
Acceleration of Electronic Structure

Codes on Heterogeneous Hardware

Marcello Puligheddu, Ian J. Bush
 Science and Technology Facilities Council

April 22nd 2024

The state of the system is the solution of the Roothaan equation

𝐹𝜖 = 𝑆𝐶𝜖

The majority of the computational work in these codes consists of two steps

• Using the density matrix C to form the Fock Matrix F

• Diagonalizing the Fock Matrix F to obtain the new density C

These steps are repeated in the Self-Consistent Fields (SCF) procedure

Step 1 requires the evaluation of an enormous number of integrals

Step 2 requires expensive linear algebra on large matrices

Make these calculations more affordable by exploiting the computational

power provided by modern high-end GPUs

GPUs in ab initio electronic structure codes

1

ELPA (Eigenvalue Solvers For PetaExaflop Applications) is a software library built to scale and to run on

heterogenous architectures, including GPUs.

The interface is similar to ScaLAPACK, different routine for matrix diagonalization

ELPA can also compute a partial solution. This can result in a large saving of computational time

Tested on 2 nodes with 4 A100 40GB per node

- NVIDIA cuSolver can be faster than ELPA running

on multiple GPUs (*)

- Solving the partial problem significantly reduces

the time to solution.

Very quick project before the release of cublasMg

Benchmarks of Eigenvalues Solvers on GPUs

2

GPU Acceleration of the Calculation of the Fock Matrix

We focus on the contribution to the Fock matrix from the exact Hartree-Fock Exchange

𝐹𝑖𝑘 −= 𝐷𝑗𝑙 (𝑖𝑗𝑘𝑙)

We wish to use to GPUs to accelerate the calculation of the 4 centres – 2 electrons integrals

(Also called more generally Electronic Repulsion Integrals ERI)

Where the 𝜑 are Gaussian orbitals of the type 𝜑 = 𝑌𝐿
𝑚 𝑒−𝛼 𝑥2

A basis function is a linear combination of these primitives

3

The calculation in the integrals is a complex process. Accelerating its using GPUs is not trivial.

Start with the simpler processes and move our way up to the most complex components.

• First steps: use the Overlap matrix as a simple test-bed

• Keep the structure flexible. Python helps with prototyping

• At the end, compute the 4 centres – 2 electrons integrals on GPUs

No free lunch -> (often) the routines that take more time are also the harder to accelerate using GPUs

GPU Acceleration of the Calculation of the Fock Matrix

What is the best approach to the efficient calculation on GPUs?

How to integrate into existing codes?

How to balance the load across multiple GPUs?

4
Profiler trace of the (much simpler) calculation of the Overlap matrix in CP2K

GPU Acceleration of the Calculation of the Fock Matrix

Integrals of the type 𝑠𝑠𝑠𝑠 can be done analytically.

Integrals of higher moments are iteratively built from the 𝑠𝑠𝑠𝑠 and their ~derivative

We use the Obara-Saika recurrence relations and Head-Gordon-Pople method

E.g. 𝑝𝑠𝑠𝑠 = ത𝑅𝑖𝑗 − ത𝑅𝑖 𝑠𝑠𝑠𝑠 + ത𝑅𝑖𝑗𝑘𝑙 − ത𝑅𝑖𝑗 𝑠𝑠𝑠𝑠 ′

We repeatedly apply these and other operations to increase the moment of the integrals

E.g. The 𝑑𝑑𝑑𝑑 integrals require 86 steps

We precompute a plan of execution and refine it to:

 Fuse similar operations to reduce the number of steps

 Precompute memory offsets and array sizes

 Identify transformations that can be done concurrently -> only synchronize when necessary

 Contract primitives into the generalized contracted basis set

We prepare this plan on the CPU, save it and run it on the GPU.

5

The calculation is done in phases. The parallelisation of work between SM is not trivial.

