respectively.

In both settings, the apple tasting problem is shown to belong to the class of ‘easy’ problems,
with ©(v/T) minimax regret?. Tt is worth noting that the term easy refers to the learnability of
the problem, but does not imply that the design of an optimal algorithm is trivial.

For a general family of easy problems with side information (including apple tasting) Bartdk
and Szepesvari (2012) prove that an upper-confidence-bound-based algorithm, CBP-SIDE, realises
this ©(v/T) regret. Furthermore, Lienert (2013) shows empirically that both CBP-SIDE and the
LinUCB algorithm (Li et al., 2010; Chu et al., 2011) for contextual bandits, are effective for a linear
(as opposed to logistic) variant of our problem.

However, in practice, upper-confidence-bound based approaches can be overly conservative, and
only behave competitively when T is very large. In this paper we show that an improved empirical
performance can be achieved by randomised, Bayesian algorithms such as TS, without sacrificing
theoretical guarantees.

1.3 Related Literature

As mentioned previously, our principal focus in this paper is the performance of TS - Russo et al.
(2018) gives a detailed summary of developments around TS across many problems. Our analysis of
the Bayesian regret is based on a recent line of information-theoretic analysis (Russo and Van Roy,
2016; Dong and Van Roy, 2018; Dong et al., 2019; Lattimore and Szepesvari, 2019) which has been

3Here ¥ is some known, finite alphabet.
4Note that these bounds are in the frequentist setting, but such bounds automatically imply equivalent results in
the Bayesian setting (the converse is not true). See e.g. Section 34.7 of Lattimore and Szepesvari (2020)



shown to be useful for problems with large context or action sets. In utilising these ideas in the
apple tasting setting, we extend a number of existing results for finite parameter sets to compact
© C R An alternative strategy for bounding the Bayesian regret, not considered here, has been
to exploit frequentist confidence sets to construct high probability guarantees on which actions are
selected (Russo and Van Roy, 2014b; Grant et al., 2019; Grant and Leslie, 2020).

A related algorithm, inspired by the link between information gain and the necessary explo-
ration in sequential decision-making problems is Information-Directed Sampling (IDS), introduced
in Russo and Van Roy (2014a, 2018). Like TS, IDS also selects at random based on the posterior
belief, but constructs the distribution from which this sample is drawn based on a trade-off of
expected regret, and expected information gain given the feedback on the upcoming action. IDS
(and frequentist approximations thereof) has been applied to certain bandit, partial monitoring,
and reinforcement learning problems (Liu et al., 2018; Kirschner and Krause, 2018; Kirschner et al.,
2020a,b; Arumugam and Van Roy, 2020) and shown strong empirical and theoretical results, com-
prable to those for T'S. We discuss the use of IDS for apple tasting in Section 4, and evaluate it
empirically alongside TS in Section 5.

This paper is the first work we aware of that specifically applies TS to apple tasting, but previous
work has considered its use for logistic bandits. For logistic contextual bandits, the implementation
of exact TS (i.e. the policy that draws its sample from the exact posterior) is infeasible due
to the intractability of the posterior distribution. It is therefore necessary to sample from an
approximation of the posterior to implement a T'S-like approach. Dumitrascu et al. (2018) recently
proposed an approximation based on Polya-Gamma augmentation (Polson et al., 2013; Windle
et al., 2014) which has improved convergence properties over Laplace approximation originally used
by Chapelle and Li (2011). We investigate such a Polya-Gamma augmentation-based approximation
in the context of apple tasting in Section 3. The effect of approximation of the posterior on the
performance of TS is an area of increasing interest, as Phan et al. (2019) have recently proved
that a small constant approximation error can induce linear regret in the application of TS to
certain simple multi-armed bandit problems. Appropriately designed approximate algorithms can
be successful however, as shown theoretically (Mazumdar et al., 2020) for particular Langevin
approximation algorithms, and empirically in a range of settings (e.g. Urteaga and Wiggins, 2018).

The apple tasting problem is not the only variant of online classification where labels are not
revealed in every round. In selective classification (or classification with a reject (or abstention)
option) (e.g. Chow, 1957; Sayedi et al., 2010; Wiener and El-Yaniv, 2011) the learner may decline
to label items, thus mitigating the risk of labelling when they have high uncertainty. Conversely, in
classification with selective sampling (Cesa-Bianchi et al., 2009; Orabona and Cesa-Bianchi, 2011;
Cavallanti et al., 2011; Dekel et al., 2012; Agarwal, 2013), the learner must label all items, but
observing labels is costly, and the learner has the option to decline to observe the label if it is
deemed to have insufficient informational value. The same problem has also been studied under
the name ‘online active binary classification’ (Monteleoni and Kaariainen, 2007; Liu et al., 2015).
Both of these variants differ from apple tasting in that they have a more complex action set.

Gentile and Orabona (2014) consider a multi-class label prediction problem where the learner
chooses a subset of possible labels, in each round, and only observes true labels if they are part
of their subset. While this also lies at the intersection of classification and partial monitoring,
when the number of classes is reduced to two, i.e. in the binary classification setting, this problem
reduces to the usual full-feedback online problem. Apple tasting is therefore more challenging in
the 2-class setting due to the information imbalance between the actions.



1.4 Motivations and Contributions

Our motivations for a renewed treatment of apple tasting are threefold. Firstly, despite the existence
of alternative theoretically justified approaches, new developments in the theoretical understanding
of TS allow us to derive guarantees for the empirically superior TS policy. Second, the apple tasting
setting strikes a sufficient balance between simplicity and complexity to allow an uncluttered study
of the effect of zero-information actions in PM, and of posterior approximation to the performance
of TS. Finally, as outlined in the first section, the range of applications of the apple tasting problem
are broad, and our empirical investigation of methods such as TS that have been popularised with
the last decade is therefore useful and pertinent.
The principal contributions of our work are the following:

e We provide an information-theoretic analysis of the Bayesian regret of T'S for logistic contex-
tual apple tasting (LCAT). This gives rise to an O(v/dT) bound on regret which is optimal
with respect to horizon T' (up to logarithmic factors), and sharper with respect to the feature
dimension d than the best frequentist bounds for UCB-type algorithms. Notably, the bound
is also of an improved order with respect to d than the O(dv/T) bounds achievable in the
more general contextual bandit setting. Our analysis extends theoretical techniques previ-
ously only used for finite parameter spaces to the more readily modelled setting of compact
but infinite parameter spaces.

e We adapt the Pélya-Gamma TS scheme of Dumitrascu et al. (2018) to give approximate TS
and information directed sampling (IDS) schemes appropriate to LCAT. In the TS setting,
we show that this scheme is an asymptotically consistent approximation to exact TS.

e We identify a potential issue in the application of IDS to contextual problems, or those with
non-stationary expected information gains. Namely, that it may fail to take account of the
magnitude of the information gain and make counter-intuitive selections as a result. We
explain how a tunable variant avoids this issue.

o We validate the efficacy of the Pélya-Gamma-based TS and tunable-IDS by showing their
superior performance to competitor approaches on simulated data.

Our theoretical results on TS are given in Section 2. In Section 3 we discuss the Polya-Gamma
augmentation scheme necessary for a practical implementation of T'S, and in Section 4 we discuss
the limitations of a similar implementation of IDS. Finally, we demonstrate the efficacy of TS
numerically in Section 5.

2 Bayesian Regret of Thompson Sampling

Our first theoretical result is given in this section. It bounds the Bayesian regret of TS under
any sequence of bounded feature vectors. To complete our formalisation of the setting in which
theoretical guarantees can be established, we suppose w.l.o.g. that the parameter set © lies in the
unit ball in R, i.e. © C B¢, and that there exists a bound 2. < 0o on the dimensions of feature
vectors, i.e. ||Z||oo < Tmax, for all z € X.



Theorem 1 For the contextual logistic apple tasting problem instantiated by 6* ~ mg, the Bayesian
regret of the Thompson Sampling policy, 7%, in T rounds satisfies,

BR(T,¢"S) =0 (s/dT log(T)> . 2)

In the following section, 2.1, we introduce some information theoretic concepts which are required
in the proof of the bound, which is given in Section 2.2.

The result in Theorem 1 may imply the stronger performance of TS than alternative approaches.
The CBP-SIDE algorithm of Barték and Szepesvari (2012) achieves a near-optimal frequentist
regret, but still with an order greater than our Bayesian regret bound:

Reg (T, ngBP_SIDE) =0 <d2 log(T)\/T) .

In particular, its dependence on the dimension of the parameter vector is worse by a factor of d3/2.
Casting the problem as a contextual logistic bandit, as outlined in Antos et al. (2013); Lienert
(2013) and directly utilising the existing results of Dong et al. (2019) for said more general setting
gives an O(dv/T) bound on Bayesian regret. Our difference of a factor of v/d in (2) is a result of
our bespoke analysis for the 2-action apple tasting setting.

The other previously existing approaches for contextual apple tasting of Helmbold et al. (2000),
which transform binary classification algorithms to apple tasting algorithms, guarantee a regret
that is sublinear in 7" but that is linear in the size of the context set |X'|. Such bounds are therefore
not useful in the present setting with infinitely many possible contexts.

