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Abstract

We propose Orpheus, a novel programming model for com-
municating agents based on information protocols and real-
ized using cognitive programming. Whereas traditional mod-
els are focused on reactions to handle incoming messages,
Orpheus supports organizing the internal logic of an agent
based on its goals. We give an operational semantics for Or-
pheus and implement this semantics in an adapter to help
build agents. We use the adapter to demonstrate how Orpheus
simplifies the programming of decentralized multiagent sys-
tems compared to the reactive programming model.

1 Introduction
Interaction between autonomous agents is the hallmark of a
multiagent system (MAS). An interaction protocol models
the communication constraints between agents. Engineer-
ing MAS based on protocols offers key benefits in domains
such as business (Lichtenstein et al. 2024) and the Internet of
Things (Singh and Chopra 2017). One, protocols enable re-
alizing MAS in a decentralized manner, i.e., without relying
on a distinguished locus of state or control. Two, protocols
enable structuring an agent’s implementation by cleanly sep-
arating the coordination aspects of its communications from
its internal logic. Three, protocols streamline coordination,
reducing agent complexity and avoiding programming er-
rors pertaining to communication. Four, protocols support
loose coupling: changes in one agent’s implementation do
not affect the implementations of others.

Yet, current approaches fail to realize the above benefits
of protocols when engineering flexible MAS. There are two
reasons why this is so. First, prevalent protocol models are
flawed. FIPA interaction protocols (FIPA 2003) are specified
in Agent UML (AUML) (Odell, Parunak, and Bauer 2001),
a language similar to UML sequence diagrams. An agent
plays a role in a protocol and communicates accordingly.
However, FIPA and UML provide no formal model of the
protocol. Lacking a semantics, we cannot reason about in-
formation to (1) provide a principled programming model
and (2) check whether each message respects the proto-
col semantics. Statecharts, as in ASEME (Spanoudakis and
Moraitis 2022), are enhanced state machines. ASEME, a
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communicating state-machine model, doesn’t accommodate
multi (≥ 3) party protocols over asynchronous communica-
tion. ASEME role skeletons move in lockstep with match-
ing send and receive states in different roles. Choreographies
(Baldoni et al. 2006, 2009), a class of communicating state-
machine model of interactions, share ASEME’s limitations.

We adopt information protocols, a fully declarative and
fully asynchronous model for communication because it
yields highly flexible interactions between agents to under-
gird our contribution. Specifically, we adopt the Blindingly
Simple Protocol Language (BSPL) (Singh 2011), for which
there have been recent advances in formal semantics and
verification tools (Singh and Christie 2021). For a detailed
discussion of the advantages of information protocols over
alternative models of interactions such as choreographies,
see (Chopra, Christie, and Singh 2020).

Second, prevalent programming models for communica-
tion are lacking. The common approach is reactive via a
message handler for each incoming message (Desai et al.
2005), as in message-oriented middleware (Hohpe and
Woolf 2004). However, despite its longevity, this approach
ignores the structuring provided by a protocol and considers
each message independently. However, messages are gener-
ally related to each other, and an agent usually needs to act
based on its state, which depends on messages received or
sent. Thus, the agent code reconstructs the necessary state
computation (1) tied up with the requisite internal reasoning
and (2) in more than one place, based on what message emis-
sions and receptions can lead to that state. Kiko (Christie,
Singh, and Chopra 2023) shares our focus on information
protocols, though for Python agents. Kiko computes not the
relevant messages queried by agent logic but (somewhat un-
necessarily) all messages that are enabled (i.e., legal to com-
plete and emit).

Leading cognitive programming models, e.g., Jason
(Vieira et al. 2007) and JADEL (Bergenti et al. 2017), do
not support protocols. Others, e.g., (Rooney, Collier, and
O’Hare 2004) support protocols but not information proto-
cols. JaCaMo (Boissier et al. 2013) includes Jason but no-
tably acknowledges (p. 748, n1) its lack of protocol-based
programming abstractions; it deemphasizes messaging in
favor of operations on centralized artifacts reminiscent of
Web services. JADE (Bellifemine, Caire, and Greenwood
2007) supports implementing MAS based on the rigid, as ex-



plained above, FIPA interaction protocols; moreover, JADE
does not support custom protocols. Prosocs (Bracciali et al.
2006) provides a reactive programming model; it handles
communication but without reasoning about protocols, sim-
ilar to Desai et al. (2005). Winikoff (2012) identifies high-
level abstractions for flexible interactions as a crucial chal-
lenge for agent programming languages.

