List of publications using the CASINO quantum Monte Carlo code

If you notice errors or omissions then please email either Mike Towler ("mdt26", followed by "@", followed by "cantab.net"), Neil Drummond ("n.drummond", followed by "@", followed by "lancaster.ac.uk") or Pablo López Ríos ("p.lopez.rios", followed by "@", followed by "fkf.mpg.de"). Thanks!

Required citation for publications using CASINO: R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ríos and J. R. Trail, Variational and diffusion quantum Monte Carlo calculations with the CASINO code, J. Chem. Phys. 152, 154106 (2020).

List updated: Wed 11 Sep 15:42:44 BST 2024

[1] F. Della Pia, A. Zen, D. Alfè and A. Michaelides, How accurate are simulations and experiments for the lattice energies of molecular crystals?, Phys. Rev. Lett. 133, 046401 (2024). [ DOI | http ]
[2] K. Morawetz, V. Ashokan, K. N. Pathak, N. Drummond and G. Cuniberti, Electronic quantum wires in extended quasiparticle picture, Phys. Rev. B 109, 205116 (2024). [ DOI | http ]
[3] S. M. Hosseini, A. Alavi and P. López Ríos, X marks the spot: Accurate energies from intersecting extrapolations of continuum quantum Monte Carlo data, J. Chem. Phys. 160, 194104 (2024). [ DOI | http ]
[4] W. Dobrautz, I. O. Sokolov, K. Liao, P. López Ríos, M. Rahm, A. Alavi and I. Tavernelli, Toward real chemical accuracy on current quantum hardware through the transcorrelated method, J. Chem. Theory Comput. 20, 4146 (2024). [ DOI | http ]
[5] Y. Dong, L. Deng, Y. H. Li, M. Luo, J. D. Liu, H. J. Zhang and B. J. Ye, Quantum Monte Carlo study of correlation energy and pair correlation function at various electron-positron density ratios: Accurate calculation of positron annihilation lifetimes in solids, Phys. Rev. B 109, 104104 (2024). [ DOI | http ]
[6] X. Zhou, Z. Huang and X. He, Diffusion Monte Carlo method for barrier heights of multiple proton exchanges and complexation energies in small water, ammonia, and hydrogen fluoride clusters, J. Chem. Phys. 160, 054103 (2024). [ DOI | http ]
[7] B. Brito, G.-Q. Hai and L. Cândido, From structure to surface tension of small silicon clusters by quantum Monte Carlo simulations, Surf. Sci. 747, 122507 (2024). [ DOI | http ]
[8] D. Kats, E. M. C. Christlmaier, T. Schraivogel and A. Alavi, Orbital optimisation in xTC transcorrelated methods, Faraday Discuss. pp. -- (2024). [ DOI | http ]
[9] G. J. Bean, N. D. Drummond and J. Ruostekoski, Propagation of light in cold emitter ensembles with quantum position correlations due to static long-range dipolar interactions, Phys. Rev. Res. 6, 013078 (2024). [ DOI | http ]
[10] Z. Huang, Z. Wang, X. Zhou and F. Wang, Diffusion quantum Monte Carlo study on magnesium clusters as large as nanoparticles, J. Chem. Phys. 159, 224302 (2023). [ DOI | http ]
[11] X. Zhou, Z. Cao, F. Wang and Z. Wang, Barrier heights reaction energies and bond dissociation energies for RH + HO2 reactions with coupled-cluster theory density functional theory and diffusion quantum Monte Carlo methods, Phys. Chem. Chem. Phys. 25, 341 (2023). [ DOI | http ]
[12] Y. S. Al-Hamdani, A. Zen and D. Alfè, Unraveling H2 chemisorption and physisorption on metal decorated graphene using quantum Monte Carlo, J. Chem. Phys. 159, 204708 (2023). [ DOI | http ]
[13] B. X. Shi, A. Zen, V. Kapil, P. R. Nagy, A. Grüneis and A. Michaelides, Many-body methods for surface chemistry come of age: Achieving consensus with experiments, J. Am. Chem. Soc. 145, 25372 (2023). [ DOI | http ]
[14] M. Ochi, Fully self-consistent optimization of the Jastrow-Slater-type wave function using a similarity-transformed Hamiltonian, Phys. Rev. A 108, 032806 (2023). [ DOI | http ]
[15] S. Azadi, N. D. Drummond and S. M. Vinko, Correlation energy of the spin-polarized electron liquid studied using quantum Monte Carlo simulations, Phys. Rev. B 108, 115134 (2023). [ DOI | http ]
[16] K. A. Simula and I. Makkonen, Calculation of the energies of the multideterminant states of the nitrogen vacancy center in diamond with quantum Monte Carlo, Phys. Rev. B 108, 094108 (2023). [ DOI | http ]
[17] E. Mostaani, R. J. Hunt, D. M. Thomas, M. Szyniszewski, A. R.-P. Montblanch, M. Barbone, M. Atatüre, N. D. Drummond and A. C. Ferrari, Charge carrier complexes in monolayer semiconductors, Phys. Rev. B 108, 035420 (2023). [ DOI | http ]
[18] K. A. Simula, J. Härkönen, I. Zhelezova, N. D. Drummond, F. Tuomisto and I. Makkonen, Quantum Monte Carlo study of Doppler broadening of positron annihilation radiation in semiconductors and insulators, Phys. Rev. B 108, 045201 (2023). [ DOI | http ]
[19] R. Tyagi, A. Zen and V. K. Voora, Quantifying the impact of halogenation on intermolecular interactions and binding modes of aromatic molecules, J. Phys. Chem. A 127, 5823 (2023). [ DOI | http ]
[20] B. G. A. Brito, G.-Q. Hai and L. Cândido, Investigating the role of carbon doping on the structural and energetic properties of small aluminum clusters using quantum Monte Carlo, J. Chem. Phys. 158, 224305 (2023). [ DOI | http ]
[21] T. Schraivogel, E. M. Christlmaier, P. López Ríos, A. Alavi and D. Kats, Transcorrelated coupled cluster methods. II. molecular systems, J. Chem. Phys. 158, 214106 (2023). [ DOI | http ]
[22] J. P. Haupt, S. M. Hosseini, P. López Ríos, W. Dobrautz, A. Cohen and A. Alavi, Optimizing Jastrow factors for the transcorrelated method, J. Chem. Phys. 158, 224105 (2023). [ DOI | http ]
[23] S. Ito, D. Yoshida, Y. Kita, T. Shimazaki and M. Tachikawa, Stability and bonding nature of positronic lithium molecular dianion, J. Chem. Phys. 158, 204303 (2023). [ DOI | http ]
[24] A. Girdhar and V. Ashokan, Wigner crystallization in quasi-one-dimensional quantum wire, Discover Materials 3, 11 (2023). [ DOI | http ]
[25] I. Amelio, N. D. Drummond, E. Demler, R. Schmidt and A. Imamoglu, Polaron spectroscopy of a bilayer excitonic insulator, Phys. Rev. B 107, 155303 (2023). [ DOI | http ]
[26] S. Azadi, N. D. Drummond and S. M. Vinko, Correlation energy of the paramagnetic electron gas at the thermodynamic limit, Phys. Rev. B 107, L121105 (2023). [ DOI | http ]
[27] A. Girdhar, V. Ashokan, R. O. Sharma, N. D. Drummond and K. N. Pathak, Wire-width and electron-density dependence of the crossover in the peak of the static structure factor from 2kF -> 4kF in one-dimensional paramagnetic electron gases, Phys. Rev. B 107, 115414 (2023). [ DOI | http ]
[28] L. Deng, Y. Yuan, F. L. Pratt, W. Zhang, Z. Pan and B. Ye, Two-component density functional theory study of quantized muons in solids, Phys. Rev. B 107, 094433 (2023). [ DOI | http ]
[29] G. L. Rech, A. L. Martinotto, J. E. Zorzi and C. A. Perottoni, Pressure-induced second-order phase transition in fluorine, Phys. Chem. Chem. Phys. 25, 9935 (2023). [ DOI | http ]
[30] L. Deng, Y. Yuan, F. Pratt, Z. Pan and B. Ye, Pair-correlation function study of the proton-electron system: A method to calculate the contact hyperfine couplings within two-component density functional theory, Phys. Lett. A 480, 128973 (2023). [ DOI | http ]
[31] W. F. Angelotti, R. L. Haiduke and A. B. da Silva, Diffusion Monte Carlo investigation of electronic structure properties for 13-atom alkali metal clusters, Chem. Phys. 565, 111767 (2023). [ DOI | http ]
[32] B. Brito, G.-Q. Hai and L. Cândido, Investigating the effects of oxygen doping on the structural and electronic properties of small lithium clusters using density functional theory, quantum Monte Carlo, and Hartree-Fock calculations, Chem. Phys. Lett. 831, 140856 (2023). [ DOI | http ]
[33] G. L. Rech, A. L. Martinotto, J. E. Zorzi and C. A. Perottoni, Pressure-induced second-order phase transition in fluorine, Phys. Chem. Chem. Phys. 25, 9935 (2023).