2.1 Preliminaries

Before giving the proof of Theorem 1, we require some additional notation and concepts. Firstly, in-
keeping with the notation for more general PM problems, we define the incurred loss and observed
signal as Lt = L(Ct, At) and @(At) = LtH{At = 1}

Our bound will rely on information-theoretic techniques, and as such a definition of the mu-
tual information between probability distributions is necessary. For random variables X, and Y,
following distributions Px, and Py respectively, define the mutual information between X and Y
as

I(X;Y) = Dk (Pxy||[Px ® Py),

where D, denotes the Kullback-Leibler divergence, and Py y denotes the joint distribution of X
and Y.

Related to this, a key quantity will be the expected information gained by the learner about
the parameter 6* in a single round. To define this, let [E; denote expectation with respect to the
posterior density m; induced by the history H;, and introduce I; as a function giving the mutual
information with respect to this posterior. For random variables X and Y adapted to m;_1 define

LIX;Y)=I(X;Y |Hi1).

The expected information gained about #* in a single round ¢ by the learner using TS is then
represented by I;(0*; (0, D¢ (v (61)))).



This expected information gain plays a key role in the following quantity called the information
ratio. For any ©-valued random variables 6,0’ and t € [T] we define the information ratio as

[Ee—1 (e (e(0'), %) — pae (ce(6), )]
Ii (0; (0, @4 (0w (0"))))

When 6 = 6* this is the ratio of the square of the expected regret incurred in round ¢ by a
decision-maker acting as though €’ is the true parameter and the expected information gained
about 6* as a result of their decision. Thus a large information ratio corresponds to high regret and
low expected information, whereas a small information ratio corresponds to low regret and high

I'y(0, 9,) = 3)

expected information.

The information ratio is a quantity, introduced in a more general setting by Russo and Van Roy
(2016), which allows for a useful decomposition of the Bayesian regret of Thompson Sampling and
related randomised approaches. When the information ratio can be uniformly bounded for all
t € [T] several studies have successfully derived order-optimal bounds on the Bayesian regret in
various settings (Russo and Van Roy, 2016, 2018; Dong et al., 2019; Lattimore and Szepesvari,
2019). In such settings, the bound is expressed terms of such a uniform bound on I'i(+,-), and the
entropy of the distribution on 6*.

Here however, the realisation of such a bound would not be finite as the parameter space © is
not discrete, and thus H (6*) lacks a finite bound. Fortunately, this does not mean that the problem
of bounding the regret in our setting is hopeless. To achieve sublinear regret it is not necessary
to learn the distribution over all of ©. Following Dong and Van Roy (2018) we introduce a rate
distortion of the parameter 8* to learn a simpler e-optimal action function rather than the exact
optimal action function.

For 0,0" € ©, and a round ¢ € [T] we define the distortion rate as

di(0,0") = pu(e(0),0") — p(0n(6"),6").

This measures the difference in the expected loss computed with respect to 6’ of the optimal action
given 6 and ¢'. Tt happens to coincide with the regret of TS when 6’ = 6*, the true parameter, and
0 = 0;, the sample drawn by TS in round ¢. Further, define {@k}le to be a partition of © in K
parts such that, for a fixed and arbitrary € > 0

di(0,0') <e, V0,0 €O, Vte[T], foranyk € [K].
Then define an associated indexing random variable ¢, on [K]| such that
pe =k < 0" € Oy. (4)

This variable indicates which cell of the partition the true parameter 0* lies in. The entropy of ¢,
H(¢.) is bounded by log(K). Thus if the structure of © permits a small K, H(¢.) can be much
smaller than H(#*). In what follows, we will derive a bound on the Bayesian regret of TS that
depends on H(¢).

2.2 Proof of Theorem 1

The regret upper bound arises as a result of approximating the regret of TS using the posterior on
0* with the regret of T'S using a discrete distribution. The basic premise is to relate the regret to



that of an algorithm that is expected to incur at least o(e) regret in each round due to discretisation,
and then study the additional regret incurred in the simpler discrete setting. The bound of the
desired order is then obtained by specifying € as a decreasing function of T. We emphasise that
e and the discretised variant of TS are purely hypothetical constructs for the proof, and are not
required for the actual implementation of TS - thus the decision-maker does not have to worry
about identifying and tuning them.

The first step in our proof constructs a series of discrete random variables 67, t € [T] which
approximate 6*. These random variables are functions of #* whose realisations lie in the same cell
of the partition as 8*. However, their dependence on #* can be expressed entirely via the variable
¢e, such that é;‘ is independent of 6* conditioned on ¢.. The following proposition asserts the
existence of these random variables, and verifies their certain key properties. This result extends a
similar result (Proposition 2 of Dong and Van Roy (2018)) to the setting where © is not a discrete
set. Below, the random variable 6;, which has the same marginal distribution as 9~,§" , can be thought
of as a discretised analog of the Thompson sample 6;.

Proposition 1 For ¢, as defined in (4), there exists a random variable é;‘, supported on up to 2K
points in O, in each round t satisfying the following properties:

(i) Conditioned on ¢, 0; is independent of 6%,
(i1) ot (1 (@2(61), 0°) = pe (00(07),0%)) < e+ B (e (00(8),0%) = e (0e(07),6%) ), a5,

(iii) Ti1 (6 (B @(@1(8)))) ) < Tt (96 (00, D (61)))), a5,
where in (i) and (i), 0y is independent from and identically distributed to 6} .

Properties (i) and (iii) say that the distribution of 6; is such that the extra regret incurred by
following TS using 0, is no more than €, and that the information gain about the compressed
random variable ¢, is not more than that gained using TS. The proof of Proposition 1 is given in
Appendix A.

We use the properties of 9:}" , and I'; to decompose the expected regret in a single round. Es-
sentially, the steps below bound per-round-regret by accepting a constant regret of e, to move
from considering regret of TS to the regret of the discretised TS. For the regret in round ¢,
Ay = p(ap(0r),0%) — p (o (0%),0%), we have,

Ei1(Ar) = Ei—1 (p (e (0r), 07) — pu (e (67),07))
< e+ B (pn (00),0") = pr (0),6%)) by (i)

— et \/ To(05,0,) 1, (é;; (9}, (ce(62)) )) by definition of T';
<e+ \/ Ft(éjj, 0,)1, <¢6; (ét, (o ( Qt )) data processing inequality
< e+ 07,801 (60 (0, (s (61))) by (i) (5)

The result is that the regret in a single round has been decomposed in terms of the information
ratio, and expected information gain. We proceed to bound this further, via a uniform bound on
the information ratio, as given by the following proposition.



Proposition 2 There exists a constant T > 0 such that for every round t € N

T4(0;,0;) < (6)

m-1(0¢)
where Oy := {0 € © : ay(0) = 1} is the set of parameters such that the revealing label is chosen,
and m—1(0©y) = foe@ dm—1(0) is the posterior mass placed on this set.

Similar to Proposition 1, the proof of this Proposition extends ideas from Dong and Van Roy (2018)
to non-finite ©, and the partial monitoring setting. The techniques used in this extension could
also be used to extend to non-finite parameter spaces in other problems. Principally, the proof
consists of lower bounding the information gain via Pinsker’s inequality, and relating the expected
loss function to the sigmoid function to bound the information ratio. The full proof is provided in
Appendix C.

It follows from Proposition 2 that the per-round regret can be bounded as follows,

r

mh (¢e; (0r, Pe((6r)))) by (5) and (6)

Ei_1(As) < e+ \/

r
=€+ \/7Tt1(@t)7rtl(@tﬂt (¢e; (01, D4(1)))

= e+ \JT T (60 (0, 2(1)), (7)

where the first equality is true because if A; = 0, there is no information gain. Now, aggregating
the regret over 71" rounds, we have

T
BR(T) = ZEt—l(At) Tower Rule
t=1

T
< Tet 3 TL (66 (0. 2(1)) by (7)
t=1

T
<Te+ ,|TT Z I (pe; (01, ©4(1))) by Cauchy-Schwarz

t=1

< Te+/TTH(¢.), (8)

with the final inequality holding since the expected information gained about ¢, is ultimately
bounded by its entropy, i.e.

T
S I (66 (0, @0(1)) < 1(66:6%) < H (o).
t=1

The final step in the proof is to bound the H(¢¢) term in (8). We recall that H(¢¢) < log(K),
where K is the size of the partition of ©. The following proposition bounds K, and has its proof
in Appendix D.

10



Proposition 3 There exists a partition {@k}le of ©, satisfying
di(0,0') <e, 0,0 € O, Vk € [K], Vt € [T], (9)

for any € € (0,0(5) — 0.5), such that

d
K< <3lm‘wxm‘w) . (10)

€

The proof is completed by combining (8) and (10) and choosing € = O (T -V 7). O

3 Pdlya-Gamma Thompson Sampling

The logistic classification model is such that the posterior on 6*, 7, for any ¢t > 1 is intractable. This
renders the implementation of TS via samples from the exact posterior in each round infeasible,
and necessitates the use of samples from an approximate posterior.