Contributions and Novelty. We contribute Orpheus (in
Greek mythology, a poet and a companion of Jason on his
adventures), a programming model for multiagent systems.
Orpheus unites two aspects of autonomy. One, cognitive au-
tonomy, as reflected in an agent’s goals and emphasized by
approaches in the cognitive paradigm. Two, social auton-
omy, as reflected in an agent’s dependence upon others and
emphasized in the interaction-oriented paradigm (Sichman
et al. 1994; Singh 1998; Castelfranchi 1998), here via in-
formation protocols. Orpheus structures agent code by pro-
viding an “API” that can be applied to advance the agent’s
goals. Specifically, it applies the protocol semantics to gen-
erate an adapter that (1) tracks state and computes the en-
abled messages at runtime, (2) abstracts away the actual
emission and reception of messages, and (3) supports the
integrity of communications. We provide Orpheus’ formal
operational semantics and an implementation in Jason.

Organization The rest of this paper is organized as fol-
lows. Section 2 introduces Jason and outlines the typical ap-
proach for developing protocol-based agents in Jason. Sec-
tion 3 highlights the typical shortcomings of the approach.
Section 4 introduces information protocols. Section 5 intro-
duces our proposed architecture and programming model.
Section 6 describes a conceptual evaluation of our approach,
showing key distinctions and how it meets important crite-
ria. Section 7 presents a formalization of our approach. Sec-
tions 8 present our conclusions and some promising direc-
tions engaging with additional relevant literature.

2 MAS Development in a BDI Approach
We adopt Jason as an exemplar BDI approach, but the limita-
tions we identify apply to other such approaches. Though Ja-
son doesn’t support protocols, an agent programmer is typi-
cally guided by an informal protocol specification, e.g., via
a UML sequence diagram. We use NetBill (Sirbu 1997), a
simple e-commerce protocol, as our running example.

Listing 1 implements an agent playing the MERCHANT
role in NetBill. Each agent has a belief base and a plan li-
brary. Agents have two kinds of goals: achievement (marked
!, used here) and test (marked ?). Each plan has a trigger-
ing event, either the addition or the deletion of a belief or
goal. Listing 1 shows two plans. A Jason plan is specified
as triggering event: ⟨context⟩ ← ⟨body⟩, where triggering
event denotes the event the plan handles, the context spec-
ifies the circumstances when the plan could be used, and
the body is the course of action to be taken. In Listing 1, the
nbp state predicate captures the (NetBill) protocol state. The
plan triggered by adding message request from CUSTOMER
to the beliefs (1) determines the Price via the predicate price,
(2) sends the quote, and (3) adds an assertion to record the

resulting protocol state in the belief base. Here, .send is a Ja-
son builtin, and tell is a Jason message type based on KQML
(Finin et al. 1994). The plan for accept is similar.

Listing 1: Jason snippet of a MERCHANT agent.
1 +request ( Id , I tem ) [ source ( Customer ) ]
2 : p r i ce ( Item , Pr ice )
3 <− +nbp sta te ( Id , quot ing ) ;
4 . send ( Customer , t e l l , quote ( Id , Item ,

Pr ice ) ) .
5 +accept ( Id , Item , Pr ice ) [ source ( Customer ) ]
6 : nbp s ta te ( Id , quot ing ) &
7 goods ( Item , Goods )
8 <− −nbp sta te ( Id , quot ing ) ;
9 +nbp sta te ( Id , sh ipp ing ) ;

10 . send ( Customer , t e l l , goods ( Id , Item ,
Pr ice , Goods ) ) .

3 Shortcomings of Traditional Approaches
Listing 1 exemplifies reactive programming: a plan is exe-
cuted to handle each received message, which depending on
the agent’s state, may result in the emission of a message.
Listing 1 highlights three limitations (which we use to eval-
uate Orpheus) of the reactive programming model.

Incompatibilities between agents due to the message
schemas being blended into the internal logic.

Semantic Errors due to a lack of a formal model—e.g., a
CUSTOMER may send both accept and reject.

Inflexibility due to the programmer having to maintain the
protocol state via a state machine, where the agents
move in lockstep—and with no support for concurrency,
asynchrony, messages arriving in unexpected orders, and
more than two agents.