[34] G. Cassella, H. Sutterud, S. Azadi, N. D. Drummond, D. Pfau, J. S. Spencer and W. M. C. Foulkes, Discovering quantum phase transitions with fermionic neural networks, Phys. Rev. Lett. 130, 036401 (2023). [ DOI | http ]
[35] F. Marsusi, E. Mostaani and N. D. Drummond, Quantum Monte Carlo study of three-dimensional Coulomb complexes: Trions and biexcitons, hydrogen molecules and ions, helium hydride cations, and positronic and muonic complexes, Phys. Rev. A 106, 062822 (2022). [ DOI | http ]
[36] K. A. Simula, J. E. Muff, I. Makkonen and N. D. Drummond, Quantum Monte Carlo study of positron lifetimes in solids, Phys. Rev. Lett. 129, 166403 (2022). [ DOI | http ]
[37] F. Della Pia, A. Zen, D. Alfè and A. Michaelides, DMC-ICE13: Ambient and high pressure polymorphs of ice from diffusion Monte Carlo and density functional theory, J. Chem. Phys. 157, 134701 (2022). [ DOI | http ]
[38] V. Kapil, C. Schran, A. Zen, J. Chen, C. J. Pickard and A. Michaelides, The first-principles phase diagram of monolayer nanoconfined water, Nature 609, 512 (2022). [ DOI | http ]
[39] S. Azadi and N. D. Drummond, Low-density phase diagram of the three-dimensional electron gas, Phys. Rev. B 105, 245135 (2022). [ DOI | http ]
[40] D. M. Thomas, Y. Asiri and N. D. Drummond, Point defect formation energies in graphene from diffusion quantum Monte Carlo and density functional theory, Phys. Rev. B 105, 184114 (2022). [ DOI | http ]
[41] T. Ichibha, V. A. Neufeld, K. Hongo, R. Maezono and A. J. W. Thom, Making the most of data: Quantum Monte Carlo postanalysis revisited, Phys. Rev. E 105, 045313 (2022). [ DOI | http ]
[42] A. Girdhar, V. Ashokan, N. D. Drummond, K. Morawetz and K. N. Pathak, Electron correlation and confinement effects in quasi-one-dimensional quantum wires at high density, Phys. Rev. B 105, 115140 (2022). [ DOI | http ]
[43] L. Rao and F. Wang, Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals, J. Chem. Phys. 156, 124308 (2022). [ DOI | http ]
[44] Y. Motoyama, K. Yoshimi, T. Kato and S. Todo, Materiapps live! and materiapps installer: Environment for starting and scaling up materials science simulations, SoftwareX 20, 101210 (2022). [ DOI | http ]
[45] Z. Gao, X. Cheng and M. Zhao, Ab initio diffusion quantum Monte Carlo study of the structural and electronic properties of small lithium-chloride LinCl0,1+ (n=1-7) clusters, Comput. Theor. Chem. 1214, 113781 (2022). [ DOI | http ]
[46] B. Brito, G.-Q. Hai and L. Cândido, Fixed-node diffusion Monte Carlo simulation of small ionized carbon clusters, Chem. Phys. Lett. 804, 139888 (2022). [ DOI | http ]
[47] K. Ishii, T. Shimazaki, M. Tachikawa and Y. Kita, Development of anharmonic vibrational structure theory using backflow transformation, Chem. Phys. Lett. 787, 139263 (2022). [ DOI | http ]
[48] E. M. I. Moreira, B. G. A. Brito, G.-Q. Hai and L. Cândido, Electron correlation effects in boron clusters BQn (for Q=-1, 0, 1 and n <=13) based on quantum Monte Carlo simulations, Phys. Chem. Chem. Phys. 24, 3119 (2022). [ DOI | http ]
[49] A. T. Hanindriyo, A. K. S. Yadav, T. Ichibha, R. Maezono, K. Nakano and K. Hongo, Diffusion Monte Carlo evaluation of disiloxane linearisation barrier, Phys. Chem. Chem. Phys. 24, 3761 (2022). [ DOI | http ]
[50] N. Barbosa, M. Pagliai, S. Sinha, V. Barone, D. Alfè and G. Brancato, Enhancing the accuracy of ab initio molecular dynamics by fine tuning of effective two-body interactions: Acetonitrile as a test case, J. Phys. Chem. A 125, 10475 (2021). [ DOI | http ]
[51] S. Azadi, N. D. Drummond and W. M. C. Foulkes, Quasiparticle effective mass of the three-dimensional Fermi liquid by quantum Monte Carlo, Phys. Rev. Lett. 127, 086401 (2021). [ DOI | http ]
[52] L. Cândido, B. G. A. Brito, J. N. Teixeira Rabelo and G.-Q. Hai, Electronic structure of nanoclusters by quantum Monte Carlo methods, J. Clust. Sci. 32, 813 (2021). [ DOI | http ]
[53] R. O. Sharma, N. D. Drummond, V. Ashokan, K. N. Pathak and K. Morawetz, Ground-state properties of electron-electron biwire systems, Phys. Rev. B 104, 035149 (2021). [ DOI | http ]
[54] J. K. Desmarais, W. Bi, J. Zhao, M. Y. Hu, E. Alp and J. S. Tse, 57Fe Mössbauer isomer shift of pure iron and iron oxides at high pressure-An experimental and theoretical study, J. Chem. Phys. 154, 214104 (2021). [ DOI | http ]
[55] Y. S. Al-Hamdani, P. R. Nagy, A. Zen, D. Barton, M. Kállay, J. G. Brandenburg and A. Tkatchenko, Interactions between large molecules pose a puzzle for reference quantum mechanical methods, Nat. Commun. 12, 3927 (2021). [ DOI | http ]
[56] B. G. A. Brito, E. L. Verde, G.-Q. Hai and L. Cândido, Probing the ground-state structural transition in small lithium clusters by quantum Monte Carlo simulations, J. Mol. Model. 27, 207 (2021). [ DOI | http ]
[57] Y. Nikaido, T. Ichibha, K. Nakano, K. Hongo and R. Maezono, GaN bandgap bias caused by semi-core treatment in pseudopotentials analyzed by the diffusion Monte Carlo method, AIP Advances 11, 025225 (2021). [ DOI | http ]
[58] P. E. Hoggan, Chapter eight - quantum Monte Carlo with ground-state input to investigate platinum-doped aluminum catalyst: H2 production from adsorbed CO, in M. Musial and P. E. Hoggan, eds., New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes, vol. 83 of Adv. Quantum Chem., pp. 155--170, Academic Press (2021). [ DOI | http ]
[59] A. W. Bray and C. Simenel, Fermions with long and finite-range interactions on a quantum ring, Phys. Rev. C 103, 014302 (2021). [ DOI | http ]
[60] V. G. de Pina, B. G. A. Brito, G.-Q. Hai and L. Cândido, Quantifying electron-correlation effects in small coinage-metal clusters via ab initio calculations, Phys. Chem. Chem. Phys. 23, 9832 (2021). [ DOI | http ]
[61] Y. Peng, X. Zhou, Z. Wang and F. Wang, Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions, J. Chem. Phys. 154, 024301 (2021). [ DOI | http ]
[62] S. Slizovskiy, A. Garcia-Ruiz, A. I. Berdyugin, N. Xin, T. Taniguchi, K. Watanabe, A. K. Geim, N. D. Drummond and V. I. Fal'ko, Out-of-plane dielectric susceptibility of graphene in twistronic and Bernal bilayers, Nano Lett. 21, 6678 (2021). [ DOI | http ]
[63] R. O. Sharma, T. T. Rantala and P. E. Hoggan, Quantum Monte Carlo approach for determining the activation barrier of water addition to carbon monoxide adsorbed on Pt(111) within 1 kJ/mol, J. Phys. Chem. C 124, 26232 (2020). [ DOI | http ]
[64] S. Azadi, G. H. Booth and T. D. Kühne, Equation of state of atomic solid hydrogen by stochastic many-body wave function methods, J. Chem. Phys. 153, 204107 (2020). [ DOI | http ]
[65] J. Guo, L. Zhou, A. Zen, A. Michaelides, X. Wu, E. Wang, L. Xu and J. Chen, Hydration of NH4+ in water: Bifurcated hydrogen bonding structures and fast rotational dynamics, Phys. Rev. Lett. 125, 106001 (2020). [ DOI | http ]
[66] R. J. Hunt, B. Monserrat, V. Zólyomi and N. D. Drummond, Diffusion quantum Monte Carlo and GW study of the electronic properties of monolayer and bulk hexagonal boron nitride, Phys. Rev. B 101, 205115 (2020). [ DOI | http ]
[67] C. M. Carvalho, R. Gargano, J. B. Martins and J. R. S. Politi, Accurate spectroscopic properties by diffusion quantum Monte Carlo calculations, Spectrochim. Acta A 243, 118707 (2020). [ DOI | http ]
[68] A. D. Powell, G.-J. Kroes and K. Doblhoff-Dier, Quantum Monte Carlo calculations on dissociative chemisorption of H2+Al(110): Minimum barrier heights and their comparison to DFT values, J. Chem. Phys. 153, 224701 (2020). [ DOI | http ]
[69] S. Ito, D. Yoshida, Y. Kita and M. Tachikawa, First-principles quantum Monte Carlo studies for prediction of double minima for positronic hydrogen molecular dianion, J. Chem. Phys. 153, 224305 (2020). [ DOI | http ]
[70] K. Ishii, M. Tashikawa and Y. Kita, Development of accurate anharmonic vibrational state theory using a novel vibrational coordinate based on backflow transformation, J. Physics: Conf. Ser. 1412, 142013 (2020). [ DOI ]
[71] R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ríos and J. R. Trail, Variational and diffusion quantum Monte Carlo calculations with the CASINO code, J. Chem. Phys. 152, 154106 (2020). [ DOI | http ]
[72] R. O. Sharma, T. T. Rantala and P. E. Hoggan, Selective hydrogen production at Pt(111) investigated by quantum Monte Carlo methods for metal catalysis, Int. J. Quantum Chem. 120, e26198 (2020). [ DOI | http ]
[73] R. Resende, R. Ribeiro, W. Waldman, N. Cruz, J. Araujo and E. Rangel, Improvement of thermoplastic elastomer degradation resistance by low-energy plasma immersion ion bombardment, Mater. Chem. Phys. 242, 122467 (2020). [ DOI | http ]
[74] K. S. Qin, T. Ichibha, K. Hongo and R. Maezono, Inconsistencies in ab initio evaluations of non-additive contributions of DNA stacking energies, Chem. Phys. 529, 110554 (2020). [ DOI | http ]
[75] A. Mohammadi, S. Nasiri and M. Zahedi, Coupled cluster and quantum Monte-Carlo study of anionic hydrogen clusters Hn- 3<=n( odd) <=11, Chem. Phys. Lett. 744, 137216 (2020). [ DOI | http ]
[76] E. Isaac Moreira, B. Brito, G.-Q. Hai and L. Cândido, A quantum Monte Carlo study of the structural and electronic properties of small boron clusters Bn (n=1,...,13), Chem. Phys. Lett. 754, 137636 (2020). [ DOI | http ]
[77] L. Cândido, B. G. A. Brito, J. N. Teixeira Rabelo and G.-Q. Hai, Electronic structure of nanoclusters by quantum Monte Carlo methods, J. Clust. Sci. (2020). [ DOI | http ]
[78] S. Azadi and W. M. C. Foulkes, Efficient method for grand-canonical twist averaging in quantum Monte Carlo calculations, Phys. Rev. B 100, 245142 (2019). [ DOI | http ]
[79] X. Zhou, H. Zhao, T. Wang and F. Wang, Diffusion quantum Monte Carlo calculations with a recent generation of effective core potentials for ionization potentials and electron affinities, Phys. Rev. A 100, 062502 (2019). [ DOI | http ]
[80] S. Azadi and T. D. Kühne, Unconventional phase III of high-pressure solid hydrogen, Phys. Rev. B 100, 155103 (2019). [ DOI | http ]
[81] F. Vialla, M. Danovich, D. A. Ruiz-Tijerina, M. Massicotte, P. Schmidt, T. Taniguchi, K. Watanabe, R. J. Hunt, M. Szyniszewski, N. D. Drummond, T. G. Pedersen, V. I. Fal'ko and F. H. L. Koppens, Tuning of impurity-bound interlayer complexes in a van der Waals heterobilayer, 2D Mater. 6, 035032 (2019). [ DOI | http ]
[82] J. Li, N. D. Drummond, P. Schuck and V. Olevano, Comparing many-body approaches against the helium atom exact solution, SciPost Phys. 6, 40 (2019). [ DOI | http ]
[83] D. M. Thomas, R. J. Hunt, N. D. Drummond and M. Hayne, Binding energies of excitonic complexes in type-II quantum rings from diffusion quantum Monte Carlo calculations, Phys. Rev. B 99, 115306 (2019). [ DOI | http ]
[84] R. O. Sharma and P. E. Hoggan, Chapter fourteen - physisorption energy of H and H2 on clean Pt(111) as a useful surface energy reference in quantum Monte Carlo calculation, in L. U. Ancarani and P. E. Hoggan, eds., State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More, vol. 79 of Adv. Quantum Chem., pp. 311 -- 322, Academic Press (2019). [ DOI | http ]
