
Accelerating CASINO using GPUs

Ben Thorpe
Department of Physics, University of York

Neil Drummond
Department of Physics, University of Lancaster

PAX-HPC Meeting, Lancaster University

Monday 23rd April, 2024

“CASINÒ / CASINO” (Italian−→English)

CASINO: quantum Monte Carlo program started by Richard Needs in the early ’90s.

Main developers: Richard Needs (Cambridge), Mike Towler (TTI), Neil Drummond
(Lancaster) and Pablo López Ŕıos (MPI Stuttgart).

casino m. 1 brothel, whorehouse 2 noise . . . 3 mess, ⟨volg⟩ cock-up

casinò m. casino

. . . so, for Italian speakers, our QMC code should really be called CASINÒ.

CASINO: Capabilities

• Variational Monte Carlo and diffusion Monte Carlo for 1D, 2D and 3D systems, with
periodicity in 0, 1, 2 or 3 dimensions.

• Ab initio calculations for molecules and crystals and “exotic” or model systems:
electron[–hole] gases, excitonic molecules, cold atomic gases, positronic systems, . . .

• Slater[–Jastrow[–backflow]] trial wave functions. The Slater part may consist of
[spin-polarised] multiple determinants or [multiple] pairing (geminal) wave functions.

– Basis functions: plane waves, blips, atom-centred Gaussians [with cusp corrections]
and Slater functions. Numerical orbitals for atoms and molecular dimers.

– Excited states from promotion, addition or subtraction of particles.
– Wave-function optimisation by variance or energy minimisation.

• Periodic interactions with Ewald or model periodic Coulomb interactions.

• Various expectation values: total energy (and components), charge and spin density,
pair correlation function, structure factor, one-particle and two-particle density
matrices, electric dipole moment, momentum density, . . .

CASINO: Code Design Aims

Generality VMC and DMC for systems of arbitrary size and geometry, including atoms,
molecules, systems periodic in 1, 2 and 3 dimensions (polymers, slabs and crystalline
solids), various electron and electron–hole phases, generalised quantum particles
with arbitrary interactions (cold atoms, etc.). Choice of basis sets (plane waves,
Gaussians, blips and Slaters) or grids for orbitals. Interfaces to a wide range of
electronic structure codes for generating trial wave functions.

Portability Strict Fortran 2003. Apart from MPI no external libraries are needed;
BLAS/LAPACK optional. Automatic, customisable compilation and setup.

Ease of use Shell-script automation. Full documentation: internal help system,
comprehensive manual and interactive website, including pseudopotential library:
https://vallico.net/casinoqmc. Wide range of examples. Discussion forum:
https://vallico.net/casino-forum.

Speed and memory efficiency Efficient algorithms optimised for speed. Efficiently
parallelised: MPI over (near-)independent random walks, OpenMP over particles.
Shared memory between MPI processes. OpenACC for offloading to accelerators.

https://vallico.net/casinoqmc
https://vallico.net/casino-forum

Interfaces to Other Codes

CASINO

input

pseudopotential

 file

out

awfn.data

pwfn.data

CRYSTAL95/98/03/06/09

TCM atomic code

Numerical orbitals:

Gaussians:

GAUSSIAN94/98/03/09

TURBOMOLE

dwfn.data

gwfn.data

mpc.data

expot.data

correlation.data

expval.data

vmc.hist
dmc.hist
etc..

bwfn.data

Blips

Plane waves:

ABINIT

CASTEP

K270

GP

PWSCF
bwfn.data.bin

config.in

config.out

A Cornucopia of Recent Applications of CASINO

• QMC methods have been used to study (amongst other things):

– 3D, 2D and 1D electron gases: ground-state energy, phase
diagram, magnetic susceptibility, distribution functions,
quasiparticle effective mass;

– Ultra-cold bosonic and fermionic atomic gases;
– Band structures of crystalline solids;
– Optical band gaps of nanocrystals;
– Defects in semiconductors;
– Phase diagrams and equations of state of materials at high

pressure;
– Dispersion interactions between low-dimensional materials;
– Binding of molecules and their excitation energies;
– Positronic molecules and crystalline solids;
– Ground-state properties without the Born–Oppenheimer

approximation (nuclei treated as quantum particles).