Elaborating on the last point, as Listing 1 shows, the tra-
ditional approach encodes send-receive pairs into the agent
code. Specifically, sending quote and goods are paired with
receiving request and accept, respectively. But what if send-
ing a message depends on the receipt of multiple messages
that may arrive in any order? For example, an agent may
send a message upon receiving messages from two other
agents. Following the traditional approach, the programmer
now must write as many plans as the number of messages
that must be received, each triggered by the reception of
one of those messages and whose context encodes the state
where the other messages have already been received. We
revisit this point in Section 6.4, where we introduce a proto-
col with more than two agents.

4 Background: Information Protocols
An information protocol (Singh 2011) specifies communi-
cation in a multiagent system and provides a basis for im-
plementing its loosely coupled agents. Listing 2 illustrates
BSPL via our running example, NetBill.

Listing 2: Initial NetBill Protocol (goods before pay)
1 N e t B i l l {
2 r o l es M, C / / Merchant , Customer
3 parameters out ID key , out item , out done



4 p r i v a t e dec is ion , outcome , pr ice , c h i t ,
shipped , cc

5 C −> M: request [ out ID key , out i tem ]
6 M −> C: quote [ i n ID key , i n item , out

p r i ce ]
7 C −> M: accept [ i n ID key , i n item , i n

pr ice , out dec is ion , out outcome ]
8 C −> M: r e j e c t [ i n ID key , i n item , i n

pr ice , out dec is ion , out done ]
9 M −> C: goods [ i n ID key , i n item , i n

outcome , out shipped ]
10 C −> M: epo [ i n ID key , i n item , i n pr ice ,

i n shipped , out cc ]
11 M −> C: r e c e i p t [ i n ID key , i n pr ice , i n

cc , out c h i t , out done ] }

A BSPL protocol specifies roles and message schemas.
A message schema has a name, a sender and a receiver
role, and one or more parameters, including some desig-
nated ⌜key⌝. A message instance is a tuple of bindings for
the parameters of that schema that are adorned either ⌜in⌝ or
⌜out⌝. The ⌜key⌝ parameters of a schema form a composite
key and uniquify its instances.

A role knows bindings for some parameters if it has sent
or received messages with bindings for those parameters.
Parameters adorned ⌜in⌝ must have bindings known to the
sender when emitting a message. Parameters adorned ⌜out⌝
and ⌜nil⌝ (not shown) must not have bindings known to the
sender when emitting a message; parameters with ⌜out⌝ be-
come known then, but those with ⌜nil⌝ do not. By unique-
ness, no two message instances with the same bindings for
overlapping ⌜key⌝ parameters may have distinct bindings
for common non-key parameters. Since bindings are intro-
duced through ⌜out⌝ parameters, no two message instances
may have overlapping key parameter bindings as well as a
binding of the same ⌜out⌝ parameter. BSPL thus captures
causality and integrity through information.

Message emissions are constrained only by causality and
locally determinable integrity constraints; there is no sepa-
rate control flow constraint. ID identifies enactments of Net-
Bill. CUSTOMER may send a request at any time by generat-
ing a new binding for ID and some binding for item. To send
an instance of the quote message, MERCHANT must know
the bindings of ID and the correlated item and not know the
binding of the correlated price; however, upon emitting the
quote, it knows the binding of price. In Listing 2, epo (pay-
ment) may happen only after goods because epo has an in-
formation dependency on goods via shipped.

Notably, in BSPL, the emission of a message by an agent
depends purely upon what information it has. Specifically,
unlike traditional state machines, it is decoupled from hav-
ing sent or received specific messages and their relative or-
dering. Indeed, a message may be received at any time in
any relative order with respect to other messages, obviating
the need for ordered-delivery communication services.

Orpheus preserves the flexibility accorded by BSPL—
multiple operational paths (each a sequence of sends and re-
ceives) in a protocol may produce the same information. Or-
pheus leverages this information-based abstraction to save
programmers from implementing low-level state machines
and to address Inflexibility.

Orpheus leverages BSPL and uses a protocol (with a for-
mal syntax and semantics due to BSPL) that specifies mes-
sage schemas separately from agent code, thus addressing
Incompatibility (Section 3).

5 The Orpheus Programming Model
An Orpheus agent is a Jason agent structured as Figure 1
shows. The agent’s beliefs capture its state. The local state is
the part of the state concerning sent and received messages.
An agent’s internal logic is expressed as plans. Based on the
protocol, the Orpheus tool generates role-specific adapters
(Jason code, i.e., plans) that compute enabled messages, and
validate messages before emission and upon reception.