[85] A. Zen, J. G. Brandenburg, A. Michaelides and D. Alfè, A new scheme for fixed node diffusion quantum Monte Carlo with pseudopotentials: Improving reproducibility and reducing the trial-wave-function bias, J. Chem. Phys. 151, 134105 (2019). [ DOI | http ]
[86] Y. Y. F. Liu, B. Andrews and G. J. Conduit, Direct evaluation of the force constant matrix in quantum Monte Carlo, J. Chem. Phys. 150, 034104 (2019). [ DOI | http ]
[87] J. G. Brandenburg, A. Zen, M. Fitzner, B. Ramberger, G. Kresse, T. Tsatsoulis, A. Grüneis, A. Michaelides and D. Alfè, Physisorption of water on graphene: Subchemical accuracy from many-body electronic structure methods, J. Phys. Chem. Letters 10, 358 (2019). [ DOI | http ]
[88] C.-R. Hsing, C.-M. Chang, C. Cheng and C.-M. Wei, Quantum Monte Carlo studies of CO adsorption on transition metal surfaces, J. Phys. Chem. C 123, 15659 (2019). [ DOI | http ]
[89] T. Wang, X. Zhou and F. Wang, Performance of the diffusion quantum Monte Carlo method with a single-Slater-Jastrow trial wavefunction using natural orbitals and density functional theory orbitals on atomization energies of the gaussian-2 set, J. Phys. Chem. A 123, 3809 (2019). [ DOI | http ]
[90] V. Wineman-Fisher, Y. Al-Hamdani, I. Addou, A. Tkatchenko and S. Varma, Ion-hydroxyl interactions: From high-level quantum benchmarks to transferable polarizable force fields, J. Chem. Theory Comput. 15, 2444 (2019). [ DOI | http ]
[91] V. Konkov and R. Peverati, QMC-SW: A simple workflow for quantum Monte Carlo calculations in chemistry, SoftwareX 9, 7 (2019). [ DOI | http ]
[92] X. Zhou and F. Wang, Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants, Phys. Chem. Chem. Phys. 21, 20422 (2019). [ DOI | http ]
[93] B. G. A. Brito, G.-Q. Hai and L. Cândido, Quantum Monte Carlo study on the structures and energetics of cyclic and linear carbon clusters Cn (n=1,...,10), Phys. Rev. A 98, 062508 (2018). [ DOI | http ]
[94] M. Ruggeri, P. López Ríos and A. Alavi, Correlation energies of the high-density spin-polarized electron gas to meV accuracy, Phys. Rev. B 98, 161105 (2018). [ DOI | http ]
[95] M. A. Flores, W. Orellana and E. Menéndez-Proupin, Accuracy of the Heyd-Scuseria-Ernzerhof hybrid functional to describe many-electron interactions and charge localization in semiconductors, Phys. Rev. B 98, 155131 (2018). [ DOI | http ]
[96] V. Ashokan, N. D. Drummond and K. N. Pathak, One-dimensional electron fluid at high density, Phys. Rev. B 98, 125139 (2018). [ DOI | http ]
[97] K. Doblhoff-Dier, G.-J. Kroes and F. Libisch, Density functional embedding for periodic and nonperiodic diffusion Monte Carlo calculations, Phys. Rev. B 98, 085138 (2018). [ DOI | http ]
[98] R. J. Hunt, M. Szyniszewski, G. I. Prayogo, R. Maezono and N. D. Drummond, Quantum Monte Carlo calculations of energy gaps from first principles, Phys. Rev. B 98, 075122 (2018). [ DOI | http ]
[99] B. Monserrat, N. D. Drummond, P. Dalladay-Simpson, R. T. Howie, P. López Ríos, E. Gregoryanz, C. J. Pickard and R. J. Needs, Structure and metallicity of phase V of hydrogen, Phys. Rev. Lett. 120, 255701 (2018). [ DOI | http ]
[100] S. Azadi and T. D. Kühne, Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings, Phys. Rev. B 97, 205428 (2018). [ DOI | http ]
[101] M. Danovich, D. A. Ruiz-Tijerina, R. J. Hunt, M. Szyniszewski, N. D. Drummond and V. I. Fal'ko, Localized interlayer complexes in heterobilayer transition metal dichalcogenides, Phys. Rev. B 97, 195452 (2018). [ DOI | http ]
[102] R. O. Sharma, L. K. Saini and B. P. Bahuguna, Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study, J. Phys. Condens. Mater. 30, 185404 (2018). [ DOI | http ]
[103] P. López Ríos, A. Perali, R. J. Needs and D. Neilson, Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers, Phys. Rev. Lett. 120, 177701 (2018). [ DOI | http ]
[104] O. Witham, R. J. Hunt and N. D. Drummond, Stability of trions in coupled quantum wells modeled by two-dimensional bilayers, Phys. Rev. B 97, 075424 (2018). [ DOI | http ]
[105] V. Ashokan, R. Bala, K. Morawetz and K. N. Pathak, Dependence of structure factor and correlation energy on the width of electron wires, Eur. Phys. J. B 91, 29 (2018). [ DOI | http ]
[106] P. E. Hoggan, Chapter fifteen - quantum Monte Carlo calculations for industrial catalysts: Accurately evaluating the H2 dissociation reaction barrier on Pt(111), in P. E. Hoggan, ed., Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, vol. 76 of Adv. Quantum Chem., pp. 271 -- 278, Academic Press (2018). [ DOI | http ]
[107] A. G. Green, G. Conduit and F. Krüger, Quantum order-by-disorder in strongly correlated metals, Annu. Rev. Condens. Matter Phys. 9, 59 (2018). [ DOI | http ]
[108] E. M. Isaac Moreira, B. G. A. Brito, J. Higino Damasceno, J. N. Teixeira Rabelo, G.-Q. Hai and L. Cândido, Quantum Monte Carlo study of the electron binding energies and aromaticity of small neutral and charged boron clusters, J. Chem. Phys. 149, 214303 (2018). [ DOI | http ]
[109] R. O. Sharma, L. K. Saini and B. P. Bahuguna, A variational Monte Carlo study of different spin configurations of electron-hole bilayer, AIP Conf. Proc. 1953, 040030 (2018). [ DOI | http ]
[110] H. Hao, J. Shee, S. Upadhyay, C. Ataca, K. D. Jordan and B. M. Rubenstein, Accurate predictions of electron binding energies of dipole-bound anions via quantum Monte Carlo methods, J. Phys. Chem. Letters 9, 6185 (2018). [ DOI | http ]
[111] A. Hou, X. Zhou, T. Wang and F. Wang, Fixed-node diffusion quantum Monte Carlo method on dissociation energies and their trends for R-X bonds (R=Me, Et, i-Pr, t-Bu), J. Phys. Chem. A 122, 5050 (2018). [ DOI | http ]
[112] B. Brito, G.-Q. Hai and L. Cândido, Analysis of the ionization potentials of small superalkali lithium clusters based on quantum Monte Carlo simulations, Chem. Phys. Lett. 708, 54 (2018). [ DOI | http ]
[113] R. O. Sharma, L. K. Saini and B. P. Bahuguna, Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study, J. Phys. Condens. Mater. 30, 185404 (2018). [ http ]
[114] A. Zen, J. G. Brandenburg, J. Klimeš, A. Tkatchenko, D. Alfè and A. Michaelides, Fast and accurate quantum Monte Carlo for molecular crystals, Proc. Natl. Acad. Sci. U.S.A. 115, 1724 (2018). [ DOI | http ]
[115] M. Barbone, A. R. P. Montblanch, D. M. Kara, C. Palacios-Berraquero, A. R. Cadore, D. De Fazio, B. Pingault, E. Mostaani, H. Li, B. Chen, K. Watanabe, T. Taniguchi, S. Tongay, G. Wang, A. C. Ferrari and M. Atatüre, Charge-tuneable biexciton complexes in monolayer WSe2, Nat. Commun. 9, 3721 (2018). [ DOI | http ]
[116] S. Azadi, R. Singh and T. D. Kühne, Nuclear quantum effects induce metallization of dense solid molecular hydrogen, J. Comp. Chem. 39, 262 (2017). [ DOI | http ]
[117] E. Mostaani, M. Szyniszewski, C. H. Price, R. Maezono, M. Danovich, R. J. Hunt, N. D. Drummond and V. I. Fal'ko, Diffusion quantum Monte Carlo study of excitonic complexes in two-dimensional transition-metal dichalcogenides, Phys. Rev. B 96, 075431 (2017). [ DOI | http ]
[118] L. M. Schonenberg, P. C. Verpoort and G. J. Conduit, Effective-range dependence of two-dimensional Fermi gases, Phys. Rev. A 96, 023619 (2017). [ DOI | http ]
[119] K. Doblhoff-Dier, J. Meyer, P. E. Hoggan and G.-J. Kroes, Quantum Monte Carlo calculations on a benchmark molecule-metal surface reaction: H2+Cu(111), J. Chem. Theory Comput. 13, 3208 (2017). [ DOI | http ]
[120] J. Trail, B. Monserrat, P. López Ríos, R. Maezono and R. J. Needs, Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite TiO2 polymorphs, Phys. Rev. B 95, 121108 (2017). [ DOI | http ]
[121] M. Szyniszewski, E. Mostaani, N. D. Drummond and V. I. Fal'ko, Binding energies of trions and biexcitons in two-dimensional semiconductors from diffusion quantum Monte Carlo calculations, Phys. Rev. B 95, 081301 (2017). [ DOI | http ]
[122] J. Hermann, D. Alfè and A. Tkatchenko, Nanoscale π-π stacked molecules are bound by collective charge fluctuations, Nat. Commun. 8, 14052 (2017). [ http ]
[123] S. Azadi, N. D. Drummond and W. M. C. Foulkes, Nature of the metallization transition in solid hydrogen, Phys. Rev. B 95, 035142 (2017). [ DOI | http ]
[124] L. M. Schonenberg and G. J. Conduit, Effective-range dependence of resonant Fermi gases, Phys. Rev. A 95, 013633 (2017). [ DOI | http ]
[125] J. T. Krogel and P. R. C. Kent, Magnitude of pseudopotential localization errors in fixed node diffusion quantum Monte Carlo, J. Chem. Phys. 146, 244101 (2017). [ DOI | http ]
[126] Y. S. Al-Hamdani, M. Rossi, D. Alfè, T. Tsatsoulis, B. Ramberger, J. G. Brandenburg, A. Zen, G. Kresse, A. Grüneis, A. Tkatchenko and A. Michaelides, Properties of the water to boron nitride interaction: From zero to two dimensions with benchmark accuracy, J. Chem. Phys. 147, 044710 (2017). [ DOI | http ]
[127] T. Tsatsoulis, F. Hummel, D. Usvyat, M. Schütz, G. H. Booth, S. S. Binnie, M. J. Gillan, D. Alfè, A. Michaelides and A. Grüneis, A comparison between quantum chemistry and quantum Monte Carlo techniques for the adsorption of water on the (001) LiH surface, J. Chem. Phys. 146, 204108 (2017). [ DOI | http ]
[128] J. R. Trail and R. J. Needs, Shape and energy consistent pseudopotentials for correlated electron systems, J. Chem. Phys. 146, 204107 (2017). [ DOI | http ]
[129] B. G. A. Brito, G.-Q. Hai and L. Cândido, A quantum Monte Carlo study of the structural and electronic properties of small cationic and neutral lithium clusters, J. Chem. Phys. 146, 174306 (2017). [ DOI | http ]
[130] Y. S. Al-Hamdani, D. Alfè and A. Michaelides, How strongly do hydrogen and water molecules stick to carbon nanomaterials?, J. Chem. Phys. 146, 094701 (2017). [ DOI | http ]
[131] H.-W. Lee, C.-M. Chang and C.-R. Hsing, Puzzle of magnetic moments of Ni clusters revisited using quantum Monte Carlo method, J. Chem. Phys. 146, 084313 (2017). [ DOI | http ]
[132] S. Azadi and T. D. Kühne, High-pressure hydrogen sulfide by diffusion quantum Monte Carlo, J. Chem. Phys. 146, 084503 (2017). [ DOI | http ]
[133] K. Saritas and J. C. Grossman, Accurate isomerization enthalpy and investigation of the errors in density functional theory for dihydroazulene/vinylheptafulvene photochromism using diffusion Monte Carlo, J. Phys. Chem. C 121, 26677 (2017). [ DOI | http ]
[134] B. Vlaisavljevich, J. Huck, Z. Hulvey, K. Lee, J. A. Mason, J. B. Neaton, J. R. Long, C. M. Brown, D. Alfè, A. Michaelides and B. Smit, Performance of van der Waals corrected functionals for guest adsorption in the M2(dobdc) metal-organic frameworks, J. Phys. Chem. A 121, 4139 (2017). [ DOI | http ]
[135] K. Saritas, T. Mueller, L. Wagner and J. C. Grossman, Investigation of a quantum Monte Carlo protocol to achieve high accuracy and high-throughput materials formation energies, J. Chem. Theory Comput. 13, 1943 (2017). [ DOI | http ]
[136] K. Hongo and R. Maezono, A computational scheme to evaluate Hamaker constants of molecules with practical size and anisotropy, J. Chem. Theory Comput. 13, 5217 (2017). [ DOI | http ]