In the related setting of the logistic contextual bandit, Dumitrascu et al. (2018) introduce
an approximate variant of TS which uses Pélya-Gamma (PG) augmentation to admit efficient
sampling. We adapt this to give an approximate TS policy for LCAT, PG-TS, in Algorithm 1. It
utilises a Gibbs sampler for the unknown parameters, possible due to a parameter augmentation
approach, and highly efficient rejection sampler for the augmenting parameters due to Polson et al.
(2013); Windle et al. (2014). A full description of the Gibbs sampler is provided in Appendix E.

In our algorithms we let the function GIBBS(b, B, M, D, #) denote the use of said Gibbs sampler
initialised at parameter 6 to draw M samples from the approximation of the posterior implied by
a prior, MV Ng(b,B) which is a Gaussian with mean b and covariance B, restricted to ©, and
observed data D.

Inputs: Prior mean vector b, Prior covariance matrix B, Number of Gibbs iterations M.

Initialise: D = 0, and 6" ~ MV Ne (b, B).
fort=1,2,... do
(oW, 6™  c1BBS(b, B, M, D,0M))
Receive context x; € RY
Select action A; = at(0§M))
if A, =1do
Observe (13,5(1) S {lm,lu}
Augment D < DU {z, P(1)}
end if
end for

Algorithm 1: PG-TS

3.1 On the Impact of Approximate Inference

The regret results of the Section 2 are based on exact sampling from the posterior. The PG-TS
algorithm necessarily samples from an approximation of the posterior, to maintain a reasonable
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computational overhead. Recent work of Phan et al. (2019) has identified conditions under which
sampling from an approximate posterior can lead to linear regret in multi-armed bandit problems.
On the other hand, May et al. (2012) have shown that sublinear regret in contextual bandits can
be achieved without drawing samples from an ezact posterior - in fact that it suffices to sample
from a distribution that converges around the true parameters in the limit.

In this section we address the possible concern around use of an approximate sampler, by
demonstrating that PG-T'S does not meet the sufficient conditions identified by Phan et al. (2019),
and further adapt the results of May et al. (2012) to LCAT to show that PG-TS obtains an
asymptotically sublinear regret.

Phan et al. (2019) characterise approximate TS policies in terms of their a-divergence®, defined
for a pair of distributions P, @ with densities p(z), g(x), and a coefficient & € R as,

_ 1 [p() 1—q z))!~*dz

(11)

The «-divergence generalises a number of divergences including KL(Q, P) (when « — 0) and
KL(P,Q) (when o« — 1), and can be related to the Total Variation (TV) distance via Pinsker’s
inequality.

At a high level, the contribution of Phan et al. (2019) is to show that there exist approximate
distributions @ which satisfy Dy (I1;, Q¢) < € for a true posteriors II; and constant € > 0, but sam-
pling from @Q; at every time step results in linear regret. In effect this shows that Dy (I, Q) < € is
not a sufficient condition for approximate TS according to Q¢ to inherit sublinear regret guarantees
of exact T'S according to II;.

In our setting then, let 6; be the sample used in round ¢ under exact TS, and HiM) be the
sample used in round ¢t under PG-TS. Let 7, and 7T§M) be the densities associated with these
random variables, assuming the same truncated multivariate Gaussian prior in both cases. Our
first theoretical result of this section, Theorem 2 below, will demonstrate that in the limit (with
respect to t) the a-divergence between m; and 7T§M) goes to 0. Therefore the PG-TS scheme is not
unreliable in the sense identified by Phan et al. (2019).

Our second result, Theorem 3 below, uses the results of May et al. (2012) to show that the
expected regret of PG-TS is indeed asymptotically sublinear in 7. Theorem 1 of May et al.
(2012) establishes sufficient conditions for asymptotic consistency of a randomised contextual bandit
algorithm. Specifically, they consider the contextual bandit problem where context x; in a closed X
is observed, and action a; in a finite set A is selected, inducing reward observation ry = fq, (z¢)+ 2,4,
where f, : X — R are unknown continuous functions, and z;, are zero-mean random variables.
May et al. (2012) establish conditions under which the sequence of chosen actions {ai,as,...}
satisfies the following convergence criterion of Yang and Zhu (2002),

Ci S ()
iy £ ()
where f*(z) = argmax,c 4 fo(z) is the optimal expected reward.

Both theorems make use of additional assumptions on the parameter space and context distri-
bution, which require the following additional notation. For § € R? define the sets X1(0) = {x €

— 1 as., as t — oo, (12)

5Here we use the script « to avoid confusion with «, the optimal action selection function.
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X ra(z, ) =1}, and Xp(0) = X\ X1(0), of context vectors such that actions 1 and 0, respectively,
are optimal.

The following assumptions on the properties of X7 and Xy ensure that our approximate posterior
distributions converge appropriately. Assumption 1 ensures repeated sampling, regardless of where
the posterior mass initially gathers, and Assumption 2 ensures that some items of class 0 will be
observed among the revealed true labels.

Assumption 1 Contexts are drawn i.i.d. from distribution px on X, and there exists § > 0 such
that px (X1(0)), px(Xo(0)) > 6 for every 6 € ©.

Assumption 2 For every 6 € ©, there exists © € X1(0) such that o(x'0*) < 1.

We are now ready to present our theoretical results relating to the performance of PG-TS. The
proofs of the theorems are given in Appendices F and G respectively.

(M)

Theorem 2 Under Assumptions 1 and 2, and for the densities m and m, ' as defined above, we
have
: (M)) _
Jim Dicr (WT,WT 0. (13)

Theorem 3 Under Assumptions 1, and 2, the sequence of actions {AEM)},?il selected by PG-TS
satisfies the convergence criterion (12), and thus the regret of PG-TS is asymptotically sublinear.

To go further than these results - i.e. to establish that the regret guarantees associated with
exact TS carry to PG-TS - is likely to be much more complex. The most advanced results on the
regret of approximate TS in simple multi-armed bandits, for instance, rely on complex Bayesian
non-parametric theory, which, to the best of our knowledge, does not yet have a known analog
applicable to contextual problems (Mazumdar et al., 2020).

4 Information Directed Sampling

The PG-augmentation scheme can also be used to devise an approximate Information Directed
Sampling (IDS) scheme, based on the framework proposed by Russo and Van Roy (2018). IDS
algorithms are randomised policies which construct an action sampling distribution, in each round
t, based on a trade-off of regret and information gain. They have been shown to enjoy a similar,
or improved, theoretical and empirical performance to TS as well as a potential for generalisation
to a wider range of partial monitoring problems, since they do not restrict themselves to selecting
actions which have a non-zero probability of being optimal. Approximate IDS schemes can also be
realised via the same PG-augmentation scheme as used for PG-TS, as described in this section.

Two general methods to select the IDS action sampling distribution have been proposed. Both
are designed to trade-off between achieving a low expected regret, and a high expected information
gain. We shall explain these in a more general bandit-type loss-minimisation setting where A; C
A c R? denotes a (potentially continuous) action set at time ¢, [ : A — R denotes an expected loss
function, and A; : A — R and I; : A — Rs( compute the expected regret and expected information
gain of actions with respect to the posterior distribution in round ¢.
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The first variant of IDS, which is the main focus of Russo and Van Roy (2014a, 2018) and

Kirschner et al. (2020a), chooses its action sampling distribution 7?,;’ DS to satisty,
- ~ A, ()2
ﬁtIDS € argmin \II{DS(W), where \II,{DS(W) = f(ﬂ) ) (14)
7eD(Ay) Iy()

Here, D(A;) is a family of distributions over Ay, and A, and I, are analogs of the regret and infor-
mation gain for distributions. Specifically, A;(7) = [, _, Ai(a)dn(a), and I(7) = [,_, I;(a)dr(a).

The second variant introduces a further tunable parameter A > 0 and characterises the trade-off
by a difference rather than a ratio, selecting its action sampling distribution 7/P% as follows,

7IPS ¢ aremin WIP% (1), where WIPS (1) = Ay(m)? — My(7). 15
t g ¢ ) t
TED(At)

This second approach is mentioned in Russo and Van Roy (2014a, 2018), but has received less
attention elsewhere. It can be shown to inherit the theoretical properties of the first variant if
A> \iftl DS (#IDPS) for every t € [T]. We will show that this second approach is, conceptually, better
suited to our problem. Since the first variant (i.e. the policy using (14)) has been more widely used
we will refer to it as traditional IDS, and the second (i.e. the policy using (15)) as tunable IDS.
Notice that in the apple tasting problem, as there are only two actions in any round and as
A; = 0 has no associated information gain, we have I;(m,) = pl(1), for any Bernoulli action
selection distribution 7, where the probability of choosing class 1 is p. The optimisation problem
(14) can be reduced to a line search over p € (0, 1), and the gradient of the objective can be written,

d¥{PS(my) _ p’L(1) (A1) = Ar(0)* — 1(1)Ar(0)?

dp ILi(1)p

It follows that 7P = 75,, where

Py = min <1

A(0) >
A1) = A(0)] )

Notice that p; is independent of I;(1) (so long as I;(1) > 0), and secondly that for all A;(1) < 2A.(0)
traditional IDS chooses the label 1 with probability 1, even if A;(1) > A.(0).