Internal Logic

Role Adapter

Local State

Internal Logic

Role Adapter

Local State

Reasoning Reasoning

Beliefs Beliefs

Orpheus Agent Orpheus Agent

Asynchronous Communication Infrastructure

Notional Protocol State
Projected to Local States

Orpheus Tool

Information Protocol

Figure 1: Orpheus maintains the agent’s local state (the pro-
tocol state projected to the messages sent or received by the
agent) as a set of beliefs in Jason. The Orpheus tooling gen-
erates an adapter for the role being played by the agent based
on the information protocol. The agent’s internal logic uses
the adapter to send messages.

The Orpheus adapter applies BSPL semantics to verify if
an incoming or outgoing message is consistent with the local
state—no distinct binding is known for any of its parameters
relative to the key—and adds it to the local state. Suppose
Alice plays CUSTOMER and Bob plays MERCHANT. Then, if
Alice’s message request[1, “fig”] is consistent with her local
state, the term request(“Alice”, “Bob”, 1, “fig”) is added to
her local state. And, likewise, upon reception by Bob.

Orpheus focuses not on reactions to incoming messages
but on computing messages enabled to be sent given the pro-
tocol semantics and the local state. Doing so yields flexibil-
ity in agent decisions while abstracting out reasoning about
the protocol into automatically generated code. The listings
below highlight the Orpheus primitives for emphasis.

5.1 Enablement
A (full) instance of a message schema is a tuple of bind-
ings for the ⌜in⌝ and ⌜out⌝ parameters (⌜nil⌝ parameters of
the schema must have no bindings in an instance). Valid in-
stances may be emitted. An enabled instance is partial: its
⌜in⌝ parameters are bound (their bindings must be known)
and its ⌜out⌝ parameters are not bound (they must not be
known). That is, given a local state, one can compute the en-
abled instances, which capture the potential emissions of the
agent in that local state. For example, let MERCHANT’s local
state contain request[1, “fig”] meaning that it has received
that request from the CUSTOMER. Then, the MERCHANT has
one enabled instance in that state: quote[1, “fig”, price].



5.2 Enablement-Based Programming Model
Orpheus supports a novel programming model based on
message enablement, in which the developer specifies plans
for emitting enabled messages. In contrast to the reactive
model, the plans are decoupled from message receptions.
Listing 3 captures the main points. To achieve some agent-
specific goal g, i.e., to meet its principal’s requirements, the
agent queries if there are enabled instances corresponding to
the messages it wants to send, completes them by producing
bindings for their ⌜out⌝ parameters, and attempts to send
them all in one shot. An attempt is successful if the com-
pleted messages are mutually consistent in their bindings;
the sent messages are added to the local state. A received
message is added to the local state if it is consistent with
the local state. In the listing, Orpheus primitives are in blue,
except !complete, shown in red. Besides identifying g, the
programmer is responsible only for the plan for !complete.

Listing 3: Plan pattern and Orpheus primitives.
1 + ! g
2 : enabled (m1 ) &. . .& enabled (mq )
3 <− ! complete (m1, . . . ,mq ) ;
4 ! a t tempt (m1, . . . ,mq ) .
5 + ! at tempt (m1, . . . ,mq )
6 : cons i s ten t (m1, . . . ,mq )
7 <− f o r ( . member (m [ r ece i ve r (R) ] , [

m1, . . . ,mq ] ) )
8 { . send (R, t e l l , m ) ;
9 +sent (m ) } .

10 enabled (m(...) ) : − . . . / / BSPL semantics
11 cons i s ten t (m1 . . . mq ) : − . . . / / BSPL semantics
12 +sent (m ) <− . . . / / BSPL semantics
13 +m : cons i s ten t (m , l o c a l ) <− . . . / / BSPL

semantics

Listing 4 shows a plan generated for computing enabled
messages for MERCHANT in NetBill. We maintain each pa-
rameter in its own “table” (relative to the key); the bindings
for the ⌜in⌝ parameters of an enabled instance exist in the
corresponding tables and those for the ⌜out⌝ parameters are
missing. The out stands in for missing ⌜out⌝ parameters.