[137] X. Zhou and F. Wang, Barrier heights of hydrogen-transfer reactions with diffusion quantum Monte Carlo method, J. Comp. Chem. 38, 798 (2017). [ DOI | http ]
[138] S. Nasiri and M. Zahedi, Coupled cluster and quantum Monte-Carlo potential energy curves of the ground state of Be2 and Be2+ molecules, Comput. Theor. Chem. 1112, 27 (2017). [ DOI | http ]
[139] S. Nasiri and M. Zahedi, A benchmark study of Li2+, Li2-, LiH+ and LiH -: Quantum Monte-Carlo and coupled-cluster computations, Comput. Theor. Chem. 1114, 106 (2017). [ DOI | http ]
[140] T. Ichibha, Z. Hou, K. Hongo and R. Maezono, New insight into the ground state of FePc: A diffusion Monte Carlo study, Sci. Rep. 7, 2011 (2017). [ DOI | http ]
[141] R. O. Sharma, L. K. Saini and B. P. Bahuguna, Diffusion Monte Carlo study of excitons and biexcitons in a mass-asymmetric electron-hole bilayer, Phys. Chem. Chem. Phys. 19, 20778 (2017). [ DOI | http ]
[142] J. Chen, A. Zen, J. G. Brandenburg, D. Alfè and A. Michaelides, Evidence for stable square ice from quantum Monte Carlo, Phys. Rev. B 94, 220102 (2016). [ DOI | http ]
[143] R. O. Sharma, L. K. Saini and B. P. Bahuguna, Ground state properties of electron-hole bilayer: Mass-asymmetric effect, Phys. Rev. B 94, 205435 (2016). [ DOI | http ]
[144] N. D. Drummond, J. R. Trail and R. J. Needs, Trail-Needs pseudopotentials in quantum Monte Carlo calculations with plane-wave/blip basis sets, Phys. Rev. B 94, 165170 (2016). [ DOI | http ]
[145] G. G. Spink, P. López Ríos, N. D. Drummond and R. J. Needs, Trion formation in a two-dimensional hole-doped electron gas, Phys. Rev. B 94, 041410 (2016). [ DOI | http ]
[146] T. M. Whitehead, M. H. Michael and G. J. Conduit, Jastrow correlation factor for periodic systems, Phys. Rev. B 94, 035157 (2016). [ DOI | http ]
[147] A. Zen, S. Sorella, M. J. Gillan, A. Michaelides and D. Alfè, Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step, Phys. Rev. B 93, 241118 (2016). [ DOI | http ]
[148] T. M. Whitehead, L. M. Schonenberg, N. Kongsuwan, R. J. Needs and G. J. Conduit, Pseudopotential for the two-dimensional contact interaction, Phys. Rev. A 93, 042702 (2016). [ DOI | http ]
[149] R. Nazarov, L. Shulenburger, M. Morales and R. Q. Hood, Benchmarking the pseudopotential and fixed-node approximations in diffusion Monte Carlo calculations of molecules and solids, Phys. Rev. B 93, 094111 (2016). [ DOI | http ]
[150] T. M. Whitehead and G. J. Conduit, Pseudopotentials for an ultracold dipolar gas, Phys. Rev. A 93, 022706 (2016). [ DOI | http ]
[151] A. D. Powell and R. Dawes, Calculating potential energy curves with fixed-node diffusion Monte Carlo: CO and N2, J. Chem. Phys. 145, 224308 (2016). [ DOI | http ]
[152] S. Azadi and R. E. Cohen, Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo, J. Chem. Phys. 145, 064501 (2016). [ DOI | http ]
[153] A. Zen, L. M. Roch, S. J. Cox, X. L. Hu, S. Sorella, D. Alfè and A. Michaelides, Toward accurate adsorption energetics on clay surfaces, J. Phys. Chem. C 120, 26402 (2016). [ DOI | http ]
[154] K. Doblhoff-Dier, J. Meyer, P. E. Hoggan, G.-J. Kroes and L. K. Wagner, Diffusion Monte Carlo for accurate dissociation energies of 3d transition metal containing molecules, J. Chem. Theory Comput. 12, 2583 (2016). [ DOI | http ]
[155] J. Higino Damasceno, J. N. Teixeira Rabelo and L. Cândido, Electron correlation effects in all-metal aromatic clusters: A quantum Monte Carlo study, Inorg. Chem. 55, 7442 (2016). [ DOI | http ]
[156] N. L. Moreira, B. G. A. Brito, J. N. T. Rabelo and L. Cândido, Quantum Monte Carlo study of the energetics of small hydrogenated and fluoride lithium clusters, J. Comp. Chem. 37, 1531 (2016). [ DOI | http ]
[157] S. A. Ekong and D. A. Oyegoke, QMC calculations of total energy and bond length of some polyatomic organic molecules, International Letters of Chemistry, Physics and Astronomy 64, 63 (2016).
[158] E. Mostaani, B. Monserrat, N. D. Drummond and C. J. Lambert, Quasiparticle and excitonic gaps of one-dimensional carbon chains, Phys. Chem. Chem. Phys. 18, 14810 (2016). [ DOI | http ]
[159] S. A. Ekong, V. A. Akpan and O. Ebomwonyi, DMC and VMC calculations of the electric dipole moment and the ground-state total energy of hydrazine molecule using CASINO-code, Int. Lett. of Chem., Phys. and Astron. 59, 106 (2015). [ DOI ]
[160] E. Mostaani, N. D. Drummond and V. I. Fal'ko, Quantum Monte Carlo calculation of the binding energy of bilayer graphene, Phys. Rev. Lett. 115, 115501 (2015). [ DOI | http ]
[161] J. H. Lloyd-Williams, R. J. Needs and G. J. Conduit, Pseudopotential for the electron-electron interaction, Phys. Rev. B 92, 075106 (2015). [ DOI | http ]
[162] N. D. Drummond, B. Monserrat, J. H. Lloyd-Williams, P. López Ríos, C. J. Pickard and R. J. Needs, Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures, Nat. Commun. 6, 7794 (2015). [ http ]
[163] B. Ganchev, N. Drummond, I. Aleiner and V. Fal'ko, Three-particle complexes in two-dimensional semiconductors, Phys. Rev. Lett. 114, 107401 (2015). [ DOI | http ]
[164] S. Azadi and R. E. Cohen, Chemical accuracy from quantum Monte Carlo for the benzene dimer, J. Chem. Phys. 143, 104301 (2015). [ DOI | http ]
[165] M. J. Gillan, D. Alfè and F. R. Manby, Energy benchmarks for methane-water systems from quantum Monte Carlo and second-order Møller-Plesset calculations, J. Chem. Phys. 143, 102812 (2015). [ DOI | http ]
[166] S. Azadi and W. M. C. Foulkes, Systematic study of finite-size effects in quantum Monte Carlo calculations of real metallic systems, J. Chem. Phys. 143, 102807 (2015). [ DOI | http ]
[167] Y. S. Al-Hamdani, M. Ma, D. Alfè, O. A. von Lilienfeld and A. Michaelides, Communication: Water on hexagonal boron nitride from diffusion Monte Carlo, J. Chem. Phys. 142, 181101 (2015). [ DOI | http ]
[168] K. Hongo, M. A. Watson, T. Iitaka, A. Aspuru-Guzik and R. Maezono, Diffusion Monte Carlo study of para-diiodobenzene polymorphism revisited, J. Chem. Theory Comput. 11, 907 (2015). [ DOI | http ]
[169] W. D. Parker, C. Umrigar, D. Alfè, F. Petruzielo, R. G. Hennig and J. W. Wilkins, Comparison of polynomial approximations to speed up planewave-based quantum Monte Carlo calculations, J. Comput. Phys. 287, 77 (2015). [ DOI | http ]
[170] S. Nasiri and M. Zahedi, Accurate potential energy curves of Li2 and LiH: A quantum Monte-Carlo (QMC) study, Chem. Phys. Lett. 634, 101 (2015). [ DOI | http ]
[171] S. A. Ekong, V. A. Akpan and D. A. Oyegoke, Closed-shell variational quantum Monte Carlo simulation for the electric dipole moment calculation of hydrazine molecule using CASINO code, Nigeria Journal of Pure and Applied Physics 6, 1 (2015).
[172] S. A. Ekong, M. T. Oloye and D. A. Oyegoke, Ground-state energy calculation of helium atom using quantum Monte Carlo CASINO-code, Advances in Physics Theories and Applications 46 (2015).
[173] M. O. Atambo, N. W. Makau, G. O. Amolo and R. Maezono, QMC and phonon study of super-hard cubic boron carbon nitride, Materials Research Express 2, 105902 (2015). [ http ]
[174] J. Higino Damasceno, J. N. Teixeira Rabelo and L. Cândido, A quantum Monte Carlo study on electron correlation effects in small aluminum hydride clusters, New J. Chem. 39, 2195 (2015). [ DOI | http ]
[175] W. W. Tipton, N. D. Drummond and R. G. Hennig, Importance of high-angular-momentum channels in pseudopotentials for quantum Monte Carlo, Phys. Rev. B 90, 125110 (2014). [ DOI | http ]
[176] P. O. Bugnion, P. López Ríos, R. J. Needs and G. J. Conduit, High-fidelity pseudopotentials for the contact interaction, Phys. Rev. A 90, 033626 (2014). [ DOI | http ]
[177] N. S. Blunt, T. W. Rogers, J. S. Spencer and W. M. C. Foulkes, Density-matrix quantum Monte Carlo method 89, 245124 (2014). [ DOI ]
[178] P.-F. Loos, Generalized local-density approximation and one-dimensional finite uniform electron gases, Phys. Rev. A 89, 052523 (2014). [ DOI | http ]
[179] S. Azadi, B. Monserrat, W. M. C. Foulkes and R. J. Needs, Dissociation of high-pressure solid molecular hydrogen: A quantum Monte Carlo and anharmonic vibrational study, Phys. Rev. Lett. 112, 165501 (2014). [ DOI | http ]
[180] Y. Yamada, Y. Kita, M. Tachikawa, M. D. Towler and R. J. Needs, Quantum Monte Carlo and high-level ab initio molecular orbital investigation of dissociation channels of the positronic alkali-metal hydrides, [XH;e+] (X=Li, Na, and K), Eur. Phys. J. D 68, 63 (2014). [ DOI | http ]
[181] G. L. Weerasinghe, P. Ríos López and R. J. Needs, Compression algorithm for multideterminant wave functions, Phys. Rev. E 89, 023304 (2014). [ DOI | http ]
[182] A. J. Misquitta, R. Maezono, N. D. Drummond, A. J. Stone and R. J. Needs, Anomalous nonadditive dispersion interactions in systems of three one-dimensional wires, Phys. Rev. B 89, 045140 (2014). [ DOI | http ]
[183] P. Hoggan and A. Bouferguene, Chapter 5 - relative advantages of quantum Monte Carlo simulation for changing electron correlation: Co reactions on copper and platinum catalysts, in P. Hoggan, ed., Proceedings of MEST 2012: Electronic structure methods with applications to experimental chemistry, vol. 68 of Adv. Quantum Chem., pp. 89 -- 103, Academic Press (2014). [ DOI | http ]
[184] D. Quigley, D. Alfè and B. Slater, Communication: On the stability of ice 0, ice i, and Ih, J. Chem. Phys. 141, 161102 (2014). [ DOI | http ]
[185] Y. S. Al-Hamdani, D. Alfè, O. A. von Lilienfeld and A. Michaelides, Water on BN doped benzene: A hard test for exchange-correlation functionals and the impact of exact exchange on weak binding, J. Chem. Phys. 141, 18C530 (2014). [ DOI | http ]
[186] J. Chen, X. Ren, X.-Z. Li, D. Alfè and E. Wang, On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study, J. Chem. Phys. 141, 024501 (2014). [ DOI | http ]
[187] D. Alfè, A. P. Bartók, G. Csányi and M. J. Gillan, Analyzing the errors of DFT approximations for compressed water systems, J. Chem. Phys. 141, 014104 (2014). [ DOI | http ]
[188] S. J. Cox, M. D. Towler, D. Alfè and A. Michaelides, Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo, J. Chem. Phys. 140, 174703 (2014). [ DOI | http ]
[189] P.-F. Loos, C. J. Ball and P. M. W. Gill, Uniform electron gases. II. The generalized local density approximation in one dimension, J. Chem. Phys. 140, 18A524 (2014). [ DOI | http ]
[190] A. Ambrosetti, D. Alfè, R. A. DiStasio and A. Tkatchenko, Hard numbers for large molecules: Toward exact energetics for supramolecular systems, J. Phys. Chem. Letters 5, 849 (2014). [ DOI | http ]
[191] J. R. Trail and R. J. Needs, Comparison of smooth Hartree-Fock pseudopotentials, J. Chem. Theory Comput. 10, 2049 (2014). [ DOI | http ]
[192] P. E. Hoggan and A. Bouferguène, Quantum Monte Carlo for activated reactions at solid surfaces: Time well spent on stretched bonds, Int. J. Quantum Chem. 114, 1150 (2014). [ DOI | http ]
[193] O. Ebomwonyi, E. E. Enukpere, B. E. Iyorzor and M. I. Babalola, Variational Monte Carlo and diffusion Monte Carlo studies of the 1st and 2nd ionization energies of H2, Nig. Journal of App. Sc. 32, 87 (2014).
