
PAX @ Durham

PAX-HPC face-to-face meeting
Lancaster

Alastair Basden + others
Durham University / DiRAC

A new website?
● https://pax-hpc.readthedocs.io
● For information purposes

– Is this what we want?
● (in lieu of anything better)

– Can be used for storing outputs
● Anyone can add content:

– Fork and clone the git repo
– Make changes
– Submit a merge request

● Which I then authorise
– Website is then automatically updated

● Note - no private section
– e.g. may not be suitable for minutes

https://pax-hpc.readthedocs.io/

DiRAC time: Tursa and COSMA8
● We had a DiRAC allocation from October 2023-

April 2024
– 2 quarters-worth of allocation
– 36/50k GPU hours used
– 0/100k core hours used
– Job sizes of up to 4 nodes

● (>99% 1 node)

SWIFT communications work
● Thanks to Peter Draper
● SWIFT uses internal task scheduling based on

pthreads
– Lower level control than OpenMP
– Tasks scheduled when data locked and no prerequisites

● MPI communications are tasks (asynchronous)
● Overlap between comms and computation

–

Task plots
● Ranks are

kept busy
● Some

inbalance

With limited computation
● A lot of dead time
● MPI progression?
● Difficult to work out

– No direct timing of data
transfers

● Just when the async MPI calls are
made

– Task ordering is non-
reproducible

● Internal logger implemented
– MPI busy during the dead times

Time sent vs time received
● Takes a long time to process

the messages
● Not bandwidth limited

– Expected peak of 25Gb/s

RDMA simulator
● Significant improvement over MPI
● Implemented in SWIFT - RDMA SWIFT

– No real improvement
– Due to time spent on data movement into and from the RDMA (or MPI) buffers

Threaded RDMA
● Using extra threads to do the memory copies

– Sees an improvement
– Main issue is not making use of full memory bandwidth
– So not a problem with MPI

● Though this is helping to hide some of the implementation details
– Might be better to share the memory with RDMA

● A job for SWIFT-2
● Not straightforward to implement in MPI (hidden from user)
● Could look at splitting sends into smaller parts (more tasks)

– But tests don’t show improvement - probably due to overheads

Single vs multiple copying threads

How many theads to use?
● Not all of them!

The future
● This isn’t easy to integrate with MPI

– Probably requires a redevelopment of MPI!
● Wait for better hardware?

– Reduced fabric and memory latency
– Direct memory sharing (CXL composability)

● Using an MPI shared-memory communicator
– MPI hides a lot of complication, so would be a difficult decision

to move away from

SWIFT on GPU
● Sarah Johnston, Durham - PhD part-funded by Dell/AMD

– Looking at the gravity tasks
– Good progress being made

● Now working with AMD and NVIDIA GPUs
– Performance improvements required

– Next steps to enable multiple streams/multiple GPUs
– Good occupancy shown in profiling
– Watch this space

● Abouzied Nasar, Manchester - PAX
– Looking at the tasking and smoothed particle hydrodynamics

● Taking different but compatible approaches

Genoa performance
● AMD Genoa - 96 and 128 core processors

– ~2x performance gain over Milan for SWIFT
– >20% energy reduction per science done
– CPU type mean time cores frequency max boost
– bergamo: 4662.218 256 2.25 3.1
– genoa: 4476.0693 192 2.4 3.7
– milan: 8145.8936 128 2.45 3.5
– rome: 9302.112 128 2.6 3.3

● Impressive gain for 1 generation (mostly AVX512-related)

Is GPU the future?
● Some speed-ups

– 2-4x?
● But speed-up per £? Or per Watt?
● At the cost of RAM

– Limiting maximum size of capability jobs

Hardware landscape
● Recent changes:

– Doubling of memory bandwidth in one AMD generation (Milan to Genoa)
– Doubling of network bandwidth (HDR to NDR)

● No latency improvement
– First CXL systems

● Nothing of note yet, but CXL3.1 is interesting
– Shared memory fabrics

– Rapid increase in small-float/int performance in GPU
– SSD storage - 1PB in 1U for £100k
– Composability options increasing
– AIRR systems
– The Pre-Exascale system (EPCC)
– Intel and AMD GPUs
– UKRI emphasis on federation

Future HPC requirements
● What type of system does PAX require?

– Most future UK systems will be primarily GPU
– DiRAC will still take the bespoke design route

● Optimised RAM, cores, storage, accelerators, fabric, etc
– What would be ideal for our workloads?

● Now is the time to feed into the designs
● Can we give concrete examples
● Please send me your thoughts, ideas, requirements, etc.

Conclusions
● SWIFT-2 likely to need a rewrite

– Faster processors and RAM helps
– Memory movement is key

● What would our ideal system/systems look like?
● Would more DiRAC time be useful?
● Please help update the documentation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

