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Abstract

Source code summaries give developers and

maintainers vital information about source code

methods. These summaries aid with the secu-

rity of software systems as they can be used to

improve developer and maintainer understand-

ing of code, with the aim of reducing the num-

ber of bugs and vulnerabilities. However writ-

ing these summaries takes up the developers’

time and these summaries are often missing, in-

complete, or outdated. Neural source code sum-

marisation solves these issues by summarising

source code automatically. Current solutions

use Transformer neural networks to achieve

this. We present CodeSumBART - a BARTBASE

model for neural source code summarisation,

pretrained on a dataset of Java source code

methods and English method summaries. We

present a new approach to training Transform-

ers for neural source code summarisation by

using epoch validation results to optimise the

performance of the model. We found that in our

approach, using larger n-gram precision BLEU

metrics for epoch validation, such as BLEU-4,

produces better performing models than other

common NLG metrics.

1 Introduction

Software documentation, such as method sum-

maries, aids developers and maintainers in under-

standing how a software system works. Venigalla

and Chimalakonda (2021) report that “Software

documentation aids better project comprehension

and plays a major role in improving the popularity

of the repository and also in increasing contribu-

tions to the repository. Software documentation is

capable of aiding various phases of software de-

velopment, and maintenance”. Lin et al. (2021)

note the importance of code comments for program

comprehension for software maintenance.

The use of method summaries and other forms

of code comment in reviewing code is vital for un-

derstanding that code. This review process can be

used to find bugs and potential vulnerabilities in a

codebase before they affect users. The United King-

dom’s National Cyber Security Centre recommends

both peer review as well as documenting and com-

menting code clearly as part of their recommended

actions for secure development (National Cyber Se-

curity Centre, 2020). However, Rauf et al. (2021)

note that “Secure code development requires cog-

nitive effort, and under constraints of time and re-

sources developers struggle to keep security at the

top of their priority list”, meaning that practices re-

lating to secure development are often not a primary

concern, even for security-conscious developers.

Neural Source Code Summarisation (NSCS)

aims to reduce his cognitive load on developers

by summarising source code methods without de-

veloper interaction, using neural network models.

NSCS models require extensive training on large

datasets of source code and related summaries to

produce outputs with often low similarity to human-

written summaries. Our training produces a model

which produces better outputs while requiring no

more training than other, similar-sized models.

NSCS has grown in recent years with the develop-

ment of new task-specific models, many of which

build on Vaswani et al. (2017)’s Transformer ar-

chitecture, such as NeuralCodeSum (Ahmad et al.,

2020) and CodeBERT (Feng et al., 2020).

When training Transformer models for summari-

sation tasks, each epoch of training can be validated

against a Natural Language Generation (NLG) met-

ric. NLG metrics are often calculated alongside

a loss metric or loss function, which is used to

optimise the model during epoch validation. Our

training method takes a different approach by re-

moving the reliance on loss for validating a training

epoch. As is usual in model training, we use Cross

Entropy Loss during each training step to adjust

model weights, but we opt not to use this in our

epoch validation for early stopping, or for check-

pointing. Validation with loss or NLG metrics al-
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lows for “checkpointing” where the improvement

in outputs from each epoch of training can be com-

pared to previous epochs and the training can be

stopped early if the training is no longer improv-

ing. The use of early stopping and checkpointing

prevents overfitting to a given dataset by ensuring

the outputs remain generic. While loss is still used

to generate model weights, our method only uses

an NLG metric for validating each training epoch.

We train a BART Transformer model (Lewis

et al., 2020) on a source code summarisation task

using a variety of validation metrics. We present

a method of optimising pretraining to provide bet-

ter results by monitoring the validation metric

used, and checkpointing the best performing epoch.

When an epoch fails to improve, the model weights

are reverted to the best performing epoch, and the

training continues. After 5 training epochs have

failed to improve and a minimum of 20 training

epochs have taken place, training stops. We discuss

this in detail in Section 3.