Remark 1 We see that for traditional IDS, the magnitude of the information gain in a particular
round is immaterial. As there is an action with no information, IDS prefers the information gaining
action unless there is strong regret based reason to choose the no information action. Observe that
A (1) must be three times as large as Ay(0) before traditional IDS would begin to prefer action 0.
We argue that this property is not desirable in a contextual (or otherwise non-stationary) setting,
where the information gain may change from round to round, and note that it occurs in more
general settings.

Considering the more general form of @,{DS in (14), it is clear that ﬁ{DS s tnvariant to any
uniform scaling of the expected information function I,. This is a potentially hazardous property in
a range of situations, but seems to have the most pronounced effect in the setting where (potentially
optimal) zero-information actions exist.
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In what follows we consider tunable IDS. Here the action selection distribution does depend on
the magnitude of the information in a particular round, making it more suitable for our contextual

problem. In particular, we have 71{ DS — Tp,» Where

B . AL(1) A(0)
pt‘““XQ*ImH<L %AAD-—AAMV__AAD-—AA®>>' (1e)

4.1 Polya-Gamma Information Directed Sampling

As an alternative to our T'S approach, we explore a tunable PG-IDS scheme, summarised in Algo-
rithm 2.

The non-trivial difference between the PG-IDS and PG-TS schemes, from an implementation
perspective, is the requirement to estimate posterior expectations rather than just draw a single
sample from an approximate posterior. An exact IDS scheme would compute A;(0), A (1), and
I;(1) in each round according to,

Ay(a) = / [,u,(a,ﬁ) — min u(d,0)|dm-1(0), a€{0,1},
R a’€{0,1}
and

It(l) = ]P)t,1 (Ct = 1) KL(?thl,ﬂ’t,ﬂCt = 1) + Ptfl (Ct = 0) KL(ﬂ'tfl,ﬂ'tfﬂct = 0)

Such computations are of course infeasible due to the intractability of the posterior discussed in
Section 3.
Instead, we rely on Monte Carlo estimators of these quantities. For expected regrets we have

M
Ai(a) = % mz::l [,u(a,ﬁ(m)) arer?onl} u(d, Hm)] , a€{0,1}. (17)

Before defining the information gain, introduce the notation,

= o) (1=ote70)

as the likelihood contribution of the pair z, ¢ for a given 6. To estimate I;(1) we require approx-
imations of the normalising constants of the current posterior m;_1, and the potential posteriors
given the two possible updates. Define,

_ 1

_ = (m)
D; = T H (5,0 Cy)| , and

sE[t—l}:Aszl

B 1 m m
Dt,ciﬂz E(-’I;tae( ),C) H B(:US,G( )708) ;

m=1 s€[t—1]:As=1

S iM:

for ¢ € {0,1}. These are used to estimate the KL divergences between the current posterior and
the two potential posteriors in the next round. Define said estimates as,

Dtc
Ko — 371 , 0,1},
t §:0g<DtM@m9<%d) ce bl
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Finally our estimate of the expected information gain follows as,

M M
_ _ Oz, 0™ 1) 0z, 00M) 0
L) =K S (tM) F Ry (tM) (18)
m=1 m=1

We investigate the performance of PG-IDS alongside PG-TS in the next section.

Remark 2 Both the PG-TS and PG-IDS approaches given in Algorithm 1 and 2 are perhaps
the most straightforward possible in terms of their use of the Gibbs samples. It may be benefi-
cial for instance to allow M to vary as a function of t, to remove some burn-in from the sample
{9,51), e ,Ht(M)} before computing posterior expectations, in the case of PG-IDS, or to use sepa-
rate samples to compute the regret estimates, and information gain. In the following section we
have found strong empirical performance is achieved without such modifications, but it may be an
interesting direction for future research to investigate whether these play a material role in the
algorithms’ performance.

Inputs: Prior mean vector b, Prior covariance matrix B, Number of Gibbs iterations M,
IDS-tuning parameter A.

Initialise: D = (), and 6" ~ MV Ne(b, B).
fort=1,2,... do
(0, ... 0"y « c1BBS(b, B, M, D,0™))
Receive context x; € R4
Compute regret estimates A(0) and Ay(1) according to (17)
Compute information gain estimate I;(1) according to (18)
Compute IDS parameter p; according to (16) using A.(0), A (1), I;(1)
Select action a; ~ Bern(p:)
if a; =1 do
Observe lt € {101, 111}
Augment D < DU {z, P(1)}
end if
end for

Algorithm 2: PG-IDS

5 Simulations

We compare the PG-TS scheme in Algorithm 1 with a number of other algorithms. Firstly, the
PG-IDS scheme given in Algorithm 2 and second, an e-Greedy algorithm. The e-Greedy approach
chooses the action optimal with respect to the maximum likelihood estimate with probability 1 — €,
otherwise it chooses randomly with equal probability. Finally, we consider the CBP-SIDE algo-
rithm of Barték and Szepesvari (2012), as investigated empirically in Lienert (2013). Pseudocode
for the adaptation of this approach to the apple tasting problem is given in Appendix H. Fast
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implementation of the PG-based algorithms is possible thanks to the ‘BayesLogit’ package in R
(Polson et al., 2019).

For PG-IDS, and e-Greedy we have selected the respective tunable parameters A, and € via a
further empirical comparison outlined in Appendix I. The choices A = 0.05, and € = 0.1 are argued
to give the most robust performance among a range of possible values across various instances of
our problem.

We consider three examples in terms of the true parameter, and context vector distribution,
summarised below.

(i) Each dimension of the parameter 6* is sampled uniformly from the interval [—1, 1], with d = 5.
Contexts are drawn from a zero-mean multivariate Gaussian with identity covariance matrix.
We choose [1; = 0.05, lp1 = 0.4, l19 = 1, and T' = 500.

(ii) Each dimension of the parameter 6* is sampled uniformly from the interval [—1,1] with
probability 0.75, or fixed to 0 with probability 0.25. The number of dimensions is d = 20,
and again contexts are drawn as in problem (i) but with common context variance of 8. We
choose l17 = 0.1, lp1 = 0.7, l10 = 1, and T = 1000.

(iii) #* = 1 and contexts are sampled from a Gaussian distribution with standard deviation 0.025.
The mean linearly increases from p = —0.1 to p = 0 over the 7" = 500 rounds. We choose
l11 =0 and l01 = llg =1.

Problems (i) and (ii) represent typical apple tasting scenarios, and allow the comparison of our
various algorithms. Problem (iii) gives a simple, uncluttered example of a scenario where the
traditional variant of IDS performs poorly.

Figure 1 shows the performance of the algorithms on the problems described above. For prob-
lems (i) and (ii) we see similar behaviour, the two PG-IDS algorithms perform similarly and incur
a lower average regret than the other approaches. PG-TS is successful in learning to select optimal
actions but does so more slowly, and CBP-SIDE and e-Greedy incur a regret which appears to
grow linearly throughout the experiment. e-Greedy could perhaps be improved by allowing € to
decay as a function of ¢, but this represents yet another possibly problem-dependent tuning step.
As for CBP-SIDE, the observed behaviour is a result of its overly conservative approach. This is
confirmed below by considering the precision and recall of the algorithms.

In problem (iii) where every context is sampled close to the classification boundary, with a
strong tendency towards class 0, a different behaviour is observed. Besides PG-TS and CBP-SIDE,
each of the algorithms displays a more variable performance, and the traditional variant of PG-
IDS incurs noticeably larger regret than PG-TS and the tunable variant of PG-IDS. The mean
regret of PG-TS and the tunable variant of PG-IDS are very similar. While e-Greedy sometimes
outperforms the more principled approaches, due to fixing an accurate initial estimate of 6%, this
overly exploitative behaviour sometimes fails and leads to highly skewed distribution of regret.

The phenomenon of a greedy approach sometimes outperforming more complex attempts to
balance exploration and exploitation in contextual problems is not unprecedented. Indeed, in the
contextual bandit literature, a number of recent works (Bastani et al., 2017; Kannan et al., 2018;
Raghavan et al., 2020; Jedor et al., 2021) have observed that if the contexts arising are sufficiently
variable, a greedy decision-maker can gain appropriate information without explicitly attempting
to explore in favour of exploiting.
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Figure 1: Regret of algorithms on Problems (i), (i) and (iii), over 50 replications. The green lines
denote the e-Greedy policy with € = 0.1, the red lines denote the PG-IDS policy with A = 0.2, the
magenta lines denote the CBP-SIDE policy, and the blue lines denote the PG-TS policy. In each
case 90% empirical confidence regions are plotted around the median trajectory. The boxplots in
the right-hand panel show the distribution of the final regret at time 7'
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Analysis of Feature Dimension

° Analysis of Number of Gibbs Iterations
« 7| = PG-TS
=== PG-IDS-tune £
PG-IDS-trad w— PG-TS
=== PG-IDS-tune|
0 PG-IDS-trad
= 7 ~
- ' . L’ .
2 o e
o4 ® ;
\ PR j=2) J *
[V LN Q h .
/ S 14 -
=] ) /\/\ It w4 /\/\/\
= —— . .
g —_— -
T T T T T e i s
0 10 20 30 40 °
T T T T T T
Feature dimension 0 20 40 60 80 100

Number of Gibbs Iterations

(a) Regret of algorithms scaled by v/d, plotted as
d varies. (b) Regret of algorithms plotted as M varies.