Listing 4: Generated Jason code for computing enabled
quotes; the code generated for other messages is similar.
1 enabled ( quote ( Id , Item , out ) [ r ece i ve r (

Customer ) ] )
2 : − t a b l e I D ( Id ) & t a b l e i t e m ( Id , I tem )
3 & not ( t a b l e p r i c e ( Id , Pr ice ) )
4 & table Customer ( Id , Customer ) .

Listing 5 applies the pattern of Listing 3 in implement-
ing MERCHANT from Listing 2. It shows a plan for sending
quotes that is triggered whenever the goal of sending a quote
is asserted. The plan checks if there is an enabled quote;
if so, the plan completes it by computing a binding for the
⌜out⌝ parameter price in quote and attempts to send it.

Listing 5: The programmer identifies MERCHANT agent’s
goals and what messages these goals involve sending, and
also specifies complete (not shown).
1 @quote−plan [ atomic ]
2 + ! send quote ( Id , Item , Customer )

3 : enabled ( quote ( Id , Item , out ) [ r ece i ve r (
Customer ) ] )

4 <− ! complete ( quote ( Id , Item , Pr ice ) [
r ece i ve r ( Customer ) ] ) ;

5 ! a t tempt ( quote ( Id , Item , Pr ice ) [
r ece i ve r ( Customer ) ] ) .

6 @goods−plan [ atomic ]
7 + ! send goods ( Id , Item , Customer )
8 : enabled ( goods ( Id , Item , Outcome , out ) [

r ece i ve r ( Customer ) ] )
9 <− ! complete ( goods ( Id , Item , Outcome ,

Shipped ) [ r ece i ve r ( Customer ) ] ) ;
10 ! a t tempt ( goods ( Id , Item , Outcome ,

Shipped ) [ r ece i ve r ( Customer ) ] ) .

The messages in an attempt are consistent if no two cor-
related messages (i.e., with the same key) share an ⌜out⌝
parameter. As Section 4 explains, such messages violate the
integrity constraint of the BSPL semantics. So messages are
emitted via the Jason .send action only if they are consis-
tent. For example, in the protocol in Listing 2, in any enact-
ment, accept and reject are simultaneously enabled. Since
they share decision, that means both feature a binding for
decision, and therefore sending them would violate the pro-
tocol. Therefore, any attempt to send both fails. Together,
enabled and attempt support compliance with the protocol,
thus addressing Semantic Errors (Section 3).

The enabled predicates effectively capture the state of the
interaction, saving programmers the effort of writing code to
track it. Moreover, as we shall see below, by encapsulating
state as such, Orpheus helps structure agent code, cleanly
separating the internal logic (when to send a quote and with
what price) from computations related to protocol state.

6 Evaluation
We evaluate the claim that Orpheus facilitates a variety of
changes to a MAS by reducing code complexity.

6.1 Changes to Protocol
Listing 2 shows a NetBill protocol in which goods must hap-
pen before epo (payment). A more flexible protocol can be
obtained by deleting some non-key ⌜in⌝ parameters from
some messages, in effect, removing the requirement that
those parameters must be known to be able to send those
messages. Consider Flexible-NetBill in Listing 6, which is
obtained by deleting the parameter outcome (adorned ⌜in⌝)
from goods. This protocol is more flexible because sending
goods no longer requires receiving accept (which produces
the binding for outcome) first; receiving request is enough.

Listing 6: Flexible NetBill.
1 F lex ib l e − N e t B i l l {
2 r o l es M, C / / Merchant , Customer
3 parameters out ID key , out item , out done
4 p r i v a t e dec is ion , outcome , pr ice , c h i t ,

shipped , cc
5 C −> M: request [ out ID key , out i tem ]
6 M −> C: quote [ i n ID key , i n item , out

p r i ce ]
7 C −> M: accept [ i n ID key , i n item , i n

pr ice , out dec is ion , out outcome ]



8 C −> M: r e j e c t [ i n ID key , i n item , i n
pr ice , out dec is ion , out done ]

9 M −> C: goods [ i n ID key , i n item , out
shipped ]

10 C −> M: epo [ i n ID key , i n item , i n pr ice ,
i n shipped , out cc ]

11 M −> C: r e c e i p t [ i n ID key , i n pr ice , i n
cc , out c h i t , out done ] }

Let’s consider what changes must be made to Listing 5,
which shows a MERCHANT’s plan for !send goods, to take
advantage of the enhanced flexibility of Flexible-NetBill.
The enhanced flexibility is actually neatly encapsulated in
how the MERCHANT adapter of Flexible-NetBill computes
enabled goods messages. Therefore, the changes to Listing 5
are minimal: we need to delete only the attribute Outcome
from the predicate goods. Listing 7 gives the resulting code.