1.1 Research questions
RQ.1 Does pretraining on English language data

improve model effectiveness for source code

summarisation?

To answer this question, we fine-tune two pre-

trained transformer models commonly used for

English summarisation tasks on our source code

summarisation task. We then evaluate these against

a suite of NLG metrics. Following this, we pre-

train the same two models with randomly initialised

weights on our source code summarisation task.

RQ.2 Does validating a model on LLM-based met-

rics improve the model’s predictions over

validating it on traditional, n-gram-based

NLG metrics?

To answer this question, we compare the over-

all metric results of those models validated using

n-gram-based metrics to those using BERTScore

(Zhang et al., 2019) and FrugalScore (Kamal Ed-

dine et al., 2022) to see if there is an improvement

in model training provided by using LLM-based

metrics. A measurable improvement caused by us-

ing LLM-based metrics for validation, rather than

n-gram-based metrics shows that LLM-based met-

rics’ improved ability to capture semantics allow

them to aid in generating better models for auto-

matic source code summarisation.

RQ.3 Does validating on a common NLG metric

from Table 2 cause the model to perform

better on NSCS?

We report whether any one metric is better for val-

idation (producing a model that gives more accu-

rate outputs) than others. Models such as Neu-

ralCodeSum (Ahmad et al., 2020) use Smoothed

BLEU-4 by default, but there is a wide variety of

available metrics which can be used. A measurable

improvement in the quality of outputs when the

model is evaluated against a series of metrics means

that this technique has the potential to be used in

generating better models for automatic source code

summarisation.

1.2 Contributions

We propose a new approach to the training and

validation of Transformer models for NSCS tasks,

which improves the quality of outputs, when com-

pared to similar models, without a significant in-

crease in the size or training time of a model. We

present CodeSumBART, a BARTBASE model, util-

ising this training approach to automatically sum-

marise Java source code.

2 Dataset

In order to train, validate, and evaluate the models,

we use the filtered version of LeClair and McMil-

lan (2019)’s Funcom dataset of Java source code

method - English language summary pairs, as done

in previous works by Mahmud et al. (2021) and

Phillips et al. (2022). We clean the dataset follow-

ing Phillips et al. (2022)’s approach, using their

Java implementation of the dataset cleaning tool1.

Phillips et al. (2022)’s method cleans the dataset

using the matched pairs of Java source code and

JavaDoc comments. The cleaning method uses

JavaParser (van Bruggen et al., 2020) to select

only compilable Java code and remove inline code

comments. It then finds the method summaries

from the JavaDoc by extracting the first line of

text with more than eight characters. We then fol-

low Phillips et al. (2022)’s steps: remove HTML

and special characters (characters which are not

alphanumeric, full-stops, apostrophes, or white

space) from the summary and lowercase it. Re-

peated method-summary pairs are then removed

from the dataset, which is trimmed from 1.2 mil-

lion pairs to roughly 500,000 pairs and split ran-

domly into 80% training, 10% validation, and 10%

evaluation datasets. This is the same split used by

Ahmad et al. (2020), Mahmud et al. (2021), and

1Phillips et al. (2022)’s dataset cleaning tool is found at
github.com/phillijm/JavaDatasetCleaner
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Phillips et al. (2022).

Training Validation Evaluation

399,999 49,999 49,999
80% 10% 10%

Table 1: Split of methods in the dataset.

Our dataset contains 499,997 method-summary

pairs from multiple projects, split randomly into

training, validation, and evaluation, as per Table 1.

3 Research methodology

We began by selecting the metrics we would use for

validating models during training and evaluating

models. The metrics chosen are as shown in Table

2: We selected BLEU-1 and BLEU-4, as well as

Smoothed BLEU-4. BLEU-1 is a metric frequently

used for evaluating summarisation, and Smoothed

BLEU-4 is the metric employed for epoch vali-

dation by previous work by Ahmad et al. (2020)

and Feng et al. (2020). METEOR can also be used

used to evaluate source code summarisation, and

is reported by Ahmad et al. (2020), Mahmud et al.