Figure 2: Plots showing the effects of problem and algorithm parameters on regret.

The regret is presumed to be the true measure of interest in the apple tasting problem, and to
appropriately weight the impact of false positives and false negatives. Nevertheless it is informative
to see in what proportion the algorithms make the two classes of error. To this end, in Tables 1,
2, and 3 we report the precision and recall of the apple tasting algorithms. The precision is the
proportion of true class 1 examples among all those labelled class 1 by the algorithm, the recall is
the proportion of class 1 examples correctly labelled as class 1 by the algorithm.

We observe that CBP-SIDE always has a recall of 1.00, and while we would expect this to
reduce in problems with a longer horizon, this is indicative of the fact that CBP-SIDE’s confidence
region for #* is so wide that its optimism leads to using action 1 in almost every instance. As such it
correctly labels all true class 1 instances, but misclassifies a large (relative to the other approaches)
proportion of class 0 instances as being class 1.

In problems (i) and (ii) most of the other approaches have well balanced precision and recall,
suggesting that misclassifications of both types occur with roughly similar frequency. In problem
(iii), however, the traditional variant of PG-IDS shows a similar behaviour to CBP-SIDE;, in that
its recall is much larger than the algorithms with smaller average regret. This is likely because
it suffers the issue postulated in Section 4. Specifically, that because of the construction of the
traditional IDS sampling distribution, it continues to favour the information gaining action even
when the regret of the no-information action is smaller, and the information gained per observation
is minimal.

Finally, we have also investigated the effect of the dimension d of the unknown parameter,
and of the number of Gibbs iterations M, on the regret of the algorithms. Figure 2 displays the
results of these experiments. In the setting of Figure 2(a), the dimension is varied between d = 2
and d = 40, with the elements of 6* being drawn uniformly at random from the interval [—1, 1]
and M fixed at 15. In the setting of Figure 2(b), we fixed d = 5, again drew the elements of 6*
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Algorithm Precision Recall Algorithm Precision Recall

PG-TS 0.93 0.90 PG-TS 0.89 0.88
PG-IDS-tune 0.94 0.94 PG-IDS-tune 0.91 0.92
PG-IDS-trad 0.91 0.96 PG-IDS-trad 0.88 0.95

Greedy 0.93 0.91 Greedy 0.88 0.87

CBP-SIDE 0.74 1.00 CBP-SIDE 0.53 1.00

Table 1: Precision and Recall on Problem (i) Table 2: Precision and Recall on Problem (ii)

Algorithm Precision Recall

PG-TS 0.13 0.56
PG-IDS-tune 0.26 0.75
PG-IDS-trad 0.17 0.92

Greedy 0.49 0.85

CBP-SIDE 0.10 1.00

Table 3: Precision and Recall on Problem (iii)

uniformly from [—1,1], and varied the number of Gibbs iterations per time-step between M = 10
and M = 100.

In Figure 2(a) we plot the mean regret for each investigated dimension d and algorithm with a
90% empirical confidence interval, all scaled by v/d to investigate the relationship between regret
and dimension. We see a mostly constant relationship, within the tolerance of statistical noise,
which seems to validate the theoretical result on regret. In Figure 2(b) we see again see a fairly
constant relationship, suggesting that the performance of the algorithms is fairly robust to the
number of Gibbs iterations. This is an encouraging finding as it suggests a more computationally
burdensome choice of the parameter M is not necessary for strong performance.

6 Conclusion

In this paper we have explored the use of heuristic Bayesian decision-making rules for logistic
contextual apple tasting problems. We have shown that both Thompson Sampling and Informa-
tion Directed Sampling methods are highly efficient for such problems, and indeed more so than
confidence bound based approach of Barték and Szepesvéri (2012). We have also established a
theoretical justification of the strong performance of Thompson Sampling through a bound on
its Bayesian regret, and of Pdélya-Gamma Thompson Sampling by considering its asymptotic be-
haviour. The extension of these results to Information Directed Sampling will be significantly more
complex due to the choice of actions with respect to posterior expectations rather than individual
samples®. Other further research may explore the application of Bayesian approaches to more com-
plex contextual partial monitoring problems, incorporating the insights of Lattimore and Szepesvari
(2019), or to other variants of apple tasting, such as the fairness-enforcing variant considered by
Bechavod et al. (2019), or batched setting of Jiang et al. (2021).

5Note that this difficulty is specific to the present setting where © is not a finite set. The challenge arises in
defining a suitable analog of the compressed random variable 6; as in the proof of Theorem 1.
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A Proof of Proposition 1

The first step is a functional version of Lemma 1 of Dong and Van Roy (2018) for non-finite ©,
which requires a different proof technique. The proof of Lemma 1 is given in Appendix B.

Lemma 1 Let A be a compact space in R?, and f and g be two functions from A to R. Let 7 be a
density function on A such that w(\) > 0 for all \ € A. There exist \,\' € A (possibly A = X' ) and
p € (0,1) such that

pf(N) + (1 =p)f(N) <Er(f), and
pg(A) + (1 = p)g(N) < Ex(g),
where Ex(h) = [,c M(A)7(dN) for a function h: A — R.

Applying Lemma 1 on Oy, the k' element of the partition, with the functions f(-) = —E;_1 (u (e (-), 0%))
and g(+) = Ii—1(de; Pr(au(+))) and the density 7(6;|0; € ©) we have that for each k € [K] and t € [T
there exists two parameters HIf’t, 9§’t € © and a constant 7, € (0,1) such that,

Tt —1 (Ht <at (9lf’t> ,9*)) + (1= rp) B <Mt (at (9§’t> ,9*>)

> Ei1 (pe (n(6),0%) | 6 € Op), (19)

et (00 o 0))) + 0 rtcs (o (o )
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< L1 (96 Pe(aw(0r)) | 00 € Ok) . (20)
Let 5,’5" be a random variable with the following conditional distribution given ¢,
P (é; =0 | g = k:) =y, P (é: =08 | g = k) —1—rp,, ke [K]. (21)

Immediately, we have that 6; satisfies property (i) as is independent of 6 given ¢¢. Using (19) and
(20), properties (ii) and (iii) can be shown to hold for ;.
To show (ii), we first define, for every k € [K] and ¢ € [T],

Dyt =1 i1 (Ht (at (91f’t> ) (I —rge)Eeq (Ht (at (9§’t> 79*»
— Ei—1 (e (ae(0r),07) | 6 € Op) .
By (19), each Dy, > 0. Thus, we also have,

Eit (pu(0n(8), 07) = ul(6,),6%)) = ZP 6, € Ok) Dy > 0.
k=1

Property (ii) then follows using this result in the first inequality,
Eor (e (00(80),6) = i (00(6),6%)) = Eaa (s (0(8),0") = e (eu(07),67))
= Ei1 (s (00l87),07) = pn (@0(6),6%)) = By (e (a(0),6%) = pue (cu(61),6))
<E, (ut (at(é;), e*) — (at(ﬁ*),H*)> <e

Here the final inequality holds since 9~;f and 6* are always in the same cell of the partition, and (ii)
follows by simple rearrangement.

Considering the information gain, we show property (iii) as follows, where the second and final
equalities use the independence of §; and 6; from ¢, conditioned on H;_1, and the inequality uses
(20>7

Iy (¢e; (ét,q)t(at(ét))) =1 (Qbe;ét) + I <¢e; (q)t(at(ét) | ét))
=It-1 | 9¢; (‘I’t(at(et) | et))

(
i P (6, € ©) P (9} =0 |6, € @k) Ly ((be; <I>t(at(9f’t)>

K
>
k=1 i=1
K
ZP(Qt € @k) I 4 (¢E; @t(at(et)) ’ Ht € @k)

k=

= It—1 (¢e; Pe(t(0r))) = Lt—1 (Pe; (01, Pe(cwt(6r))) - T

B Proof of Lemma 1

To simplify notation, we first assume without loss of generality (as the following can be achieved
by shifting f and g) that

/ r(dN) F() = / r(d\)g(A) =0
A A
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Then we define C¢(\, X;p) = pf(A) + (1 —p) f(N) and similarly Cy(X, N;p) = pg(A) + (1 —p)g(X).
To prove Lemma 1, we wish to show that Jp € [0,1], A, \' € A such that

max [Cr(A, X;p), Cg(X, N;p)] <0. (22)
It will also be helpful to define the following subsets of A,

Ap={red: fO) <o}
Ag={re A :g(A) <0}

We note that if AfN Ay # 0, i.e. there exists A € A such that f(A) < 0 and g(\) < 0, then the proof
of Lemma 1 is trivial. Choosing any A\* € Ay N Ay, we have C¢(A*, A*;p) <0 and Cy(A*, A*;p) <0
for all p € (0,1). The more challenging case is where Ay N Ay = ), i.e. there exists no A € A such
that f(A) <0 and g(\) <0, which we will consider in the remainder of the proof. In this case, for
all A € Ay, we have f(A) <0 < g(\) and for all N € A4, we have g(X') <0 < f(N).