Listing 7: Modified plan for !send goods.
1 @goods−plan [ atomic ]
2 + ! send goods ( Id , Item , Customer )
3 : enabled ( goods ( Id , Item , out ) [ r ece i ve r (

Customer ) ] )
4 <− ! complete ( goods ( Id , Item , Shipped ) [

r ece i ve r ( Customer ) ] ) ;
5 ! a t tempt ( goods ( Id , Item , Shipped ) [

r ece i ve r ( Customer ) ] ) .

By contrast, in the reactive model, changes are extensive.
Listing 1 shows a plan for sending goods upon accept. We
must add plans to send goods upon receiving request, send-
ing quote, or receiving reject. The state machine encoding
is more complex to accommodate new states resulting from
the emission of goods in those various states.

Flexible-NetBill is not safe though: since goods is not de-
pendent on outcome, reject and receipt can be sent concur-
rently, producing an integrity violation since done is ⌜out⌝
in both. BSPL tooling (Singh and Christie 2021) catches this
error and removing done from reject fixes it.

The resulting protocol, Safe-Flexible-NetBill, can be
made even more flexible by deleting shipped from epo. Let’s
refer to this protocol as Super-Flexible-NetBill. This mod-
ification would mean that epo could be sent anytime af-
ter quote was sent. Again, in the Orpheus approach, the
changes to accommodate this enhanced flexibility would be
limited to deleting the attribute Shipped from the agent code.
Alternatively, one could have implemented a MAS based
on Super-Flexible-NetBill and switched to Safe-Flexible-
NetBill, With Orpheus, the changes would have been limited
to introducing the corresponding attribute in the agent code.
In a nutshell, by abstracting the low-level details of state via
enablement, Orpheus addresses Inflexibility (Section 3).

6.2 Changes to Agent Decision Making
With Orpheus, changes to an agent’s internal logic tend to
be highly localized. For example, assuming Safe-Flexible-
NetBill, the plan !send goods in Listing 7 could be modified
to ship only to friendly customers by simply introducing the
appropriate query. By contrast, in the reactive model, be-
cause there would be several plans for sending goods (as
explained in Section 6.1), the query would have to be intro-
duced in each of them.

6.3 Changes to Communication Infrastructure
Orpheus accommodates changes to the communication in-
frastructure. A fairly drastic change would be switching
from an ordered communication service to an unordered ser-
vice. The motivation to do so could be high performance or
settings such as the IoT. Orpheus agents can handle mes-
sages in whatever order they arrive: they are simply added to
the agent’s local state and may contribute to the enablement
or disablement of other messages. However, all this is ab-
stracted away by the adapter. So even without ordering guar-
antees, Orpheus agents work without needing any change.
By contrast, agents implemented using the traditional ap-
proach rely on message ordering (e.g., typically FIFO) for
correctness. Switching to an unordered communication ser-
vice would therefore lead to errors.

6.4 Correlating Information
An agent may wish to correlate information from sev-
eral messages from several agents to decide its action.
We adopt a logistics scenario (Sicari, Rizzardi, and Coen-
Porisini 2019) to highlight such correlation in handling pur-
chase orders (POs) placed (by customers, not modeled). The
roles involved are MERCHANT, WRAPPER, LABELER, and
PACKER. A PO may have several items, each with a wrap-
ping requirement. MERCHANT sends each item in a PO sep-
arately to WRAPPER, who sends wrapped items to PACKER.
MERCHANT sends the PO’s shipping address to LABELER,
who sends the corresponding shipping label to PACKER. If
PACKER has received a PO’s label, then for every wrapped
item it has received for that PO, it may send a notification
to the MERCHANT that it is packed. Figure 2 shows how the
roles communicate and Listing 8 shows PACKER’s part of
the protocol in BSPL. Notice the composite key ⟨oID, iID⟩:
oID identifies POs and iID identifies items within a PO.

Merchant

Labeler Wrapper

Packer

Address Items

Shipping label Items wrapped

Items packed

Figure 2: Logistics scenario relative to a PO.