(2021), and Phillips et al. (2022).

In addition to these common summarisation met-

rics, we measure FrugalScore and BERTScore,

which utilise LLMs to compare if the meaning

of a machine-generated text matches the mean-

ing of a human-written one, rather than whether

the language used matches. LLM-based metrics

achieve this by capturing contextual embeddings.

The forward step of the model training remains un-

Metric

BLEU-1 & 4 & SMOOTHED BLEU-4

METEOR

FrugalScore

BERTScore

Table 2: Metrics used.

changed from the base model; during which Cross

Entropy Loss is calculated and used in creating

Model weights. During our model training, we val-

idate each epoch of training on a given NLG metric

from Table 2. We use this metric to better optimise

the performance of our model to the task by check-

pointing the best epoch and reverting epochs that

did not show improvement. When an epoch shows

improvement in the metric, it is checkpointed as the

best model; when an epoch fails to show improve-

ment in the metric, the model weights are reverted

to the weights of the best performing epoch from

these checkpoints before continuing training. We

also use checkpoints for early stopping the model

training. When a minimum threshold of 20 training

epochs have taken place, if five consecutive epochs

fail to provide any improvement to the model, we

stop training in order to prevent overfitting. In this

experiment, we also implemented a maximum of

200 training epochs for the same purpose, but did

not reach this limit in any of our training.

Our training and validation process is shown

in Figure 1. Our training dataset split of 399,999
method-summary pairs is used in the training step.

As we validate our model, we use a validation

split of 49,999 pairs. We use this data to calculate

an NLG metric, then compare the average metric

result to previous validation steps. If the model

has improved in the last 5 epochs (early-stopping

mechanism, x in Figure 1) and the model produced

the highest average metric score this epoch, these

model weights are saved as a checkpoint, and the

next epoch of training begins unless the maximum

number of training epochs (n in Figure 1) has been

reached. If the model has shown improvement in

the past 5 epochs, but has not improved in this

training epoch, the model weights are reverted to

the best scoring checkpoint. When this takes place,

a small amount of noise is added to the weights

in order to better prevent overfitting to the dataset

and to prevent the model from generating the same

model weights as the previous attempt. For this

purpose, we added Gaussian noise multiplied by

0.001 to each of the model weights individually. If

the model has not improved in the last 5 epochs,

the early stopping mechanism is called. When the

early stopping mechanism is called, or the maxi-

mum number of training epochs has been reached,

we evaluate the model against all of the metrics,

using the evaluation dataset split of 49,999 method-

summary pairs. To ensure reliable results, we set a

minimum of 20 training epochs. The results of our

evaluation can be found in Tables 4, 5, and 6.

3.1 Methodology for RQ.1

We selected two transformer models commonly

used for summarisation tasks: T5 (Raffel et al.,

2020) and BART (Lewis et al., 2020). We selected

these models due to their popularity, with each

model having a high number of citations on Google

Scholar and a high number of downloads on Hug-

gingFace, and the availability of low resource usage
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Training loop

Train model

Validate model
Calculate NLG metric

Model improved in last x epochs?

Model improved this epoch?

Revert to best scoring model weights

Add noise to model weights

Save model weights

Evaluate model

Max. epochs reached?

y

n

y

n

Repeat for n epochs

n y

Figure 1: Epoch-based training with NLG metric orientation and early stopping

versions of the model, T5SMALL and BARTBASE, al-

lowing us to train on machines which are commer-

cially available with a low environmental impact.

The T5SMALL pretrained model is trained on the

Colossal Clean Crawled Corpus (C4), proposed in

the same paper as the T5 model (Raffel et al., 2020).