Since both C' functions are linear in p, it follows that min, max{C¢(X,X;p), Cy(X, X;p)} is
achieved where the two C targets are equal (Cy increases from f(A) < 0 to f(X) > 0 and Cj,
decreases, so the max decreases to the intersection then increases again). Hence the minimising p

N g(\) — FOV)
FO) = FOV) — g0 + 90V)

FNgY) = F(XN)g(N)
) =fV) =gV +9(V)
Now, f(A) <0, g(A) >0, f(X) > 0 and g(\') < 0 so the denominator is strictly negative. Thus
(22) is satisfied when there exist A € Ay and X' € Ay such that

FNg(X) = fF(N)g(N) >0 (23)

We show that there exist such A, N using a proof by contradiction. We assume the converse of

(23):

FNg(N)

FXN)g(A)
Let Dy = maxyea, 9(\)/f(N) and Dy = maxyep, f(N)/g(N). Both quantities exist and are
strictly negative, since Ay and A4 are compact. Furthermore (24) implies that f(\) > Dyg(X) for
all A € Ay, that g(\') > Dy f(N) for all X' € Ay, and that DyDy < 1. It follows immediately that
E(f(\)|X € Ay) > DgE(g(A\) | A € Ay) and E(g(N) [N € Ag) > DyE(f(N)|N € Ay). Hence (22)
implies that

pmin()‘) )‘/) =

and the minimum takes value

<1, VAeAs XN eA, (24)

E(fNIX € Ap) E(g(N)N € Ay)

<D¢{D, <1. 25
B(gA € Ay) BN € Bg) = 7% %)
We will however show that the opposite must hold. Notice that [ A m(dA ) > A, w(dN) f
and fA (dX)( ) > fA ) since Ay N Ay = () and the expectatlon of both f and ¢ is

0. It follows from these propertles that

w(d\) w(d)\) /
E(f(N) [ XeAp)E(gN) | N eAy) fAf T, m(d8) ”(de) fA a7 (@69 9N

BN TXEAJBGO) [XERy) ~ f dAde ) fAff”(i?de)g()\)
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ay @) - fy, —m(dN)g(X)
— @ FO) - fy, w(dA
>1 (26)

Equation (26) is a direct contradiction of (24) and it follows that there must exist A € Ay and
X' € A4 such that (23) holds, and Lemma 1 is proven. [

C Proof of Proposition 2

Recall the definition of the information ratio of the random variables 6 and 6; as

o (13 < [ (e (ce00.7) e )]
7 Tt) = Iy (5;;(@7@(%(9}))))

where the expectation in the numerator is taken over the random variables ;, 6; and 6* conditional
on the history H; 1 (recall that 9~f is the compressed version of 6*, whereas 6; has the same marginal
distribution as 9~Z‘ but is conditionally independent of §* and 52* given H;—1). It is worth noting
that although the information gain in a particular round can take value zero, the quantity in the
denominator is an expectation of the mutual information over the distribution of oy (6;) and the
signal ®;(ay(6;)) and as such will be non-zero so long as m;_1(6;) > 0.

To bound I';, we first rewrite the root of the numerator in the information ratio. Denote by
74(0;) and 77 (#;) the marginal probability mass functions of §; and 8} respectively conditional on
H;_1 and denote by 7F(6*) and 7 (6* | 67) the marginal and conditional-on-8} density functions of
0* given H;_1, noting that these random variables are constructed such that 7,(6) = 7/ () for all
f and, conditional on H;, 6, is independent of both Ht and 6*. We find that

Ei1 (Mt (Oét(ét)ﬁ*) — f (at(éf)ﬁ*))
=22 / (10 (080, 07) = e (0a(07),6%) ) 720077 (05 )5 (07 | 7)o"
0: 0

= [ (crlf.7) s (07 o~ S / pe (a(0),0°) 77 (3 071 8) a0

9

=S [ (cutliror) (i) - mior 1) de*} 77 (07).

Recall from the definition of ©; that when 9* € Oy, the optimal response is at(e ) = 1, and
(from (1)) the loss function is 1 — (11 — 1)o(x T6*). When 6 € © \ ©; the optimal action is

a(0F) = 0, and the loss function is lp;o (2] 6;). Continuing the above derivation, and noting that
fwt (6*)d6* = [ 7} (0*|07)d6* = 1), we have,

E,_, (Mt (at(ét),e*) — pt (at(éf)ﬁ*))
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= Y { [ (1 @ votel ) (w0 - wie 1)) a1 )

0¥ €O,
lovo(ay %) (mi (6%) — w7 (67 | 67) ) 46" ¢ 77 (67)
—i—e*e%\@t{/ 01 ( > }
= (1 = Vo(xz, 0%) (mf (67) — w5 (6% | ;) ) d6™ ¢ 77 (6;)
é;‘ze(:at{/ nod ( 1 1%) }t
loro(ay %) (mf (6%) — w7 (67 | 67) ) 40" ¢ 77 (67)
—i—e*ez@%@t{/ 01 ( > }

< max(lor, 1 —l1) Y 7 (607). (27)

é*

t

/ o (2] 0°) 2 (6%)d0" — / o (2] 0% (6 |G7)do"

Next, consider the denominator. We have
I (éik? (@,@t(at(@)))> =1 (ézk; ét) o @:; Pi(e(00) | ét)
= Lo (05 @u(as(6) | 01)
= 3" 1 (55 @u(ul0))) 7(0)
0

= w(@) L (37 (1)),

where we have used the conditional independence of §; and 6} and the fact that the information
gain is zero if A; = 0 is chosen. Then, rewriting the mutual information in terms of KL-divergence
and applying Pinsker’s inequality, we have the following lower bound,

#(00)1-1 (07 @(1))
= 7(00) Y KL [mr (@0(1) 1 67) || e (2(1)] 76

i
> 27000 Y drv (meot (200 157, mioa (20) 7(57)
;
2
= 27,(0y) o (2] 0°) 71 (07)do* — [ o (] 07w (07 | 67)do* b #7(6)). (28)
S{fo i) - o) | s

Combining (27) and the lower bound (28) we realise a bound on the information ratio, as below.
We have,

(maax(ion, 1~ 1) S, {f o 6 (616" — [ o] 6 (07 167)d0° } 7767))
2m-1(0y) Zé; {f o(x) 0%y (0%)d0* — [o(xf 0%)my (0% | é;)de*}2fr;«(é;‘)

max(log, 1 — I11)?
271',5,1(@75) ’

T.(0;,6,)

IN
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where the final inequality holds by Cauchy-Schwarz. [J

D Proof of Proposition 3

Note that for a given #', and round ¢t € [T] there are at most three values of the distortion rate.
We have, for ' € ©, and t € [T],

0, if Oét(g,) = at(ﬁ)
dt(9,9/) = (1 + l01 - lll)a(q:tTB’) - ]., if O[t(gl) =0 and Oét(e) =1
1—(L+1o1 —l1)o(x] 0), if ay (') =1 and ay(9) = 0.

The condition (9) is equivalent to

maxdi(0,0") <€, 0,0 € O, Vk € [K].
te[T]

Since d; depends on the round t only through x;, we may replace the above condition with the

following,

dx(0,0") = ma/%(d(Q,G/;a:) <e¢, 0,0 € O, Vk € [K]. (29)
TE

Then any partition satisfying (29) satisfies condition (9) for all T'.

To identify the size of such a partition we consider the form of dy. Recall that d(6,60";xz) # 0
only when «(6;x) # a(6'; x), thus the context vector x € X achieving max,ex d(6,0; x) must be
such that 6 and @' select different classifications.” Thus, we may write

dx(0,0") = max d0,0';r) = max
z€X:a(0;x) £ (b ;x) z€X:a(0;x)Za(b;x)

1—(1+4+1los —li)o (xT9/>

For a parameter vector 6 € ©, define the set of contexts on the classification boundary, Xy C X,

1
ng{aUEX:mT@:log(l ] )},
01 — 11

(note: o=t (1/(1 + o1 — l11)) = log(1/(lp1 — l11))). We then have for § € © fixed that

as

dx(0,0") < dy,(0,0') := max

LUE.XQ

1—(1+1lp1 —li1)o (mT9'>

It follows that dx(60,6") < e for all 8 such that for all x € Aj

1—c¢ 1+e€ 1—c¢ 1+e€

Tpt -1 —1

z'0 € |o — | ,0 — )| =|log| ——— |, Jog | ———— ||,
[ <1+101—111> <1+l01—l11>} [ g<l01—l11+6> g<101—l11—6>]

i.e. over the same range that dy,(0,0") < e. Expressing this in terms of the z-weighted norm
between 6 and 6" we can equivalently say that, dy(6,6’) < e for all § such that for all z € Xj,

T / (l(]l - lll) — € (101 — ln) + €
= @-8)e [log ((101 = l1) + (lon — l11)6> log <(lo1 —l11) = (lo1 — 111)6>]