 Some operations can be split naturally to 1 Integrals -> 1 SM

 Other operations are better split between SMs

- 1 Streaming Multiprocessor per GAC, 1-32 threads per Primitive

- 1 Streaming Multiprocessor per HRR transformation, 1 thread per element

The control logic on the GPU code itself is relatively simple, the complex code is kept on the CPU side.

ssss(m) OUT

GPU Acceleration of the Calculation of the Fock Matrix

6

F

D

WIP

GPU Acceleration of the Calculation of the Fock Matrix

I only described the innermost core of the ERIs calculation

(1) I described a simplified view. Real ERIs are symmetric, periodic, screened linear combinations of integrals

 Each integral is relatively small - nanoseconds to maybe fraction of a millisecond –

 How we pack the integrals to expose parallelism on the GPU may be just as important

 Complexity hinders parallelism (2 body -> 4 body transition)

(2) We don’t exactly need the ERI themselves. We need 𝐹𝑖𝑘 −= 𝐷𝑗𝑙 (𝑖𝑗𝑘𝑙)

 Doing this contraction on the GPU significantly reduces memory transfer

 Should also makes the code more streamlined

(3) Each code uses its own unique data-structure

 Packing integrals is not trivial (and not very efficient at the moment)

 Contraction with a distributed sparse matrix is interesting

Sparsity pattern of F (and D) for an 864 H2O

system before load balance 7

Some preliminary results

Speedup on A100 against a single core of an intel Xeon 5218.

Speedup appears to increase after L=0, followed by a gradual decline.

Part of this behaviour is due to the limited number of integrals at higher L

Some other preliminary results

The calculation is done in batches. Once an integral needs too much memory, all integrals are computed

Increasing the max batch size from 4 to 32 GB gives an average speedup of ~ 10%

The dddd case was 14x faster, due to the very small number of integrals

Preparing the batches

Used openMP to parallelize the packaging. Little shared memory -> reduced the batch size

Significant improvement, but far from saturating an A100
N.B. this is for a much larger benchmark with 12 H2O

Profiler of the batched calculation for 6 H2O. The large gaps between runs are spent preparing the

input arrays

Current State

Packaging is the limiting factor at the moment.

Different screening, allowing for a simpler packaging may improve time significantly

However, this is true in our synthetic benchmarks ran on our code, for a few test cases

Currently working with integration into cp2k, to get some time on a more realistic set

And to look for other limiting factors not visible in out benchmarks

Conclusions

PAX-HPC

Scheme for the buffered calculation of the HF exchange

We discuss the use of Graphical Processing Units (GPUs) in local basis set ab initio electronic structure

codes CP2K and CRYSTAL

We briefly discussed some of the ways GPUs can be used to accelerate these codes

We discussed some of the opportunity and challenges in the calculation of the exact Hartree-Fock Exchange

Simplified representation of a ERI calculation on a generalized contracted basis set

Particles at the eXascale on HPC

PAX-HPC

LM: Ian Bush Boss: Gilberto Teobaldi Alin Marin Elena Thomas Keal

Conclusions

PAX-HPC

Scheme for the buffered calculation of the HF exchange

We discuss the use of Graphical Processing Units (GPUs) in local basis set ab initio electronic structure

codes CP2K and CRYSTAL

We briefly discussed some of the ways GPUs can be used to accelerate these codes

We presented some results about the diagonalization of the Kohn-Sham / Fock matrix

We discussed some of the opportunity and challenges in the calculation of the exact Hartree-Fock Exchange

Simplified representation of a ERI calculation on a generalized contracted basis set

Ab initio Electronic Structure codes

Electronic structure codes compute the properties of the

system under study from first principles.

They are used for:

• Modelling and rational design of materials

• Catalysis, batteries, solar cells, pharmaceuticals

• Novel materials.

Our work is focused on CP2K and CRYSTAL Giant Metal Organic Framework MIL-100 investigated with CRYSTAL for use

in carbon sequestration (https://doi.org/10.1021/acs.jpcc.9b06533)

1

https://doi.org/10.1021/acs.jpcc.9b06533

Profiler of the batched calculation for 6 H2O. The large gaps between runs are spent preparing the
input arrays

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