C4 is a large English dataset, containing roughly

800GB of data extracted from the Common Crawl2

archive of text mined by crawling the web. The

BARTBASE pretrained model is trained on a variety

of tasks across several popular English datasets.

We fine-tuned these two pretrained models on

our source code summarisation task as described in

Section 3 and shown in Figure 1. We also trained

models of the same model architecture, without

English language pretraining and with randomly

initialised weights, on the same task. We trained

the models on a machine using an Intel Xeon
E5-2650 v4 CPU, 94GB RAM, and 4 NVIDIA Tesla
P100 GPUs running Python 3.9.16 with the Open

Cognitive Environment on Ubuntu 22.04.2 LTS.

For RQ.1, we used BLEU-1 as our validation met-

ric, due to its simplicity. We then compare these

models to ascertain whether either model architec-

ture is better for source code summarisation, and to

observe the effect of English language pretraining

on a model’s ability to summarise source code.

3.2 Methodology for RQ.2

We selected the best performing model from the

model training described in Section 3.1 (BARTBASE,

with randomly initialised weights). Following the

2commoncrawl.org

training method described previously, we trained a

series of BARTBASE models, each one validated on

a different metric from Table 2. Once the models

were trained, we evaluated each of them against

the evaluation dataset split on our full list of NLG

metrics in order to establish what effect, if any, the

validation metric has had on our model.

In order to establish a baseline to compare our

validation and training method against, we also

trained the same BARTBASE model on our dataset,

but without any metric used for validation. In this

baseline model, loss is calculated during the vali-

dation stage and used for checkpointing and early-

stopping of the training, but model weights are not

reverted based on the outcome of this loss. We

again used a maximum of 200 training epochs, and

a minimum of 20, with early stopping after 5 un-

successful training epochs. The difference between

this baseline training method and our own is the

lack of adjusting model weights after validation to

match those of the most successful training epoch.

We then compared the results of evaluating all

of our models, highlighting the best results from

our findings in Table 5. We sought to identify

any patterns in the effect that the choice of vali-

dation metric had on our training method, as well

as to identify whether using Large Language Model

(LLM)-based NLG metrics in our approach is able

to outperform traditional N-gram-based metrics.

3.3 Methodology for RQ.3

Following on from our findings in Section 4.2 re-

lating to RQ.2, we identified any validation metric
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which caused the model to outperform the mod-

els validated on other metrics by evaluating each

model on the evaluation dataset split, using all

metrics listed in Table 2. We present our best-

performing model, compared to other popular mod-

els for NSCS to show the improvement our model

presents compared to other solutions, in Table 6.

Training Validation Evaluation

164,775 5175 10,948
91% 3% 6%

Table 3: Split of methods in the CodeSearchNet dataset.

To test for overfitting to our dataset, We then

compared our model to other models on a differ-

ent dataset, CodeSearchNet (Husain et al., 2019).

We cleaned the CodeSearchNet dataset, following

the method Phillips et al. (2022) used for Funcom

(LeClair and McMillan, 2019). We trimmed the

dataset to valid Java methods only, then removed

repeat entries. We then stripped HTML data from

source code comments and extracted the method

summaries from them. We then lowercased and

removed special characters from the summaries

and stripped out newline characters (“\n”) from

both methods and summaries. As the dataset is pre-

split into testing, validation, and evaluation splits,

we maintained these splits. The size of dataset

splits for CodeSearchNet can be found in Table

3. We used the evaluation split of 10,948 method-

summary pairs in our evaluation of the models.

The source code used to train each of our mod-

els can be found on GitHub3. Each model took

between 2 - 4 days to run on one NVIDIA Tesla

P100 GPU, with the exception of the model trained

using METEOR, which took approximately a week,

being constrained by file read/write speeds due to

the nature of the script used to interface with the

METEOR metric.