Listing 8: Fragment of Logistics relevant to PACKER.
1 W −> P: wrapped [ i n oID key , i n i I D key ,

i n item , out wrapping ]
2 L −> P: labe led [ i n oID key , i n address ,

out l a b e l ]
3 P −> M: packed [ i n oID key , i n i I D key , i n

wrapping , i n labe l , out s ta tus ]

Listing 9: Plan in Orpheus for sending packed messages.
The correlation of label with item is automatic.
1 @quote−plan [ atomic ]
2 + ! send packed
3 : enabled ( packed (OID , I ID , Item , Wrapping

, Label , out ) [ r ece i ve r (M) ] )
4 <− ! complete ( packed ( , , , , Status ) [

r ece i ve r (M) ] ) ;



5 ! a t tempt ( packed (OID , I ID , Item ,
Wrapping , Label , Status ) [ r ece i ve r (
M) ] ) .

6 + ! complete ( packed ( , , , , Status ) [
r ece i ve r ( ) ] )

7 <− Status = t rue .

Listing 9 shows a snippet of a PACKER agent. Correlation
is handled transparently by the adapter in computing enabled
packed messages; the programmer has to merely write code
to send them. As Listing 10 shows, without Orpheus, a Ja-
son programmer has to tackle each order separately, which
increases complexity and exacerbates code maintenance.

Listing 10: Without Orpheus, the programmer writes two
plans, one for each order in which labeled and wrapped
messages may arrive.
1 + labe led (OID , , Label )
2 : wrapped (OID , I ID , , Wrapping )
3 & packingdone (OID , I ID , Status )
4 <− . send ( packed (OID , I ID , Wrapping , Label

, Status ) )
5 +wrapped (OID , I ID , , Wrapping )
6 : l abe led (OID , , Label )
7 & packingdone (OID , I ID , Status )
8 <− . send ( packed (OID , I ID , Wrapping , Label

, Status ) )

7 Formalization
Figure 3 gives a transition system semantics for Orpheus.
Let λ(m,x, y, p⃗, k⃗, i⃗, o⃗, n⃗) be a message schema, where m
is the name of the message; x and y are sender and receiver,
respectively; k⃗, i⃗, o⃗, and n⃗ are the sets of key, ⌜in⌝, ⌜out⌝,
and ⌜nil⌝ parameters, respectively. Further, i⃗∪o⃗∪n⃗ = p⃗; and
k⃗ ⊆ i⃗ ∪ o⃗. A message instance of the schema has bindings
(values) for each parameter in i⃗ and o⃗ and is represented as
m(x, y, k⃗, i⃗, o⃗) (or m′(x, y, k⃗′, i⃗′, o⃗′)). An enabled instance
of the schema has bindings for only the parameters in i⃗ and
is represented by enabled(m,x, y, i⃗, o⃗, n⃗). And, m[⃗a] gives
the bindings of parameters a⃗ in instance m. We omit the
components of an instance where they are not needed.

Two instances correlate if they share some key parame-
ters and those parameters have the same bindings in both in-
stances. Notice that non-key parameters such as item only
make sense in conjunction with key parameters such as
ID. We therefore impose the well-formedness condition that
if two messages didn’t share a key parameter, then they
couldn’t share any non-key parameter. Let m and m′ be in-
stances (message or enabled); m ◦m′ (m and m′ are corre-
lated) means m[⃗k∩ k⃗′] = m′ [⃗k∩ k⃗′]. And, m⊙m′ is m◦m′

where m′ is an instance in the agent’s local state L.
Rule RECV says that upon reception of a message, if no

instance in L conflicts with the received message on its bind-
ings, then it can be added to the local state.

Rule ENABLED defines enabled instances. It says that the
bindings for each (of the ⌜in⌝) parameters of an enabled in-
stance must already be present in some correlated instances
in the agent’s local state, and bindings for none of its ⌜out⌝
or ⌜nil⌝ parameters must already be present in the local state.