Quantum Monte Carlo

• Expectation value of Hamiltonian:

⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
Ψ∗ĤΨ dR∫
|Ψ|2 dR

=

∫
|Ψ|2ĤΨ

Ψ dR∫
|Ψ|2 dR

= ⟨EL⟩|Ψ|2 ,

where the local energy is

EL =
ĤΨ

Ψ
=

∑
i

− 1

2mi

∇2
iΨ

Ψ
+ U.

• VMC: use the Metropolis algorithm to generate electron coordinates distributed as
|Ψ|2 and average the local energies to obtain an estimate of the energy.

– Variance of the local energy reduces as trial wave function improves.

• DMC: simulate drift, diffusion and branching/dying processes governed by imaginary-
time Schrödinger equation to project out the ground-state component of Ψ.

– Fermionic antisymmetry is maintained by fixing the nodes of the wave function.

Diffusion Quantum Monte Carlo∑
i

− 1

2mi
∇2

iΦ+ UΦ = −∂Φ
∂t

∑
i

− 1

2mi
∇2

iΦ+ UΦ = −∂Φ
∂t

3N -dimensional diffusion equation Rate equation

U(x)

Φ
init

(x)

Φ
0
(x)

x

t τ

Slater–Jastrow Wave Functions

• Most QMC calculations use Slater–Jastrow trial wave functions:

Ψ(R) = exp[J(R)]
∑
n

cnD
↑
n(R)D↓

n(R),

where D↑ and D↓ are Slater determinants for spin-up and down electrons, and
exp(J) is a Jastrow factor.

• Each Slater determinant is of the form

D↑(R) =

∣∣∣∣∣∣∣
ψ↑
1(r1) · · · ψ↑

N↑
(r1)

... ...

ψ↑
1(rN↑) · · · ψ↑

N↑
(rN↑)

∣∣∣∣∣∣∣,
and similarly for spin-down determinants.

– Orbitals {ψσ
i } are usually generated in either DFT or HF calculations.

– Updating the orbitals contributes to the O(N2) cost per time step; evaluating the
determinant contributes a (negligible) O(ϵN3) cost.

Jastrow Factor

• Jastrow factor exp(J) is an explicit function of interparticle distances, allowing
compact parameterisation of correlation.

– Slater wave function has the required exchange antisymmetry and the required
space group symmetry, so J should be exchange symmetric and transform as the
trivial representation of the space group.

– J contains free parameters, to be determined by an optimisation method.
– J must be twice differentiable where the potential is finite.

• In CASINO the Jastrow exponent J is a sum of:

– Truncated polynomials in e-e distance, satisfying the Kato cusp conditions [u(rij)];
– Truncated polynomials in e-n distance, satisfying the Kato cusp conditions [χ(riI)];
– Truncated polynomials in e-e-n distances [f(rij, riI, rjI)].
– Plane-wave expansions in e-e separation [p(rij)].
– Plane-wave expansions in e position [q(ri)].
– Truncated three-body polynomials [H(rij, rik, rjk)].

• The two-body terms contribute to the O(N2) scaling per time step.

Two-Body Plane-Wave Jastrow Term

• The plane wave term in the Jastrow exponent J is
∑

i>j p(rij), where

p(rij) =
∑
A

aA
∑
G+

A

cos(GA · rij)

and the {GA} are reciprocal lattice points of the simulation cell belonging to the Ath
star (only one out of each ±GA pair) and the {aA} are optimisable parameters.

• For G = n1b1 + n2b2 + n3b3, where {bi} are supercell reciprocal lattice vectors,

cos(GA · rij) = Re
[
(eib1·rij)

n1
(eib2·rij)

n2
(eib3·rij)

n3
]
,

so only three complex exponentials are required to compute all the required cosines.
The powers of these exponentials are computed and buffered.