[194] B. Brito, L. Cândido, J. T. Rabelo and G.-Q. Hai, Binding energies of small lithium clusters: A comparison of different theoretical calculations, Chem. Phys. Lett. 616-617, 212 (2014). [ DOI | http ]
[195] C.-R. Hsing, C. Cheng, J.-P. Chou, C.-M. Chang and C.-M. Wei, Van der Waals interaction in a boron nitride bilayer, New J. Phys. 16, 113015 (2014). [ http ]
[196] B. G. A. Brito, G.-Q. Hai, J. N. Teixeira Rabelo and L. Cândido, A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4+ (M=Li Na K Rb Cu Ag and Au), Phys. Chem. Chem. Phys. 16, 8639 (2014). [ DOI | http ]
[197] C. R. Hsing, P. López Ríos, R. J. Needs and C. M. Wei, Quantum Monte Carlo studies of 13-atom simple metallic clusters, Phys. Rev. B 88, 165412 (2013). [ DOI | http ]
[198] G. G. Spink, R. J. Needs and N. D. Drummond, Quantum Monte Carlo study of the three-dimensional spin-polarized homogeneous electron gas, Phys. Rev. B 88, 085121 (2013). [ DOI | http ]
[199] N. D. Drummond and R. J. Needs, Quantum Monte Carlo calculation of the Fermi liquid parameters of the two-dimensional homogeneous electron gas, Phys. Rev. B 88, 035133 (2013). [ DOI | http ]
[200] S. Azadi and W. M. C. Foulkes, Fate of density functional theory in the study of high-pressure solid hydrogen, Phys. Rev. B 88, 014115 (2013). [ DOI | http ]
[201] P. O. Bugnion and G. J. Conduit, Ferromagnetic spin correlations in a few-fermion system, Phys. Rev. A 87, 060502 (2013). [ DOI | http ]
[202] R. Maezono, P. López Ríos, T. Ogawa and R. J. Needs, Excitons and biexcitons in symmetric electron-hole bilayers, Phys. Rev. Lett. 110, 216407 (2013). [ DOI | http ]
[203] A. Droghetti, D. Alfè and S. Sanvito, Ground state of a spin-crossover molecule calculated by diffusion Monte Carlo, Phys. Rev. B 87, 205114 (2013). [ DOI | http ]
[204] C. W. von Keyserlingk and G. J. Conduit, Itinerant ferromagnetism with finite-ranged interactions, Phys. Rev. B 87, 184424 (2013). [ DOI | http ]
[205] G. J. Conduit, Quantum Monte Carlo study of the two-dimensional ferromagnet, Phys. Rev. B 87, 184414 (2013). [ DOI | http ]
[206] N. D. Drummond and R. J. Needs, Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas, Phys. Rev. B 87, 045131 (2013). [ DOI | http ]
[207] M. Bauer, J. Keeling, M. M. Parish, P. López Ríos and P. B. Littlewood, Optical recombination of biexcitons in semiconductors, Phys. Rev. B 87, 035302 (2013). [ DOI | http ]
[208] M. J. Gillan, D. Alfè, A. P. Bartók and G. Csányi, First-principles energetics of water clusters and ice: A many-body analysis, J. Chem. Phys. 139, 244504 (2013). [ DOI | http ]
[209] B. Santra, J. Klimeš, A. Tkatchenko, D. Alfè, B. Slater, A. Michaelides, R. Car and M. Scheffler, On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures, J. Chem. Phys. 139, 154702 (2013). [ DOI | http ]
[210] J. R. Trail and R. J. Needs, Pseudopotentials for correlated electron systems, J. Chem. Phys. 139, 014101 (2013). [ DOI | http ]
[211] D. Alfè, A. P. Bartók, G. Csányi and M. J. Gillan, Communication: Energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water, J. Chem. Phys. 138, 221102 (2013). [ DOI | http ]
[212] P.-F. Loos and P. M. W. Gill, Uniform electron gases. I. Electrons on a ring, J. Chem. Phys. 138, 164124 (2013). [ DOI | http ]
[213] M. H. Kolodrubetz, J. S. Spencer, B. K. Clark and W. M. Foulkes, The effect of quantization on the full configuration interaction quantum Monte Carlo sign problem, J. Chem. Phys. 138, 024110 (2013). [ DOI | http ]
[214] Z. D. Pozun, X. Su and K. D. Jordan, Establishing the ground state of the disjoint diradical tetramethyleneethane with quantum Monte Carlo, J. Am. Chem. Soc. 135, 13862 (2013). [ DOI | http ]
[215] K. Hongo, N. T. Cuong and R. Maezono, The importance of electron correlation on stacking interaction of adenine-thymine base-pair step in b-DNA: A quantum Monte Carlo study, J. Chem. Theory Comput. 9, 1081 (2013). [ DOI | http ]
[216] J. Xu, M. J. Deible, K. A. Peterson and K. D. Jordan, Correlation consistent gaussian basis sets for H, B-Ne with Dirac-Fock AREP pseudopotentials: Applications in quantum Monte Carlo calculations, J. Chem. Theory Comput. 9, 2170 (2013). [ DOI | http ]
[217] O. Ebomwonyi, E. E. Enukpere and O. E. Osunkwor, A quantum Monte Carlo calculation of the ground state energy for the hydrogen molecule using the CASINO code, Int. J. Sci. Eng. Res. 4, 890 (2013).
[218] E. Ebomwonyi, I. E. B. Enukpere and E. Emmanuel, One-electron atom/ions and two-electron atoms/ions: A QMC study, Advances in Physics Theories and Applications 24 (2013).
[219] B. Brito, G.-Q. Hai and L. Cândido, Correlation effects on aromaticity of Be32- cluster: A quantum Monte Carlo study, Chem. Phys. Lett. 586, 108 (2013). [ DOI | http ]
[220] S. Azadi, W. M. C. Foulkes and T. D. Kühne, Quantum Monte Carlo study of high pressure solid molecular hydrogen, New J. Phys. 15, 113005 (2013). [ http ]
[221] P. López Ríos, P. Seth, N. D. Drummond and R. J. Needs, Framework for constructing generic Jastrow correlation factors, Phys. Rev. E 86, 036703 (2012). [ DOI | http ]
[222] C. N. M. Ouma, M. Z. Mapelu, N. W. Makau, G. O. Amolo and R. Maezono, Quantum Monte Carlo study of pressure-induced B3-B1 phase transition in GaAs, Phys. Rev. B 86, 104115 (2012). [ DOI | http ]
[223] L. Cândido, J. N. T. Rabelo, J. L. F. Da Silva and G.-Q. Hai, Quantum Monte Carlo study of small aluminum clusters Aln (n=2-13), Phys. Rev. B 85, 245404 (2012). [ DOI | http ]
[224] K. A. Schwarz, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias and R. G. Hennig, Framework for solvation in quantum Monte Carlo, Phys. Rev. B 85, 201102 (2012). [ DOI | http ]
[225] R. Q. Hood, P. R. C. Kent and F. A. Reboredo, Diffusion quantum Monte Carlo study of the equation of state and point defects in aluminum, Phys. Rev. B 85, 134109 (2012). [ DOI | http ]
[226] Y. Kita and M. Tachikawa, Quantum Monte Carlo study of the binding of a positron to polar molecules, in S. Tanaka, S. M. Rothstein and W. A. Lester, eds., Advances in Quantum Monte Carlo, pp. 157 -- 173 (2012).
[227] H.-r. Li, X.-l. Cheng and H. Zhang, Diffusion Monte Carlo study of bond dissociation energies for BH2, B(OH)2, BCl2, and BCl, Chin. J. Chem. Phys. 25, 65 (2012). [ DOI | http ]
[228] M. Abbasnejad, E. Shojaee, M. R. Mohammadizadeh, M. Alaei and R. Maezono, Quantum Monte Carlo study of high-pressure cubic TiO2, Appl. Phys. Lett. 100, 261902 (2012). [ DOI | http ]
[229] M. J. Gillan, F. R. Manby, M. D. Towler and D. Alfè, Assessing the accuracy of quantum Monte Carlo and density functional theory for energetics of small water clusters, J. Chem. Phys. 136, 244105 (2012). [ DOI | http ]
[230] J. S. Spencer, N. S. Blunt and W. M. Foulkes, The sign problem and population dynamics in the full configuration interaction quantum Monte Carlo method, J. Chem. Phys. 136, 054110 (2012). [ DOI | http ]
[231] A. Tkatchenko, D. Alfè and K. S. Kim, First-principles modeling of non-covalent interactions in supramolecular systems: The role of many-body effects, J. Chem. Theory Comput. 8, 4317 (2012). [ DOI | http ]
[232] P. E. Hoggan, Quantum Monte Carlo simulation of carbon monoxide reactivity when adsorbed at metal and oxide catalyst surfaces: Trial wave-functions with exponential type basis and quasi-exact three-body correlation, Int. J. Quantum Chem. 113, 277 (2012). [ DOI | http ]
[233] Y. Uejima and R. Maezono, Gpgpu for orbital function evaluation with a new updating scheme, J. Comp. Chem. 34, 83 (2012). [ DOI | http ]
[234] C. R. Hsing, C. M. Wei and M. Y. Chou, Quantum Monte Carlo investigations of adsorption energetics on graphene, J. Phys. Condens. Mater. 24, 395002 (2012). [ http ]
[235] O. Karalti, D. Alfè, M. J. Gillan and K. D. Jordan, Adsorption of a water molecule on the MgO(100) surface as described by cluster and slab models, Phys. Chem. Chem. Phys. 14, 7846 (2012). [ DOI | http ]
[236] F. Marsusi, J. Sabbaghzadeh and N. D. Drummond, Comparison of quantum Monte Carlo with time-dependent and static density-functional theory calculations of diamondoid excitation energies and stokes shifts, Phys. Rev. B 84, 245315 (2011). [ DOI | http ]
[237] N. D. Drummond, P. López Ríos, R. J. Needs and C. J. Pickard, Quantum Monte Carlo study of a positron in an electron gas, Phys. Rev. Lett. 107, 207402 (2011). [ DOI | http ]
[238] B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car and M. Scheffler, Hydrogen bonds and van der Waals forces in ice at ambient and high pressures, Phys. Rev. Lett. 107, 185701 (2011). [ DOI | http ]
[239] J. Ma, A. Michaelides, D. Alfè, L. Schimka, G. Kresse and E. Wang, Adsorption and diffusion of water on graphene from first principles, Phys. Rev. B 84, 033402 (2011). [ DOI | http ]
[240] R. M. Lee, G. J. Conduit, N. Nemec, P. López Ríos and N. D. Drummond, Strategies for improving the efficiency of quantum Monte Carlo calculations, Phys. Rev. E 83, 066706 (2011). [ DOI | http ]
[241] R. M. Lee and N. D. Drummond, Ground-state properties of the one-dimensional electron liquid, Phys. Rev. B 83, 245114 (2011). [ DOI | http ]
[242] N. D. Drummond, N. R. Cooper, R. J. Needs and G. V. Shlyapnikov, Quantum Monte Carlo calculation of the zero-temperature phase diagram of the two-component fermionic hard-core gas in two dimensions, Phys. Rev. B 83, 195429 (2011). [ DOI | http ]
[243] M. J. Gillan, M. D. Towler and D. Alfè, Petascale computing opens new vistas for quantum Monte Carlo, Wiley (2011). [ .pdf ]
[244] M. D. Towler, Quantum Monte Carlo, or, how to solve the many-particle Schrödinger equation accurately whilst retaining favourable scaling with system size, Wiley (2011). [ .pdf ]
[245] Y. Kita, R. Maezono, M. Tachikawa, M. D. Towler and R. J. Needs, Ab initio quantum Monte Carlo study of the binding of a positron to alkali-metal hydrides, J. Chem. Phys. 135, 054108 (2011). [ DOI | http ]
[246] J. Ma, A. Michaelides and D. Alfè, Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations, J. Chem. Phys. 134, 134701 (2011). [ DOI | http ]
[247] E. Rezabal, J. Gauss, J. M. Matxain, R. Berger, M. Diefenbach and M. C. Holthausen, Quantum chemical assessment of the binding energy of CuO+, J. Chem. Phys. 134, 064304 (2011). [ DOI | http ]
[248] M. Korth, S. Grimme and M. D. Towler, The lithium-thiophene riddle revisited, J. Phys. Chem. A 115, 11734 (2011). [ DOI | http ]
[249] Y. Uejima, T. Terashima and R. Maezono, Acceleration of a QM/MM-QMC simulation using GPU, J. Comp. Chem. 32, 2264 (2011). [ DOI | http ]
[250] K. Hongo and R. Maezono, Quantum Monte Carlo simulations with RANLUX random number generator, Prog. Nucl. Sci. and Tech. 2, 51 (2011). [ DOI | http ]
[251] A. M. Teweldeberhan, J. L. Dubois and S. A. Bonev, High-pressure phases of calcium: Density-functional theory and diffusion quantum Monte Carlo approach, Phys. Rev. Lett. 105, 235503 (2010). [ DOI | http ]
[252] R. Cherian, C. Gerard, P. Mahadevan, N. T. Cuong and R. Maezono, Size dependence of the bulk modulus of semiconductor nanocrystals from first-principles calculations, Phys. Rev. B 82, 235321 (2010). [ DOI | http ]
[253] Y. X. E. Silvano de Araujo, G.A Mansoori and P. B. de Araujoa, Diamondoid molecules behavior prediction by ab initio methods, Physics Express 1, 67 (2010).