"The only exception is in trivial settings where x is so extreme that there is a single optimal action for all § € ©.
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1——= 14 —=
— |log [ ——tor=lin } e [ loi=lin
[og( 1+e )’ 0g< 1—e¢ ’
and thus also for all " such that for all x € Xj,
< min 1 log 71 - lmil“ — log 71 _ lmil“
- 1—¢€ ’ 14e€

€ €
=1 1 —1 1-— . 30
08 ( * min(l, l()l — lll)) 08 < rnax(l, l()1 — 111)> ( )

The minimum can be shown to be defined as such by considering the difference

2
4 . e
log < 1lilgl11> _ <_ log < 110_'_12111 )) = log 1@2162511)2 7

and observing that it is negative when (lp; — l11) < 1, for € > 0.
We next move from the logarithmic bound (30) to a bound that is linear in e. From the
well-known logarithm inequalities,

‘a:T(H — )

H%<log(1+a:)<x, x>1
we also have for a > 0 that,
T+ oz <log(l+azx) <azx, z>-1/a,
d—2 <log(l ) < <1/
an og(l —ax) < —azx, =« a.
1—ax & ’

Defining l,in, = min(lo1, 1 — l11) and lyee = max(lp1, 1 — l11), it follows that for € € [0,1;.} ),

€ € €/lmin € €
1 1 —1 1- . 1
o8 < * lmzn) ©8 < lmax) ~ 1 + 6/lm'm + lmax ” lmax (3 )
Thus by the combination of (30) and (31), for a given 6 € ©, we have that dy(6,0') < € for all

@' € © such that
d
S 16— 0 < .
i=1

maXgexy IEdl lmas

It follows that the size of a partition satisfying condition (9) may be bounded by the size of an
€/ (Lmaz maxcx ||2||)-cover of © with respect to the ¢; norm. Since ©® C B, the size of the cover
of O is itself bounded by the size of the cover of Bii, and therefore we have,

d
K< (3lmam$max> 7

€

via the standard result (see e.g. Lemma 1 of Lorentz (1966)) that a J-cover of a unit ball in d
dimensions is of size (3/6)¢. O
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E Polya-Gamma Gibbs Sampler

Following ¢t rounds, where 8* has prior 7, the posterior distribution on 6* is as follows,

(0| Hy) = ”l(ft) 11 (o(xje))CS (1- a(xze))lfcs heo, (32)
s€t]:As=1

where D, is the normalising constant,

Dt:/eﬂ(ﬁ) I1 (U(J:STQ))CS (1—a(a:§9))1_05 do. (33)

s€ft]:As=1

Regardless of the choice of prior 7, the posterior in (32) is intractable, in the sense that samples
cannot readily be drawn directly from it. However, if 7 is chosen as a multivariate Gaussian then a
highly efficient approximate sampling scheme is achievable via augmentation of the likelihood with
PG random variables.

A real-valued random variable follows a PG distribution with parameters b > 0 and ¢ € R,

X ~ PG(b,c), if
X = )
2 Z k‘ _ 7) + 4652
where Gy, are i.i.d. Gamma(b, 1) random Varlables. Key to the augmentation scheme is the following
identity of Polson et al. (2013), for a € R, b > 0 and w following a PG(b,0) distribution

(1(€>)" = 27 bele=b/2)z / e 2p(w)dw, z€R.
+ €* 0

Applying this identity to the likelihood component of (32), we may write

(0 | Hy) o< 7(0) H exp ((1/2 — C’s)xzﬁ) /000 exp (—ws(xI9)2/2) p(ws)dws,

s€t]:As=1

where each ws is a PG(1,0) random variable. It follows that if m(#) is chosen as a multivariate
Gaussian, s.t. 6* ~ MV N(b,B), the posterior on #*, conditioned on PG random variables w =
(wiy... ,w|m|), is also multivariate Gaussian,

B 2
(0 | w,He) oc w(0) H exp (b;s (mj& - (1w805)> ) .

s€t]:As=1

As such, we may construct a Gibbs sampler, which iterates between sampling PG random variables,
and from the conditional Gaussian on 6*. Sampling of PG random variables is highly efficient, due
to a rejection sampler of Polson et al. (2013) with acceptance probability no less than 0.9992.

Our PG-TS approach (including the Gibbs steps) is summarised in Algorithm 1. It uses an
additional counter random variable N(t) = Y% TI{A; = 1} to track the number of rounds in
which the class 1 has been chosen, and assumes (in line with the definition of the model) that C;
can be recovered from ®;(1). Further, for n € N it uses R(n) = min(t > n : N(t) = n) to refer
to the round in which class 1 is chosen for the nt" time, and X,, to represent the matrix whose
columns are the feature vectors (1), Tr(2); - -, TR(n) (in that order).

In each round PG-TS draws M via the Gibbs sampling possible due to PG augmentation. Here
we describe the simplest version of the algorithm, in the sense that a fixed number of samples, M,
are used to estimate the posterior in each round, but a time dependent M (¢) could also be used.
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Inputs: Prior mean vector b, Prior precision matrix B, Number of Gibbs iterations M,

Observed classes C = (C1,...,C,), Context matrix X € R?*", Initialisation parameter
9(0)

Compute k = (C — %,...,Cn — %)
for m=1to M do
for i =1ton do
Draw w; | ("1 ~ PG(1,z] 9(m=1).
end for
Compute Q = diag(wi, .. .,wn)
Compute covariance matrix V,, = (XTQX +B~1)~!
Compute mean vector mg, = V(X k +B~'b)
Draw ™ | k,w ~ MV N(me,, V)
end for
return {1, ... (M)}

Algorithm 3: GIBBS

F Proof of Theorem 2

The proof utilises uniform ergodicity of the Gibbs sampler, together with convergence of the pos-
terior to demonstrate that the a-divergence is vanishing in the limit.

Choi and Hobert (2013) have shown that the PG-Gibbs sampler is uniformly ergodic, and thus
(M)

as the number of Gibbs samples M approaches oo, the distribution 7, shows convergence to ;.
Specifically, that there exists p € [0,1) such that,

< 7TT—7T§9)

‘ M
TV

) o,

‘WT — ‘TV
where |- |7y denotes the total variation distance between probability distributions. Here, however,
we consider an analysis of the finite M, infinite T" setting, so this result alone does not imply
shrinkage of the a-divergence.

To prove such a result, we must show that TS using either of m; or 7r§M) will lead to using the
informative action (i.e. A; = 1) infinitely often. In either case, the draws of samples 6; from 7m;_;

(M)

or 9§M) from m,_} are independent of the draw of a context x; from px. As such, by Assumption 1

we have E;—1(px (X1(6:))) > ¢ and Egﬂ) (pX(Xl(QISM)))) > ¢, for all ¢. This provides the following
guarantees on the rate of selection of the informative action,

T TS _1q
Tlim Eo ( =1 H{;t }> > ¢, and (34)
—00
T (M) _
lim Eq (Ztl o4 = 1}> > 4. (35)
T—o0 T

It therefore follows that under either sampling regime (i.e. either the exact or approximate TS
algorithms) the number of observed labels approaches infinity as 7" does. As such, the posterior
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induced under either regime is strongly consistent (Ghosal et al., 1995, Proposition 1) and satisfies
the following stationary convergence guarantee (Yang and Dunson, 2013, Lemma 3.7) with respect
to the L1 norm:

|70 —mr—1|; = 0, as T' — oo.

Now fix € > 0. Since the TV norm is bounded by half the L; norm between densities (when
the densities exist — see e.g. equation (1) of Devroye et al. (2018)), there exists S > 0 such that
T — 1Ty < e(1 — pM)/(3pM) for all t > S. Hence, we have, by repeated application of the
triangle inequality and the uniform ergodicity result, that,

M
[T — 7T(T )|TV < |mp — WT)!TVP
0
<|mr —mr_1lrve™ + |7r_1 — W(T)|TVPM
M
= |mp — 7TT—1|TVPM + o1 — 775’—)1|TVP
T
< Z |41t — mr—trvp™ + |mo — 7T0 Ny pMT
=1
T-5
= |rry1-e — mr—lovp™
=1

+ Z 41—t — 7r—t|7vp™ + |70 — 7T0 Ny pMT
t=T— S+l

]5 ZptM+ Z ptM+pMT
t=T—-S+1

e(1—p"
<S ZptM+pT SMZptM+pTM
t=1

/\

(T—S)Mpi

1_pM+pTM

_c.

For T sufficiently large that p(T=9M < (1 — pM)e/(3pM) and p™ < ¢/3, we see that |mp —
]TV < €. Since € > 0 is arbitrary, we see that |mp — ﬂéﬂ |7y — 0as T — oco. O

G Proof of Theorem 3

The proof in this section is somewhat informal, but constructed as such with the intention of
limiting simple but lengthy translations of existing results to near-identical settings. Ultimately,
the proof amounts to demonstrating that since PG-TS will select the informative action infinitely
often, and since the posterior approximation will converge to the underlying true parameter 6%, the
proportion of rounds in which PG-TS selects the action which is optimal in expectation approaches
1 as the number of rounds approaches infinity.