• Typical number of stars: 3–15 (∼10–∼100 reciprocal lattice points).

• To-do: allow a B-spline re-representation of the p term in VMC and DMC.

Ewald Interactions

• In a molecular system, the pairwise Coulomb potential energy in U(R) is just a
pairwise sum of 1/rij interactions.

• In a periodic solid we use Ewald’s method to
calculate the interparticle potential:

– The pairwise solution to Poisson’s equation
is evaluated using the periodic solution to
Poisson’s equation; this in turn is evaluated
using rapidly convergent sums over real and
reciprocal lattice vectors.

• These calculations must be performed every time a particle is moved and hence they
contribute to the O(N2) scaling per time step.

• In rare use cases (i) the short-range electron–electron interaction may be replaced by
a pseudopotential and (ii) the electric field (gradient of potential) may be required
to evaluate core-polarisation terms in ionic pseudopotentials.

Tasks in CASINO to be Targeted for Offloading to GPUs

The following O(N2 + ϵN3) tasks are likely targets for offloading that could be of
practical benefit:

1. Evaluating Ewald interactions (∼10% of total time in periodic systems).

2. Evaluating two-body Jastrow terms, especially p (5–70% of run time).

3. Evaluating relative positions of closest images of pairs of particles (<5% of run time).

4. Evaluating single-particle orbitals (5–50% of run time, depending on basis set).

5. Updating Slater determinants after electron moves (<5% of run time).

Before the start of the PAX-HPC project, Neil had implemented OpenACC offloading
of items 1–3, achieving a GPU speedup of 10–12% on item 1 on the Lancaster High-End
Computing Cluster and Bede, and a large slowdown on items 2 and 3. . .

. . . Over to Ben for the current status of items 1 and 2!

References

Ewald interactions
Disapointing start but I’m sure it gets better, right?

Figure: Runtime Vs Num. of particles for 3D
HEG. All runs were on performed Bede using
single core of 32 core Power9 CPU @ 2.7GHz
with an Nvidia V100 GPU

Initial attempt

3D heterogenous electron gas (HEG)

1 big loop over all particles.

Used Openacc to split the loop across
the GPU.

Performance was faster but,
underwhelming.

References

Enter, Nsight toolkit
Save us Nvidia, or at least point us in the right direction.

Nvidia GPU profiling/development
tools

Nsight Systems Analyse what the
code is doing at a given time.

Nsight Compute Allows for more
In-depth analysis.

They are very useful but not prettiest.

References

Nsight Systems
Nice, screenshot. If only they could read it.

Don’t worry. This is here for illustration. I don’t expect you to be
able to read this!!

References

Nsight Systems
So what is going on?

We’re spending a good chunk of time doing very little

The Data (Red) and Wait (orange) regions are both bigger
than we’d like

The waiting looks suspicious

We will need to dig a bit deeper

References

Nsight Compute
And you thought Nsight Systems was bad.

Again this is far to dense with information. So Don’t worry, I don’t
expect you to be able to read this!!

References

Nsight Compute
I wonder who the murder is. Probably the buttler?

The GPU hardware was limiting the number
of concurrent threads.

This limits the actual performance compared
to what the device is capable of.

This is not great as for GPUs threads are
essentially everything

The prime culprit was register pressure.

Figure: Hercule Poirot ©ITV
Studios: used under fair use. Oh
and fyi I know he’s Belgian really.

What are Threads and why are they important?

Threads are independent instructions that are handled by a CPU/GPU. CPUs are faster per thread but can only
handle a few at a time. GPUs by contast can handle 1000’s of threads but are much slower per thread.

References

So what is Register pressure?
There’s to many registers, I can’t take it anymore!

All GPUs (and CPUs) have a
very limited amount of super
fast memory (10’s Kb).

This is reserved for storing
small variables that are
frequently used or thread
specific.

Each variable is allocated a
number of registers for storage.

All other variables are stored in
global memory, which is shared
by all SM’s but is substantially
slower.