[254] R. Maezono, N. D. Drummond, A. Ma and R. J. Needs, Diamond to β-tin phase transition in Si within diffusion quantum Monte Carlo, Phys. Rev. B 82, 184108 (2010). [ DOI | http ]
[255] S. J. Binnie, S. J. Nolan, N. D. Drummond, D. Alfè, N. L. Allan, F. R. Manby and M. J. Gillan, Bulk and surface energetics of crystalline lithium hydride: Benchmarks from quantum Monte Carlo and quantum chemistry, Phys. Rev. B 82, 165431 (2010). [ DOI | http ]
[256] R. Gaudoin and J. M. Pitarke, Efficient method for the quantum Monte Carlo evaluation of the static density response function of a many-electron system, Phys. Rev. B 81, 245116 (2010). [ DOI | http ]
[257] M. Bajdich, M. L. Tiago, R. Q. Hood, P. R. C. Kent and F. A. Reboredo, Systematic reduction of sign errors in many-body calculations of atoms and molecules, Phys. Rev. Lett. 104, 193001 (2010). [ DOI | http ]
[258] K. P. Esler, R. E. Cohen, B. Militzer, J. Kim, R. J. Needs and M. D. Towler, Fundamental high-pressure calibration from all-electron quantum Monte Carlo calculations, Phys. Rev. Lett. 104, 185702 (2010). [ DOI | http ]
[259] A. J. Morris, P. López Ríos and R. J. Needs, Ultracold atoms at unitarity within quantum Monte Carlo methods, Phys. Rev. A 81, 033619 (2010). [ DOI | http ]
[260] N. Nemec, Diffusion Monte Carlo: Exponential scaling of computational cost for large systems, Phys. Rev. B 81, 035119 (2010). [ DOI | http ]
[261] Y. Kita, M. Tachikawa, N. D. Drummond and R. J. Needs, A variational Monte Carlo study of positronic compounds using inhomogeneous backflow transformations, Chem. Lett. 39, 1136 (2010). [ DOI | http ]
[262] J. R. Trail and R. Maezono, Optimum and efficient sampling for variational quantum Monte Carlo, J. Chem. Phys. 133, 174120 (2010). [ DOI | http ]
[263] N. Nemec, M. D. Towler and R. J. Needs, Benchmark all-electron ab initio quantum Monte Carlo calculations for small molecules, J. Chem. Phys. 132, 034111 (2010). [ DOI | http ]
[264] K. Hongo, M. A. Watson, R. S. Sánchez-Carrera, T. Iitaka and A. Aspuru-Guzik, Failure of conventional density functionals for the prediction of molecular crystal polymorphism: A quantum Monte Carlo study, J. Phys. Chem. Letters 1, 1789 (2010). [ DOI | http ]
[265] J. Xu and K. D. Jordan, Application of the diffusion Monte Carlo method to the binding of excess electrons to water clusters, J. Phys. Chem. A 114, 1364 (2010). [ DOI | http ]
[266] X. Jiang, X. Cheng, G. Chen and H. Zhang, Diffusion Monte Carlo study of the hydrogen molecules adsorbed on C4H3Li, Int. J. Quantum Chem. 112, 2627 (2010). [ DOI | http ]
[267] K. Hongo and R. Maezono, A benchmark quantum Monte Carlo study of the ground state chromium dimer, Int. J. Quantum Chem. 112, 1243 (2010). [ DOI | http ]
[268] H. Zhang, X.-L. Cheng and S. Chiesa, Quantum Monte Carlo calculations of bond dissociation energies for some nitro and amino molecules, Int. J. Quantum Chem. 111, 4452 (2010). [ DOI | http ]
[269] W. D. Parker, J. W. Wilkins and R. G. Hennig, Accuracy of quantum Monte Carlo methods for point defects in solids, Phys. Status Solidi (b) 248, 267 (2010). [ DOI | http ]
[270] K. Hongo, R. Maezono and K. Miura, Random number generators tested on quantum Monte Carlo simulations, J. Comp. Chem. 31, 2186 (2010). [ DOI | http ]
[271] D. Alfe, Iron at Earth's core conditions from first principles calculations, Rev. Min. Geochem. 71, 337 (2010).
[272] A. Badinski, P. D. Haynes, J. R. Trail and R. J. Needs, Methods for calculating forces within quantum Monte Carlo simulations, J. Phys. Condens. Mater. 22, 074202 (2010). [ http ]
[273] I. G. Gurtubay, R. Gaudoin and J. M. Pitarke, Benchmark quantum Monte Carlo calculations of the ground-state kinetic, interaction and total energy of the three-dimensional electron gas, J. Phys. Condens. Mater. 22, 065501 (2010). [ http ]
[274] R. J. Needs, M. D. Towler, N. D. Drummond and P. L. Ríos, Continuum variational and diffusion quantum Monte Carlo calculations, J. Phys. Condens. Mater. 22, 023201 (2010). [ http ]
[275] K. P. Driver, R. E. Cohen, Z. Wu, B. Militzer, P. L. Ríos, M. D. Towler, R. J. Needs and J. W. Wilkins, Quantum Monte Carlo computations of phase stability, equations of state, and elasticity of high-pressure silica, Proc. Natl. Acad. Sci. U.S.A. (2010). [ DOI | http ]
[276] N. D. Drummond and R. J. Needs, Quantum Monte Carlo calculation of the energy band and quasiparticle effective mass of the two-dimensional Fermi fluid, Phys. Rev. B 80, 245104 (2009). [ DOI | http ]
[277] G. J. Conduit, A. G. Green and B. D. Simons, Inhomogeneous phase formation on the border of itinerant ferromagnetism, Phys. Rev. Lett. 103, 207201 (2009). [ DOI | http ]
[278] E. Sola and D. Alfè, Melting of iron under Earth's core conditions from diffusion Monte Carlo free energy calculations, Phys. Rev. Lett. 103, 078501 (2009). [ DOI | http ]
[279] C. R. Hsing, C. M. Wei, N. D. Drummond and R. J. Needs, Quantum Monte Carlo studies of covalent and metallic clusters: Accuracy of density functional approximations, Phys. Rev. B 79, 245401 (2009). [ DOI | http ]
[280] N. D. Drummond and R. J. Needs, Phase diagram of the low-density two-dimensional homogeneous electron gas, Phys. Rev. Lett. 102, 126402 (2009). [ DOI | http ]
[281] R. M. Lee, N. D. Drummond and R. J. Needs, Exciton-exciton interaction and biexciton formation in bilayer systems, Phys. Rev. B 79, 125308 (2009). [ DOI | http ]
[282] N. D. Drummond and R. J. Needs, Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid, Phys. Rev. B 79, 085414 (2009). [ DOI | http ]
[283] E. Sola, J. P. Brodholt and D. Alfè, Equation of state of hexagonal closed packed iron under Earth's core conditions from quantum Monte Carlo calculations, Phys. Rev. B 79, 024107 (2009). [ DOI | http ]
[284] S. Binnie, E. Sola, D. Alfè and M. Gillan, Benchmarking DFT surface energies with quantum Monte Carlo, Molecular Simulation 35, 609 (2009). [ DOI | http ]
[285] Y. Kita, R. Maezono, M. Tachikawa, M. Towler and R. J. Needs, Ab initio quantum Monte Carlo study of the positronic hydrogen cyanide molecule, J. Chem. Phys. 131, 134310 (2009). [ DOI | http ]
[286] P. Umari and N. Marzari, Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: Application to periodic hydrogen chains, J. Chem. Phys. 131, 094104 (2009). [ DOI | http ]
[287] J. Ma, D. Alfè, A. Michaelides and E. Wang, The water-benzene interaction: Insight from electronic structure theories, J. Chem. Phys. 130, 154303 (2009). [ DOI | http ]
[288] R. Maezono, Optimization of many-body wave function, J. Comp. Theo. Nanoscience 6, 2474 (2009). [ DOI | http ]
[289] M. Pozzo and D. Alfè, Hydrogen dissociation on Mg(0001) studied via quantum Monte Carlo calculations, Phys. Rev. B 78, 245313 (2008). [ DOI | http ]
[290] G. J. Conduit and P. D. Haynes, Diffusion Monte Carlo study of a valley-degenerate electron gas and application to quantum dots, Phys. Rev. B 78, 195310 (2008). [ DOI | http ]
[291] S. A. Khairallah and B. Militzer, First-principles studies of the metallization and the equation of state of solid helium, Phys. Rev. Lett. 101, 106407 (2008). [ DOI | http ]
[292] N. D. Drummond, R. J. Needs, A. Sorouri and W. M. C. Foulkes, Finite-size errors in continuum quantum Monte Carlo calculations, Phys. Rev. B 78, 125106 (2008). [ DOI | http ]
[293] N. Sai, M. L. Tiago, J. R. Chelikowsky and F. A. Reboredo, Optical spectra and exchange-correlation effects in molecular crystals, Phys. Rev. B 77, 161306 (2008). [ DOI | http ]
[294] M. Pozzo and D. Alfè, Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations, Phys. Rev. B 77, 104103 (2008). [ DOI | http ]
[295] R. Q. Hood, A. J. Williamson, J. L. Dubois and F. A. Reboredo, Quantum Monte Carlo assessment of the relevance of electronic correlations in defects and EOS in metals . [ DOI ]
[296] A. Badinski, P. D. Haynes and R. J. Needs, Nodal pulay terms for accurate diffusion quantum Monte Carlo forces, Phys. Rev. B 77, 085111 (2008). [ DOI | http ]
[297] J. R. Trail, Alternative sampling for variational quantum Monte Carlo, Phys. Rev. E 77, 016704 (2008). [ DOI | http ]
[298] J. R. Trail, Heavy-tailed random error in quantum Monte Carlo, Phys. Rev. E 77, 016703 (2008). [ DOI | http ]
[299] W. Lampart, D. Schofield, R. Christie and K. Jordan, Model systems for exploring electron correlation effects in the buckling of SiSi dimers on the Si(100) surface, Mol. Phys. 106, 1697 (2008). [ DOI | http ]
[300] A. Badinski, J. R. Trail and R. J. Needs, Energy derivatives in quantum Monte Carlo involving the zero-variance property, J. Chem. Phys. 129, 224101 (2008). [ DOI | http ]