Once we had completed this evaluation, and

compared our model to others within the domain

of Neural Source Code Summarisation, we trained

our model on the WMT 2016 DE-EN machine

translation task (Bojar et al., 2016), and evaluated

it against the same selection of metrics to gain

insight into the generalisability of these methods

when training models for tasks other than NSCS.

For this task, we used the original split of data of

4,548,884 training pairs, 2168 validation pairs, and

2998 evaluation pairs as provided by the dataset,

3GitHub: github.com/phillijm/CodeSumBART

with results shown in Table 7.

4 Result analysis

4.1 Results relating to RQ.1

As shown in Table 4, BARTBASE consistently outper-

forms T5SMALL for our source code summarisation

task. In answer to RQ.1: for BART, the model with

randomly initialised weights outperformed the one

with pretraining on a corpus of English data when

trained and evaluated on our source code summari-

sation task. T5 showed improvement caused by pre-

training with English language data, where BART

showed improvement by not doing so - although

both of these differences are small in comparison to

the difference between the two model architectures.

We suspect this is due to a mixture of three fac-

tors. First: the nature of the language used to sum-

marise source code, as technical and detailed lan-

guage, which differs from much of the language

used in pretraining, being news and conversational

language. Also, the source code summarisation

task requires the model to produce English outputs

from a Java input text, whereas pretraining tasks

on English language corpora require the model

to produce English outputs from English inputs.

Our results show that while English and Java share

many words, the syntax and grammar of the lan-

guage differ enough that pretraining models on

English data does not aid models in understand-

ing Java. Finally, the architecture of the models

themselves: T5SMALL makes use of 60 million pa-

rameters, whereas BARTBASE uses 140 million.

4.2 Results relating to RQ.2

After training and validation were complete, we

evaluated each of the models on our evaluation

dataset split against the ten metrics. We found,

from our evaluation results in Table 5, that training

the model using BLEU-4 and Smoothed BLEU-4

provides the best-performing models on our dataset.

The model trained using BLEU-1 in validation per-

forms less well than the non-unigram BLEU met-

rics. Models trained using METEOR perform simi-

larly, marginally outperforming BLEU-1.

Our results show that training models using

BERTScore or FrugalScore as a validation metric

in our training outperforms training without vali-

dation and optimisation, but does not perform as

well as training using traditional non-unigram n-

gram-based metrics for validation. Further work

is yet to be done to ascertain why this appears to
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Model
BLEU-1

BLEU-4
Sm. BLEU-4

METEOR

FrugalScore

BERTScore

Pretrained T5SMALL 50.23 24.69 24.98 21.76 71.77 68.75

T5SMALL* 49.39 23.48 23.78 50.95 71.21 67.97

Pretrained BARTBASE 51.87 26.22 26.50 23.28 72.50 70.23

BARTBASE* 52.74 27.33 27.59 23.84 73.12 70.75

* Models with weights randomly initialised

Table 4: Effects of English Pretraining

Metric BLEU-1
BLEU-4

Sm. BLEU-4

METEOR

FrugalScore

BERTScore

None (Baseline)* 41.77 12.71 13.15 16.62 64.25 62.09

BLEU-1 52.74 27.33 27.59 23.84 73.12 70.75

BLEU-4 53.58 30.41 30.66 24.96 73.59 71.70

Smoothed BLEU-4 54.24 31.23 31.47 25.27 73.48 71.20

METEOR 53.29 29.35 29.61 24.59 73.42 71.15

FrugalScore 47.63 20.13 20.45 20.27 69.86 67.53

BERTScore 52.80 27.49 27.76 23.90 73.14 71.14

* loss is calculated during validation and used for early stopping, but model weights are not reverted.

Table 5: Comparison of Evaluation Metrics

be the case. We suspect that due to these metrics

reliance on embeddings, rather than matching n-

grams, key words and phrases may be neglected

in generating summaries, leading to less accurate

summaries being generated.