Figure: Diagram of memory layout for CPU and
GPU.[1]

References

So what is Register pressure?
There’s to many registers, I can’t take it anymore!

We are using lots of private
variables within our Do loop.

These are being stored for each
thread in shared memory.

Each SM only has so much
room to store variables for all
the threads.

This limits the number of
threads each SM can run, as
threads compete for room in
the shared memory.

Figure: Diagram of memory layout for CPU and
GPU.[1]

References

Back to Ewald Interactions
So what have we learned?

Main Point: We need to
reduce the number of
private variables in the loop.

We’ll do this by breaking the
loop up into smaller parts.

Also adding more threads
couldn’t hurt.

We however, need to keep in
mind not to slow down the
CPU version.

References

Results: Ewald Interactions
Hardly earth shattering but it’s progress

References

Jastrow Factor
Oh dear

Initial attempt

3D heterogenous
electron gas (HEG)

Jastrow P and U terms
each have 1 big loop
over all particles.

Split up over the GPU
threads

Performance was,
non-existent (around 6
times slower).

References

Back to Nsight toolkit
So it really was the P-term, I’d never have guessed.

The main problem seems to
lie with the P-term.

It appears to be only
running on a single thread.

The Uterm, however, is not
completely innocent, as it to
is running slowly.

Figure: Hercule Poirot ©ITV Studios: I tried to
warn him this Joke wasn’t funny but he insited.

References

Fixing the U-term
Well I guess you can’t expect miracles.

We are doing to much work
per thread.

Unfortunately, we also can’t
break up the loop any further.

There is scope to calculate U
in the background on the CPU,
whilst P is running on the
GPU.

Otherwise I’m afraid this is a
dead end.

References

Shared memory Issues
Why can’t gpu threads just learn to get along?

The issue affecting the P-term
is similar to Ewald, only much
worse.

It’s not the number of private
variables however, it’s their
size.

Each thread needs its own copy
of the 3 arrays storing ExpB(n).

This was quickly filling the
shared memory and meant the
SM’s could only run 1 thread
at a time.

References

Shared memory Issues
Why can’t gpu threads just learn to get along?

The solution was to 3 maxgvec × netot arrays in global memory. We can
then give each thread 1 row, corresponding to each particle j in the
loop(s).

References

Results: P-term
Now were talking.

We see a speed-up of between
1.45 and 1.89 times.

This is very impressive given
the P-term is ≈ 50% of the
runtime.

Max theoretical speed-up is
2.0.

It also appears to be steadily
increasing with number of
particles.

So overall I’m happy

References

A quick word on MPI performance
Ah. . . yes, we may have issues there.

The problem is
Openacc can only “see”
1 GPU by default.

We get good speed-up
for 2–4 processes.

Then the processes
start competing for
resources.

Short version is we will
need to look into
multi-gpu

References

Conclusion
Wait, there really was a point to all this?

The GPU port is finally starting to make some headway.

We see a small speed-up for Ewald calculations

We also see a more significant speed-up for the Two-body
Jastrow P-term.

Work is needed on combining OpenMp and Openacc

MPI performance still needs some work.

References

Acknowledgments
Don’t worry you can switch off now.

Phil Hasnip & Matt Smith

Excalibur Project, specifically Pax HPC, for the Funding

N8 Research Partnership, for use of Bede

References

Bibliography

[1] Muaaz Gul Awan, Taban Eslami, and Fahad Saeed.
“GPU-DAEMON: GPU algorithm design, data management
and optimization template for array based big omics data”. In:
Computers in Biology and Medicine 101 (2018), pp. 163–173.
issn: 0010-4825. doi:
https://doi.org/10.1016/j.compbiomed.2018.08.015.
url: https://www.sciencedirect.com/science/
article/pii/S001048251830235X.

https://doi.org/https://doi.org/10.1016/j.compbiomed.2018.08.015
https://www.sciencedirect.com/science/article/pii/S001048251830235X
https://www.sciencedirect.com/science/article/pii/S001048251830235X

	References