A similar result is established in an alternative, and more traditional, contextual bandit setting
by May et al. (2012), in their Theorem 1. Therein each action a € A (where | 4| may be greater
than 2) is associated with a continuous reward function f, : X — R, and each of these functions
may have separate parameters. May et al. (2012) demonstrate that an asymptotic consistency
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result is enjoyed by any TS-like algorithm for such a problem subject to conditions on the sampling
distribution. Therein a TS-like algorithm is defined as one which samples reward functions ft,a
from distributions @), at each time t, and plays the action with the largest fm(xt) value, and
sufficient conditions are expressed in terms of the distributions Q¢ .

The basis of our informal proof in this section is to demonstrate that LCAT is sufficiently similar
to the aforementioned contextual bandit problem, and the approximate posterior distributions
used by PG-TS satisfy appropriate conditions such that the asymptotic consistency result can be
extended to this setting.

Two conditions are critical to the asymptotic consistency result in May et al. (2012). First,
where n;, = . I{As = a} is defined to be the number of plays of action a in ¢ rounds, that we
have

P (Ugea {nt,q = 00 as t = o0}), (36)

i.e. that every action is sampled infinitely often in the limit. Second, that for each action a € A,
we have convergence of the sampling distribution to the true reward function, i.e.

[Qt,a - fa(fl:t)] _>P 0 as Nt,q — O0. (37)

These conditions are the ultimate (and critical) consequence of Assumptions 1, 2, and 4, and the
intermediate Lemma 2 in May et al. (2012).

Proceeding, we first show that the LCAT problem may equivalently be viewed as a contextual
bandit problem with A = 2, and a known reward function for one action. Although this was a step
we avoided in the main Bayesian regret analysis, since a bespoke analysis was more powerful than
relying on generic contextual bandit results, it is nevertheless useful in this instance, to obtain the
consistency result for the approximate algorithm.

We recall the form of the loss and signal matrices used previously,

(0 Iy (0 0
L= (0 ) mie-( 0),

and define shifted versions of these,

st (0 o) _ (0 0 , (0 0
=L (0 lor) \1 lun—lo and = 1 Il —loi/)”

The shifted loss matrix has merely changed the scale of the losses for the event C; = 1, and the
shifted signal matrix replaces one (essentially) arbitrary signal I;; with another l;; — lo;.

The contextual partial monitoring problem characterised by loss matrix L’ and signal matrix
®’ is recognised as a 2-armed logistic contextual bandit. In particular, taking rewards to be the
negative of losses, the action indexed 0 has expected reward function

fo(z) =0, z€X
and the action indexed 1 has expected reward function
filr) = (141 —ln)o(z'0) -1, z€X.

The reward observations have zero noise under selection of action 0, and are supported on {—1,lp; —
l11} under selection of action 1. A straightforward adaptation of the action selection step imple-
ments a version of PG-TS for this version of the problem using the same Gibbs sampler and
structure.
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Having framed the LCAT problem as a contextual bandit problem, proof of the asymptotic
consistency result then reduces to the verification of conditions (36) and (37). Firstly, we have
from (35) that PG-TS will sample the informative action infinitely often, and by an equivalent
proof under Assumption 1 the same is true of the non-informative action. Thus we have that (36)
is satisfied by PG-TS. Plainly, (37) holds for the non-informative action since its rescaled reward
function is known by design, and (37) is shown to hold for the informative action by the consistent
estimation result of Theorem 2. Thus, by extension of the results of May et al. (2012), we have the
asymptotic consistency and asymptotically sublinear regret of the PG-TS algorithm. [J

H Pseudocode for CBP-SIDE Algorithm for Apple Tasting

In this section we provide the particular version of the more general CBP-SIDE algorithm used for
the contextual logistic apple tasting problem. Due to the small action set, and specific loss model,
the statement of the algorithm can be streamlined. That said, the correct choice of estimator,
confidence set, and various constants is still non-trivial. We explain what we believe to be the best
theoretically-supported choice of these components in this section.

CBP-SIDE requires the identification of observer vectors, v;; and vj;, for each pair of actions,
i,7 (in our case, the only action pairs are of course {0,0}, {0,1}, and {1,1}), which satisfy,

T T
li — lj = Sz Uij — Sj Uji,

where [; and [; are columns of the loss matrix L and S; and S; are signal matrices - which are
exactly the incidence matrices of the symbols in columns of ®. In our setting, we have Iy = (0 1),
l1 = (lo1 l11) and signal matrices,

So=1(11), 51:<(1] (1)>

It is clear that valid v;; and vj; are not unique, but Barték and Szepesvari (2012) note that a
theoretically optimal choice, is

(f;;) = (57 8))" (-1

So in our case we may choose scalar vg; = —lg1 and vig = l11 — 1, and vg9 = v11 = 0.

In each round, the general CBP-SIDE algorithm computes a estimate 6 of the unknown param-
eter, and from this a regret term A;; and a confidence term c¢;; for each pair of actions 4, j, of the
form

Aij = viqi + v5ig;
cij = |vijlw(i, ) + |vjilw(j, 1),

where ¢, is the estimated probability action k is suboptimal and w(, -) is a confidence width function
chosen to establish theoretical guarantees. Since we choose vgg = v1; we can focus solely on the
case {i,7} = {0,1} and compute a single regret term

A=Ay = —ln (1 -0 (%Té)) +(lin —1)o <$tT‘9> ;
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and confidence term

¢:=co1 = (14 1p1 — li1) w(t),
with w specified below.

We use the maximum likelihood estimator, projected back in to © as our estimator of 6*.
Specifically, with respect to the matrix

t—1

Vi = ZH{At =1}z g,

s=1

MLE
t

and the log-likelihood maximised over R? at 6 , we define the estimator

0, = argmin || — 6™ "F |2 ..
0O t

We adapt the confidence width function given in Barték and Szepesvéri (2012) for online multi-
nomial logistic regression, leading to the following expression derived from the self-normalised
inequalities of Abbasi-Yadkori et al. (2011),

w(t) = € (/2401 + N(t = 1)R2/d) + 210g(1/8xs 1) + Rd) \/a] V.

Here, the ©— and X —dependent constant C' = [infgeo ex(1 — o(x'6))o(x 7))~ arises from
Lemma 3 of Barték and Szepesvari (2012), R is a bound on the 2-norm of the features x € X,
N(t) = 3! T{A; = 1} counts the number of uses of action 1 in ¢ rounds (i.e. the size of the
observed data), and §s = s~2 is chosen to realise an optimal regret bound.

Finally, the action selection process also simplifies with respect to the general case, and we
assign class 1, unless the regret term A falls below —¢, indicating that a prediction of class 0
with sufficient confidence to avoid pass on the information gaining action. Algorithm 4 gives the
adaptation of CBP-SIDE to apple tasting, incorporating the above specifications.

Inputs: Loss parameters lg1, 11
Initialise: D = 0.
fort=1,2,... do
Receive context x; € R4
Compute regret estimate A= (1+1p1 — lu)a(a:tét) —ln
Compute confidence width ¢ = (1 + lg1 — l11)w(t)
Select action Ay =1 —I{A < —¢}
if A, =1do
Observe ®,(1) € {1,111}
Augment D <+ DU {x, (1)}
end if
end for

Algorithm 4: CBP-SIDE for Apple Tasting
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I Parameter Tuning for PG-IDS

In this section we give the results of further experiments used to estimate the optimal parameter
A for the PG-IDS scheme. We consider ten choices of A = {0,0.05,...,0.45} and compare the
performance of the resulting PG-IDS algorithms with each other and PG-TS (with the same prior).
To identify a robust choice of parameter we investigate both problem (a) and problem (b) from the
main text, but with a range of horizons, loss matrices and context distributions.

For completeness, recall that problem (a) has 6* = (0.5,0.9,—0.75) and contexts sampled from
a mixture of multivariate Gaussian with independent components whose variances are 0.2. With
probability pp, the mean vector is (0,0,0.875) and with probability 1 — ppi, it is (0.875,0.2,0).
We construct different variants of problem (a) by varying lp1, and pp., as well as the problem
horizon, T'. We will keep l11 = 0.05 fixed.

We run PG-IDS for the ten A values and PG-TS on nine variants of problem (a) per time
horizon value. We index the mixing parameters 1. ppiz = 0.95, 2. pmiz = 0.7, 3. Pmie = 0.5, and
the loss values, i. lo; = 0.5, ii. lp; = 0.7, iii. o1 = 0.95. So problem (a).l.i. for instance, refers
to the variant of problem (a) with py,;, = 0.95, and lp; = 0.5. This indexing is to make graphical
presentation of the results more straightforward.
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Problem A.1.ii. Problem A.1.iii.
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Figure 3: Plots showing the effects of problem and algorithm parameters on regret, with 7" = 250.

In each plot, blue boxplots show the distribution of cumulative regret for tunable PG-IDS with

tuning parameter in {0, 0.05,0.1,..

.,0.45} and the red (rightmost) boxplots show the distribution

of cumulative regret for PG-TS for comparison.
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Figure 4: Plots showing the effects of problem and algorithm parameters on regret, with 7" = 500.
In each plot, blue boxplots show the distribution of cumulative regret for tunable PG-IDS with
tuning parameter in {0,0.05,0.1,...,0.45} and the red (rightmost) boxplots show the distribution
of cumulative regret for PG-TS for comparison.
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