[301] M. L. Tiago, P. R. C. Kent, R. Q. Hood and F. A. Reboredo, Neutral and charged excitations in carbon fullerenes from first-principles many-body theories, J. Chem. Phys. 129, 084311 (2008). [ DOI | http ]
[302] J. Koseki, R. Maezono, M. Tachikawa, M. D. Towler and R. J. Needs, Quantum Monte Carlo study of porphyrin transition metal complexes, J. Chem. Phys. 129, 085103 (2008). [ DOI | http ]
[303] M. Piris, J. M. Matxain and J. M. Ugalde, Natural orbital functional study of the dissociation of the radical helium dimer, J. Chem. Phys. 129, 014108 (2008). [ DOI | http ]
[304] J. R. Trail and R. J. Needs, Spectroscopic data for the LiH molecule from pseudopotential quantum Monte Carlo calculations, J. Chem. Phys. 128, 204103 (2008). [ DOI | http ]
[305] J. M. Matxain, E. Rezabal, X. Lopez, J. M. Ugalde and L. Gagliardi, Quantum Monte Carlo study of the ground state and low-lying excited states of the scandium dimer, J. Chem. Phys. 128, 194315 (2008). [ DOI | http ]
[306] R. Springall, M. C. Per, S. P. Russo and I. K. Snook, Quantum Monte Carlo calculations of the potential energy curve of the helium dimer, J. Chem. Phys. 128, 114308 (2008). [ DOI | http ]
[307] N. D. Drummond and R. J. Needs, van der Waals interactions between thin metallic wires and layers, Phys. Rev. Lett. 99, 166401 (2007). [ DOI | http ]
[308] R. Gaudoin and J. M. Pitarke, Hellman-Feynman operator sampling in diffusion Monte Carlo calculations, Phys. Rev. Lett. 99, 126406 (2007). [ DOI | http ]
[309] A. Badinski and R. J. Needs, Accurate forces in quantum Monte Carlo calculations with nonlocal pseudopotentials, Phys. Rev. E 76, 036707 (2007). [ DOI | http ]
[310] B. Wood, N. D. M. Hine, W. M. C. Foulkes and P. García-González, Quantum Monte Carlo calculations of the surface energy of an electron gas, Phys. Rev. B 76, 035403 (2007). [ DOI | http ]
[311] R. Gaudoin and J. M. Pitarke, Quantum Monte Carlo modeling of the spherically averaged structure factor of a many-electron system, Phys. Rev. B 75, 155105 (2007). [ DOI | http ]
[312] R. Maezono, A. Ma, M. D. Towler and R. J. Needs, Equation of state and Raman frequency of diamond from quantum Monte Carlo simulations, Phys. Rev. Lett. 98, 025701 (2007). [ DOI | http ]
[313] R. Maezono, H. Watanabe, S. Tanaka, M. D. Towler and R. J. Needs, Fragmentation method combined with quantum Monte Carlo calculations, J. Phys. Soc. Jpn. 76, 064301 (2007). [ DOI | http ]
[314] I. G. Gurtubay and R. J. Needs, Dissociation energy of the water dimer from quantum Monte Carlo calculations, J. Chem. Phys. 127, 124306 (2007). [ DOI | http ]
[315] M. D. Brown, J. R. Trail, P. López Ríos and R. J. Needs, Energies of the first row atoms from quantum Monte Carlo, J. Chem. Phys. 126, 224110 (2007). [ DOI | http ]
[316] E. San Sebastian, J. M. Matxain, L. A. Eriksson, R. H. Stote, A. Dejaegere, F. P. Cossio and X. Lopez, Metal ion dependent adhesion sites in integrins: A combined DFT and QMC study on Mn2+, J. Phys. Chem. B 111, 9099 (2007). [ DOI | http ]
[317] N. D. M. Hine and W. M. C. Foulkes, Localization lengths over metal to band insulator transitions, J. Phys. Condens. Mater. 19, 506212 (2007). [ http ]
[318] P. López Ríos, A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs, Inhomogeneous backflow transformations in quantum Monte Carlo calculations, Phys. Rev. E 74, 066701 (2006). [ DOI | http ]
[319] C. R. Hsing, M. Y. Chou and T. K. Lee, Exchange-correlation energy in molecules: A variational quantum Monte Carlo study, Phys. Rev. A 74, 032507 (2006). [ DOI | http ]
[320] A. J. Williamson, Designing opto-electronic nanomaterials using first principles simulations, NSTI-Nanotech 1 (2006). [ .pdf ]
[321] Y.-H. Kim, Y. Zhao, A. Williamson, M. J. Heben and S. B. Zhang, Nondissociative adsorption of H2 molecules in light-element-doped fullerenes, Phys. Rev. Lett. 96, 016102 (2006). [ DOI | http ]
[322] N. D. Drummond and R. J. Needs, Quantum Monte Carlo, density functional theory, and pair potential studies of solid neon, Phys. Rev. B 73, 024107 (2006). [ DOI | http ]
[323] R. Maezono, H. Watanabe and S. Tanaka, Ab Initio Biomolecular Calculations Using Quantum Monte Carlo Combined with the Fragment Molecular Orbital Method, chap. 10, pp. 141--146 (2006). [ DOI | http ]
[324] N. A. Benedek, I. K. Snook, M. D. Towler and R. J. Needs, Quantum Monte Carlo calculations of the dissociation energy of the water dimer, J. Chem. Phys. 125, 104302 (2006). [ DOI | http ]
[325] T. Oyamada, K. Hongo, Y. Kawazoe and H. Yasuhara, The influence of correlation on the interpretation of Hund's multiplicity rule: A quantum Monte Carlo study, J. Chem. Phys. 125, 014101 (2006). [ DOI | http ]
[326] N. D. Drummond, P. L'opez Ríos, A. Ma, J. R. Trail, G. G. Spink, M. D. Towler and R. J. Needs, Quantum Monte Carlo study of the Ne atom and the Ne+ ion, J. Chem. Phys. 124, 224104 (2006). [ DOI | http ]
[327] I. G. Gurtubay, N. D. Drummond, M. D. Towler and R. J. Needs, Quantum Monte Carlo calculations of the dissociation energies of three-electron hemibonded radical cationic dimers, J. Chem. Phys. 124, 024318 (2006). [ DOI | http ]
[328] K. Hongo, Y. Kawazoe and H. Yasuhara, Diffusion Monte Carlo study of correlation in the hydrogen molecule, Int. J. Quantum Chem. 107, 1459 (2006). [ DOI | http ]
[329] M. D. Towler, The quantum Monte Carlo method, Phys. Status Solidi (b) 243, 2573 (2006). [ DOI | http ]
[330] K. Hongo, Y. Kawazoe and H. Yasuhara, Diffusion Monte Carlo study of atomic systems from Li to Ne, Materials Transactions 47, 2612 (2006). [ DOI ]
[331] B. Wood and W. M. C. Foulkes, Improved many-electron wavefunctions from plasmon normal modes, J. Phys. Condens. Mater. 18, 2305 (2006). [ http ]
[332] D. Alfè and M. J. Gillan, The energetics of oxide surfaces by quantum Monte Carlo, J. Phys. Condens. Mater. 18, L435 (2006). [ http ]
[333] P. Umari, A. J. Willamson, G. Galli and N. Marzari, Dielectric response of periodic systems from quantum Monte Carlo calculations, Phys. Rev. Lett. 95, 207602 (2005). [ DOI | http ]
[334] N. D. Drummond, A. J. Williamson, R. J. Needs and G. Galli, Electron emission from diamondoids: A diffusion quantum Monte Carlo study, Phys. Rev. Lett. 95, 096801 (2005). [ DOI | http ]
[335] N. D. Drummond and R. J. Needs, Variance-minimization scheme for optimizing Jastrow factors, Phys. Rev. B 72, 085124 (2005). [ DOI | http ]
[336] D. Alfè, M. Alfredsson, J. Brodholt, M. J. Gillan, M. D. Towler and R. J. Needs, Quantum Monte Carlo calculations of the structural properties and the b1-b2 phase transition of MgO, Phys. Rev. B 72, 014114 (2005). [ DOI | http ]
[337] A. Ma, N. D. Drummond, M. D. Towler and R. J. Needs, All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe, Phys. Rev. E 71, 066704 (2005). [ DOI | http ]
[338] D. Alfè and M. J. Gillan, Schottky defect formation energy in MgO calculated by diffusion Monte Carlo, Phys. Rev. B 71, 220101 (2005). [ DOI | http ]
[339] F. A. Reboredo and A. J. Williamson, Optimized nonorthogonal localized orbitals for linear scaling quantum Monte Carlo calculations, Phys. Rev. B 71, 121105 (2005). [ DOI | http ]
[340] M. Y. J. Tan, N. D. Drummond and R. J. Needs, Exciton and biexciton energies in bilayer systems, Phys. Rev. B 71, 033303 (2005). [ DOI | http ]
[341] A. Ma, M. D. Towler, N. D. Drummond and R. J. Needs, Scheme for adding electron-nucleus cusps to gaussian orbitals, J. Chem. Phys. 122, 224322 (2005). [ DOI | http ]
[342] J. R. Trail and R. J. Needs, Smooth relativistic Hartree-Fock pseudopotentials for H to Ba and Lu to Hg, J. Chem. Phys. 122, 174109 (2005). [ DOI | http ]
[343] J. R. Trail and R. J. Needs, Norm-conserving Hartree-Fock pseudopotentials and their asymptotic behavior, J. Chem. Phys. 122, 014112 (2005). [ DOI | http ]
[344] N. D. Drummond, M. D. Towler and R. J. Needs, Jastrow correlation factor for atoms, molecules, and solids, Phys. Rev. B 70, 235119 (2004). [ DOI | http ]
[345] D. Alfè, M. J. Gillan, M. D. Towler and R. J. Needs, Diamond and β-tin structures of Si studied with quantum Monte Carlo calculations, Phys. Rev. B 70, 214102 (2004). [ DOI | http ]
[346] D. Alfè and M. J. Gillan, Efficient localized basis set for quantum Monte Carlo calculations on condensed matter, Phys. Rev. B 70, 161101 (2004). [ DOI | http ]
[347] N. D. Drummond, Z. Radnai, J. R. Trail, M. D. Towler and R. J. Needs, Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals, Phys. Rev. B 69, 085116 (2004). [ DOI | http ]
[348] D. Alfè, M. J. Gillan, N. D. Drummond, M. D. Towler and R. J. Needs, New avenues for quantum Monte Carlo techniques (2004).