4.3 Results relating to RQ.3

We note, from Table 5, that validation using the

BLEU-4 metric provides the best results on LLM-

based metrics, while Smoothed BLEU-4 performs

similarly and performs best on n-gram based met-

rics. From our testing, larger n-gram BLEU metrics

in validation appear to produce more accurate re-

sults, however, further work is needed to determine

the point at which this is no-longer the case.

In our evaluation, the model trained using ME-

TEOR in validation outperformed models trained

using BERTScore and FrugalScore, but was simi-

larly outperformed by BLEU-4.

We then evaluated our model validated us-

ing BLEU-4 against BARTBASE and two Neural-

CodeSum models; one pretrained following Ahmad

et al. (2020)’s methodology, and one pretrained

following Phillips et al. (2022)’s methodology, as

well as CodeBERT (Feng et al., 2020) and Graph-

CodeBERT (Guo et al., 2021). We evaluated it

against two NSCS tasks: our task, derived from

the Funcom Dataset (LeClair and McMillan, 2019),

and the evaluation task from Husain et al. (2019)’s

CodeSearchNet dataset.

On our task, our model significantly outper-

formed both NeuralCodeSum models as well

as CodeBERT, GraphCodeBERT, and BARTBASE

across all evaluation metrics.

We then processed the Evaluation split of the

Java dataset from Husain et al. (2019)’s Code-

SearchNet task. We processed this using Phillips

et al. (2022)’s dataset cleaning tool. Evaluat-

ing these models against the CodeSearchNet task,

we found our model consistently outperforms

the NeuralCodeSum models and BARTBASE (with

the exception of NeuralCodeSum evaluated on

BERTScore), and outperforms all models tested

when evaluated on BLEU-4, with CodeBERT scor-

ing highest on 4 metrics and GraphCodeBERT out-

performing other models when evaluated on BLEU-

1. These results can be seen in Table 6.

Our model-generated outputs have a high mean

Word Error Rate (WER) (Popović and Ney, 2007)

of approximately 56.6, despite a high BLEU-4. A

high WER, (in turn, derived from Levenshtein dis-

tance) (Levenshtein et al., 1966), shows that while

BLEU shows our model has generated key 4-gram

phrases which match the human-written summaries

of a method, the structuring of the sentence is

unique. Previous work by El-Haj et al. (2014) used

WER as a metric to compare pairs of texts as a

measure of similarity between two texts. We use
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Evaluated against Funcom (LeClair and McMillan, 2019)

Model
BLEU-1

BLEU-4
Sm. BLEU-4

METEOR

FrugalScore

BERTScore

CodeSumBART 53.58 30.41 30.66 24.96 73.59 71.70
BARTBASE 3.16 0.07 0.28 4.83 43.80 31.60

NeuralCodeSum 24.07 2.67 2.67 8.75 53.28 59.95

NeuralCodeSum* 33.71 20.30 20.30 19.11 64.66 69.02

CodeBERT 23.06 1.93 19.33 15.72 60.86 67.30

GraphCodeBERT 24.04 1.89 19.35 13.84 60.75 66.78

Evaluated against CodeSearchNet (Husain et al., 2019)

Model
BLEU-1

BLEU-4
Sm. BLEU-4

METEOR

FrugalScore

BERTScore

CodeSumBART 27.52 5.02 5.71 10.85 60.20 56.97

BARTBASE 3.08 0.09 0.23 5.14 47.65 30.18

NeuralCodeSum 19.96 2.02 2.02 7.64 52.83 58.98

NeuralCodeSum* 2.49 0.71 0.71 5.71 50.73 52.79

CodeBERT 24.30 3.94 17.96 12.55 62.23 68.37
GraphCodeBERT 38.42 3.22 17.50 12.31 62.19 68.15

* A NeuralCodeSum model pretrained following Phillips et al. (2022)’s methodology.

Table 6: Comparison of Source Code Summarisation Models Using two Datasets

WER to compare prediction and reference texts

for source code summaries. Example outputs and

WERs can be seen in Appendix A.

Metric Result

BLEU-1 66.67

BLEU-4 36.57

Smoothed BLEU-4 36.66

METEOR 35.82

FrugalScore 83.37

BERTScore 80.10

Table 7: CodeSumBART trained on WMT 2016 DE-EN

dataset

When we trained our model on the WMT 2016

DE-EN translation task (Bojar et al., 2016), we

found that our model provided results (seen in Ta-

ble 7) which are similar to our model when trained

and evaluated on our NSCS task. These results

suggest that our methods can be applied to model

training in other domains, outside of NSCS.

4.4 Statistical correlation of results
Using the evaluation metrics from Table 2, we

evaluated each output our model produced on the

evaluation split from our dataset. We then used

Spearman’s Rank Correlation Coefficient, ρ, to

check the correlation between each metric. We

found a strong, positive correlation between all

metrics even when the sample size is reduced to a

1% random sample of the data. The lowest value

of Spearman’s rank correlation coefficient was 0.71

between BERTScore and BLEU-4, this pair also pro-

vided our largest p-value: 8.87∗10−71 - suggesting

a statistically significant result. These results can

be seen in Appendix B. The high correlation shows

agreement between the metrics; predictions rated

highly by one metric are rated highly by the oth-

ers, suggesting that these metrics are approximately

equally capable of evaluating NSCS tasks.

5 Related work

In 2021, Rauf et al. (2021) analysed ten years of

research into developer behaviour regarding secure

coding practices, with regards to developer psy-

chology, discovering barriers developers face to

secure coding. Later, Khan et al. (2022) identify an

extensive list of security risks in practice, including

a lack of secure development or coding.

Similarly, Rindell et al. (2021) conducted a study

of security practices in agile development. They

found that while security is implemented in vari-

ous ways in agile environments, models such as

SSDLC for ensuring secure development are rarely

implemented in their entirety. They also note a

positive correlation between increased agility and

increased security engineering practices.

The Transformer neural network model was in-

troduced by Vaswani et al. (2017) as a general-

23



purpose neural network. Since then, the Trans-

former has become a ubiquitous model for many

NLP tasks. Much work has been done to advance

the Transformer model; BART (Lewis et al., 2020)

uses an architecture which combines both bidirec-

tional and auto-regressive transformers to build a

model. Raffel et al. (2020) introduced T5, a sim-

ple transformer model, which treats all tasks as

text-to-text problems, using transfer learning.

Optimising model training by optimising a

model’s parameters with respect to evaluation met-

rics is a concept initially developed by Shen et al.

(2016) in the form of Minimum Risk Training

(MRT). MRT aims to optimise model parameters

by minimising loss in terms of evaluation metrics.

Norouzi et al. (2016) present an alternative algo-

rithm, Reward Augmented Maximum Likelihood

(RML). RML builds on maximum likelihood esti-

mation, adding a step where log-likelihood is opti-

mised on rewards for possible outputs.

Recent works have applied the Transformer

model architecture to NSCS. CodeBERT (Feng

et al., 2020) and NeuralCodeSum (Ahmad et al.,

2020) use Transformer-based models to summarise

source code, with CodeBERT being a bidirectional

Transformer model. Mahmud et al. (2021) com-

pare these two Transformer models, as well as

Code2Seq (Alon et al., 2018) on the Funcom

dataset (LeClair and McMillan, 2019). Phillips

et al. (2022) establishes a method of cleaning Fun-

com to allow for better training and evaluation of a

NeuralCodeSum model, as well as introducing the

use of an LLM-based metric for evaluating NSCS.