[349] J. M. Matxain, J. M. Mercero, A. Irigoras and J. M. U. *, Discordant results on the FeO++H2 reaction reconciled by quantum Monte Carlo theory, Mol. Phys. 102, 2635 (2004). [ DOI | http ]
[350] K. Hongo, R. Maezono, Y. Kawazoe, H. Yasuhara, M. D. Towler and R. J. Needs, Interpretation of Hund's multiplicity rule for the carbon atom, J. Chem. Phys. 121, 7144 (2004). [ DOI | http ]
[351] E. W. Draeger, J. C. Grossman, A. J. Williamson and G. Galli, Optical properties of passivated silicon nanoclusters: The role of synthesis, J. Chem. Phys. 120, 10807 (2004). [ DOI | http ]
[352] R. Q. Hood and G. Galli, Insulator to metal transition in fluid deuterium, J. Chem. Phys. 120, 5691 (2004). [ DOI | http ]
[353] D. Prendergast, J. C. Grossman, A. J. Williamson, J.-L. Fattebert and G. Galli, Optical properties of silicon clusters in the presence of water: A first principles theoretical analysis, J. Am. Chem. Soc. 126, 13827 (2004). [ DOI | http ]
[354] B. Wood, W. M. C. Foulkes, M. D. Towler and N. D. Drummond, Coulomb finite-size effects in quasi-two-dimensional systems, J. Phys. Condens. Mater. 16, 891 (2004). [ http ]
[355] D. Alfè and M. J. Gillan, Linear-scaling quantum Monte Carlo technique with non-orthogonal localized orbitals, J. Phys. Condens. Mater. 16, L305 (2004). [ http ]
[356] N. A. Benedek, I. Yarovsky, K. Latham and I. K. Snook, Quantum Monte Carlo study of water molecule: A preliminary investigation, Aust. J. Chem. 57, 1229 (2004). [ http ]
[357] A. Puzder, A. J. Williamson, F. A. Reboredo and G. Galli, Structural stability and optical properties of nanomaterials with reconstructed surfaces, Phys. Rev. Lett. 91, 157405 (2003). [ DOI | http ]
[358] R. Maezono, M. D. Towler, Y. Lee and R. J. Needs, Quantum Monte Carlo study of sodium, Phys. Rev. B 68, 165103 (2003). [ DOI | http ]
[359] R. Q. Hood, P. R. C. Kent, R. J. Needs and P. R. Briddon, Quantum Monte Carlo study of the optical and diffusive properties of the vacancy defect in diamond, Phys. Rev. Lett. 91, 076403 (2003). [ DOI | http ]
[360] J. R. Trail, M. D. Towler and R. J. Needs, Unrestricted Hartree-Fock theory of Wigner crystals, Phys. Rev. B 68, 045107 (2003). [ DOI | http ]
[361] E. W. Draeger, J. C. Grossman, A. J. Williamson and G. Galli, Influence of synthesis conditions on the structural and optical properties of passivated silicon nanoclusters, Phys. Rev. Lett. 90, 167402 (2003). [ DOI | http ]
[362] Y. Lee and R. J. Needs, Core-polarization potentials for Si and Ti, Phys. Rev. B 67, 035121 (2003). [ DOI | http ]
[363] M. D. Towler, Quantum Monte Carlo and the CASINO program: highly accurate total energy calculations for finite and periodic systems (2003). [ http ]
[364] R. J. Needs and M. D. Towler, The diffusion quantum Monte Carlo method: designing trial wave functions for NiO, Int. J. Mod. Phys. B 17, 5425 (2003). [ DOI | http ]
[365] J. M. Matxain, J. M. Ugalde, M. D. Towler and R. J. Needs, Stability and aromaticity of BiNi rings and fullerenes, J. Phys. Chem. A 107, 10004 (2003). [ DOI | http ]
[366] A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, Computational studies of the optical emission of silicon nanocrystals, J. Am. Chem. Soc. 125, 2786 (2003). [ DOI | http ]
[367] E. W. Draeger, J. C. Grossman, A. J. Williamson and G. Galli, Synthesis dynamics of passivated silicon nanoclusters, Phys. Status Solidi (b) 239, 11 (2003). [ DOI | http ]
[368] M. Nekovee, W. C. Foulkes and R. J. Needs, Quantum Monte Carlo studies of density functional theory, Mathematics and Computers in Simulation 62, 463 (2003). [ DOI | http ]
[369] A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder and G. Galli, Quantum Monte Carlo calculations of nanostructure optical gaps: Application to silicon quantum dots, Phys. Rev. Lett. 89, 196803 (2002). [ DOI | http ]
[370] R. Gaudoin and W. M. C. Foulkes, Ab initio calculations of bulk moduli and comparison with experiment, Phys. Rev. B 66, 052104 (2002). [ DOI | http ]
[371] A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, Surface chemistry of silicon nanoclusters, Phys. Rev. Lett. 88, 097401 (2002). [ DOI | http ]
[372] R. J. Needs, A. R. Porter and M. D. Towler, Quantum Monte Carlo Calculations for Excited Electronic States, pp. 143--155 (2002). [ DOI | http ]
[373] A. Puzder, A. J. Williamson, J. C. Grossman and G. Galli, Surface control of optical properties in silicon nanoclusters, J. Chem. Phys. 117, 6721 (2002). [ DOI | http ]
[374] A. Puzder, A. Williamson, J. C. Grossman and G. Galli, Passivation effects of silicon nanoclusters, Mater. Sci. Eng.: B 96, 80 (2002). [ DOI | http ]
[375] R. Gaudoin, W. M. C. Foulkes and G. Rajagopal, Ab initio calculations of the cohesive energy and the bulk modulus of aluminium, J. Phys. Condens. Mater. 14, 8787 (2002). [ http ]
[376] A. J. Williamson, R. Q. Hood and J. C. Grossman, Linear-scaling quantum Monte Carlo calculations, Phys. Rev. Lett. 87, 246406 (2001). [ DOI | http ]
[377] A. J. Williamson, J. C. Grossman, A. Puzder, L. X. Benedict and G. Galli, Simulation of semiconductor nanostructures .
[378] M. Nekovee, W. M. C. Foulkes and R. J. Needs, Quantum Monte Carlo analysis of exchange and correlation in the strongly inhomogeneous electron gas, Phys. Rev. Lett. 87, 036401 (2001). [ DOI | http ]
[379] A. R. Porter, M. D. Towler and R. J. Needs, Excitons in small hydrogenated Si clusters, Phys. Rev. B 64, 035320 (2001). [ DOI | http ]
[380] R. Gaudoin, M. Nekovee, W. M. C. Foulkes, R. J. Needs and G. Rajagopal, Inhomogeneous random-phase approximation and many-electron trial wave functions, Phys. Rev. B 63, 115115 (2001). [ DOI | http ]
[381] W. M. C. Foulkes, L. Mitas, R. J. Needs and G. Rajagopal, Quantum Monte Carlo simulations of solids, Rev. Mod. Phys. 73, 33 (2001). [ DOI | http ]
[382] M. D. Towler and R. J. Needs, The CASINO program : quantum Monte Carlo in molecular quantum chemistry and condensed matter physics, ETS, Pisa (2001). [ .pdf ]
[383] A. R. Porter, O. K. Al-Mushadani, M. D. Towler and R. J. Needs, Electronic excited-state wave functions for quantum Monte Carlo: Application to silane and methane, J. Chem. Phys. 114, 7795 (2001). [ DOI | http ]
[384] R. J. Needs, P. R. C. Kent, A. R. Porter, M. D. Towler and G. Rajagopal, Quantum Monte Carlo calculations for ground and excited states, Int. J. Quantum Chem. 86, 218 (2001). [ DOI | http ]
[385] P. R. C. Kent, M. D. Towler, R. J. Needs and G. Rajagopal, Carbon clusters near the crossover to fullerene stability, Phys. Rev. B 62, 15394 (2000). [ DOI | http ]
[386] Y. Lee, P. R. C. Kent, M. D. Towler, R. J. Needs and G. Rajagopal, Pseudopotentials for correlated-electron calculations, Phys. Rev. B 62, 13347 (2000). [ DOI | http ]
[387] M. D. Towler, R. Q. Hood and R. J. Needs, Minimum principles and level splitting in quantum Monte Carlo excitation energies: Application to diamond, Phys. Rev. B 62, 2330 (2000). [ DOI | http ]
[388] K. C. Huang, R. J. Needs and G. Rajagopal, Comment on “quantum Monte Carlo study of the dipole moment of CO” [J. Chem. Phys. 110, 11700 (1999)], J. Chem. Phys. 112, 4419 (2000). [ DOI | http ]
[389] W.-K. Leung, R. J. Needs, G. Rajagopal, S. Itoh and S. Ihara, Calculations of silicon self-interstitial defects, Phys. Rev. Lett. 83, 2351 (1999). [ DOI | http ]
[390] W. M. C. Foulkes, R. Q. Hood and R. J. Needs, Symmetry constraints and variational principles in diffusion quantum Monte Carlo calculations of excited-state energies, Phys. Rev. B 60, 4558 (1999). [ DOI | http ]
[391] P. R. C. Kent, R. J. Needs and G. Rajagopal, Monte Carlo energy and variance-minimization techniques for optimizing many-body wave functions, Phys. Rev. B 59, 12344 (1999). [ DOI | http ]
[392] P. R. C. Kent, R. Q. Hood, A. J. Williamson, R. J. Needs, W. M. C. Foulkes and G. Rajagopal, Finite-size errors in quantum many-body simulations of extended systems, Phys. Rev. B 59, 1917 (1999). [ DOI | http ]
[393] W. M. C. Foulkes, M. Nekovee, R. L. Gaudoin, M. L. Stedman, R. J. Needs, R. Q. Hood, G. Rajagopal, M. D. Towler, P. R. C. Kent, Y. Lee, W.-K. Leung, A. R. Porter and S. J. Breuer, Quantum Monte Carlo Simulations of Real Solids, pp. 165--174, Springer US, Boston, MA (1999), ISBN 978-1-4615-4873-7. [ DOI | http ]
[394] P. R. C. Kent, R. Q. Hood, M. D. Towler, R. J. Needs and G. Rajagopal, Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon, Phys. Rev. B 57, 15293 (1998). [ DOI | http ]
[395] A. J. Williamson, R. Q. Hood, R. J. Needs and G. Rajagopal, Diffusion quantum Monte Carlo calculations of the excited states of silicon, Phys. Rev. B 57, 12140 (1998). [ DOI | http ]
[396] R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal and R. J. Needs, Exchange and correlation in silicon, Phys. Rev. B 57, 8972 (1998). [ DOI | http ]
[397] M. Nekovee, W. Foulkes, A. Williamson, G. Rajagopal and R. Needs, A quantum Monte Carlo approach to the adiabatic connection method, in P.-O. Löwdin, ed., Density Functional Theory, vol. 33 of Adv. Quantum Chem., pp. 189 -- 207, Academic Press (1998). [ DOI | http ]
[398] M. L. Stedman, W. M. C. Foulkes and M. Nekovee, An accelerated metropolis method, J. Chem. Phys. 109, 2630 (1998). [ DOI | http ]
[399] M. Stedman and W. Foulkes, Talus - a quantum Monte Carlo modelling suite, Comput. Phys. Commun. 113, 180 (1998). [ DOI | http ]
[400] R. Q. Hood, M. Y. Chou, A. J. Williamson, G. Rajagopal, R. J. Needs and W. M. C. Foulkes, Quantum Monte Carlo investigation of exchange and correlation in silicon, Phys. Rev. Lett. 78, 3350 (1997). [ DOI | http ]
[401] A. J. Williamson, G. Rajagopal, R. J. Needs, L. M. Fraser, W. M. C. Foulkes, Y. Wang and M.-Y. Chou, Elimination of Coulomb finite-size effects in quantum many-body simulations, Phys. Rev. B 55, R4851 (1997). [ DOI | http ]
[402] R. J. Needs, G. Rajagopal, A. J. Williamson, L. M. Fraser, S. D. Kenny, W. M. C. Foulkes, A. J. James and P. Maccallum, Quantum Monte Carlo studies of electronic systems, J. Korean Phys. Soc. 29, S116 (1996). [ .ps.gz ]
[403] S. D. Kenny, G. Rajagopal, R. J. Needs, W.-K. Leung, M. J. Godfrey, A. J. Williamson and W. M. C. Foulkes, Quantum Monte Carlo calculations of the energy of the relativistic homogeneous electron gas, Phys. Rev. Lett. 77, 1099 (1996). [ DOI | http ]
[404] A. J. Williamson, S. D. Kenny, G. Rajagopal, A. J. James, R. J. Needs, L. M. Fraser, W. M. C. Foulkes and P. Maccullum, Optimized wave functions for quantum Monte Carlo studies of atoms and solids, Phys. Rev. B 53, 9640 (1996). [ DOI | http ]
[405] L. M. Fraser, W. M. C. Foulkes, G. Rajagopal, R. J. Needs, S. D. Kenny and A. J. Williamson, Finite-size effects and Coulomb interactions in quantum Monte Carlo calculations for homogeneous systems with periodic boundary conditions, Phys. Rev. B 53, 1814 (1996). [ DOI | http ]
[406] G. Rajagopal, R. J. Needs, A. James, S. D. Kenny and W. M. C. Foulkes, Variational and diffusion quantum Monte Carlo calculations at nonzero wave vectors: Theory and application to diamond-structure germanium, Phys. Rev. B 51, 10591 (1995). [ DOI | http ]
[407] S. D. Kenny, G. Rajagopal and R. J. Needs, Relativistic corrections to atomic energies from quantum Monte Carlo calculations, Phys. Rev. A 51, 1898 (1995). [ DOI | http ]
[408] G. Rajagopal, R. J. Needs, S. Kenny, W. M. C. Foulkes and A. James, Quantum Monte Carlo calculations for solids using special k points methods, Phys. Rev. Lett. 73, 1959 (1994). [ DOI | http ]
[409] G. Rajagopal and R. Needs, An optimized Ewald method for long-ranged potentials, J. Comput. Phys. 115, 399 (1994). [ DOI | http ]

Return to top