Recent work by Haque et al. (2023) focuses on al-

tering the training process to produce better models

for NSCS tasks by using label smoothing. Zhou

et al. (2023) propose an alternative improved train-

ing approach for models for NSCS tasks by using

“meta-learning” to transform the training process

into a few-shot deep learning task. Mastropaolo

et al. (2024) propose a model, STUNT, built on

T5SMALL, for NSCS tasks. STUNT’s training re-

lies on a comment classification model, SALOON,

for generating training data as it is trained on snip-

pets of code and related summaries found in code

comments, not methods and method summaries.

Taviss et al. (2023)’s Asm2Seq model is de-

signed to generate natural language summaries of

x86 and AMD64 assembly code for the purpose of

aiding in vulnerability analysis.

Stapleton et al. (2020) take a human approach

to evaluating source code summarisation. Staple-

ton et al. (2020) found that “data suggests that

participants did not see a clear difference in qual-

ity between human-written and machine generated

comments”; finding developers’ ratings to be an

unreliable predictor of how much a summary helps

them - and that developer intuition may be poor at

assessing the relevancy of information.

Large Language Models have increasingly

been used to generate metrics for NLG tasks.

BERTScore (Zhang et al., 2019) and MoverScore

(Zhao et al., 2019) being two examples of these met-

rics. These are large models, with a sizeable envi-

ronmental impact when implemented at large scale.

Kamal Eddine et al. (2022)’s FrugalScore seeks to

solve this by reducing the number of parameters

used while retaining accuracy. FrugalScore learns

from the internal mapping of LLMs to produce a

smaller language model with similar accuracy.

6 Conclusion

We present CodeSumBART, an improved Trans-

former model for automatic source code summari-

sation. Our model uses a new training method to

achieve a high degree of accuracy by validating

the results of each training epoch against an NLG

metric and using that validation performance to re-

vert model weights from under-performing training

epochs to those from the best-performing epoch.

Our findings show that our training provides

an improved method of training transformer mod-

els for automatic source code summarisation.

CodeSumBART outperforms state-of-the-art mod-

els in evaluation across several metrics and pro-

duces outputs comparable to human-written sum-

maries to within a high degree of accuracy in two

Java source code summarisation tasks. This model

can be applied to Java source code methods to aid

in the secure development process by reducing the

cognitive load on developers. The model and train-

ing method we have created could be used to enable

more secure software development through integra-

tion into developer tools to summarise new source

code methods as they are written, and summarise

legacy code methods for easier maintenance.

Following this work, we intend to continue to

investigate the role that NSCS models can play in

cybersecurity, focussing on the potential applica-

tion of NSCS on bug and vulnerability patch data,

using human evaluation alongside NLG metrics.
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7 Limitations

In this paper, we have only used a dataset for the

summarisation of Java source code in English. Fur-

ther research is required to establish the validity of

our results in the setting of other languages, particu-

larly our findings for RQ.1, with respect to whether

transformer models pretrained on English data per-

form better or worse on tasks summarising source

code in different languages.

Our work also only focused on small Trans-

former models. While our models can be run on

most commercially available workstations with lit-

tle environmental impact, larger scale Transform-

ers and LLMs present exciting opportunities for

source code summarisation, which we have not

investigated as part of this paper.

We also chose to evaluate our results against a

suite of traditional and LLM-based NLG metrics.

While these metrics are all designed with the aim

of complementing and being comparable to human

expert evaluation, future work could be done to

compare these metrics to human evaluation in the

domain of source code summarisation.

8 Ethics statement

The first ethical consideration of our research is

the environmental impact of our research. We have

taken steps to minimize this impact by choosing to

training small models on commercially available

workstation machines. Any future research into

whether larger models are capable of outperform-

ing the results we have achieved will have a larger

environmental impact.

We also considered the dataset we have used.

The data itself is comprised of publicly available

Java source code, and the primary dataset we

have used was compiled by LeClair and McMillan

(2019). We also used data from the CodeSearch-

Net dataset (Husain et al., 2019), which is derived

from open source projects on GitHub with licenses

which permit the re-distribution of parts of code.
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