RECV

+m local(L)

m⊙m′ → (p ∈ p⃗ ∩ p⃗′ → m[p] = m′[p])

local(L ∪ {m})

ENABLED

p ∈ i⃗→ (m⊙m′ ∧m[p] = m′[p])

p ∈ o⃗ ∪ n⃗→ (m⊙m′ → p ̸∈ o⃗′)

enabled(m, i⃗, o⃗, n⃗)
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

ATTEMPT

enabled(m1), . . . , enabled(mq)
!complete({m1, . . . ,mq})

!attempt({m1, . . . ,mq})
·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ·· · ··

SEND

!attempt({m1, . . . ,mq}) local(L)
mi ◦mj → (p ∈ o⃗i → p ̸∈ o⃗j)

.send(m1, . . . ,mq) local(L ∪ {m1, . . . ,mq})

Figure 3: Operational semantics of Orpheus, as inference
rules for an agent’s state-transition system. Dotted line: in-
ference within a state; solid line: transition from one state
to the next. This semantics highlights the modularity of Or-
pheus. Rules RECV, ENABLED, and SEND are based on the
BSPL semantics rendered into Jason, and implemented in
our tool. The programmer is responsible only for complete
to apply Rule ATTEMPT.

Rule ATTEMPT says that given a set of enabled instances,
an agent can attempt them if they are completed. As List-
ing 3 indicates abstractly, the agent must have a plan for
the complete goal that would transform a set of enabled in-
stances into a set of message instances by providing bindings
for the ⌜out⌝ parameters of each enabled instance in the set.

Rule SEND uses attempt to send messages. If the mes-
sage instances in attempt are consistent in the sense that
no pair of correlated instances disagrees on any parameter
binding, then the instances in attempt are all sent.

In this manner, the semantics demonstrates how Orpheus
plugs into Jason, enabling benefits from information proto-
cols while respecting Jason’s constructs.

8 Discussion
A protocol captures stakeholder requirements modularly
(Chopra et al. 2014). Whereas a protocol constrains the deci-
sions an agent (playing a role) may make, the agent decides
to respect its principal’s requirements (Chopra and Singh
2016). Orpheus facilitates specifying agent decision making.

Orpheus addresses a crucial gap in engineering MAS by
combining BDI-based and protocol-based abstractions. Or-
pheus relieves the programmer of reasoning about the nitty
gritty of an ongoing interaction and leads to improved code
structure by encapsulating and automating the handling of
protocol logic. Orpheus reduces code complexity and facil-
itates changes to a multiagent system. Orpheus reflects the
intuition that an agent sends a message because it advances



its goals based on its beliefs, not because it received a mes-
sage, as would be the case in object-oriented programming.

Orpheus facilitates reasoning about the protocol state via
its enabled and attempt primitives. As Section 6 shows, Or-
pheus shines as the underlying protocol becomes more flex-
ible. The number of computations of a flexible information
protocol may be exponential in the size of its specification.
Without Orpheus, a programmer would have to figure out the
possible computations to produce a correct implementation.
When multiple computations involving different sets of mes-
sages may produce the same information, the programmer
would have to produce multiple plans with complex triggers
and ensure they produced decisions in accordance with the
requirements. The resulting agent would be challenging to
maintain, even for small changes to a protocol. Orpheus, by
contrast, abstracts away the operations and exposes a higher-
level API in which for each message schema, there is one en-
abled predicate. Consequently, as Section 6 shows, Orpheus
elegantly handles changes to protocols.

Coordination in MAS (Omicini and Ossowski 2003) may
be subjective—how each agent interacts in view of its
goals, e.g., computing the price of an item or dealing with
a message—or objective—how an agent’s interactions are
governed to satisfy constraints, e.g., on the ordering and
occurrence of messages. Artifacts (Weyns, Omicini, and
Odell 2007; Ricci et al. 2009), which encode the objec-
tive coordination, are not suitable for realizing decentralized
MAS (Tolksdorf 2000). For decentralized settings, Omicini
and Ossowski (2003) motivate agent platforms to engineer
MAS. Orpheus is such an agent platform. The traditional
approach outlined in Section 2 mixes the objective and sub-
jective coordination in the agent implementation. Orpheus
modularizes them via the adapter. A broader question is how
interaction structures affect how the properties of MAS in-
terplay with those of their constituents (Singh 1991).

Basing Orpheus on protocols brings forth additional op-
portunities for flexibility in engineering MAS. One point is
to reflect how an agent conforms to a (refinement of a) spec-
ification while maintaining interoperability (Baldoni et al.
2009) with others. Another point is to enable code reuse for
agent implementations as the underlying protocol is modi-
fied to adapt to different contexts (Chopra and Singh 2006).

8.1 Directions in Addressing Limitations
Orpheus shares challenges with rule-based programming.
Errors involving patterns are easy to make and hard to
find: an enabled predicate must exactly match the message
schema. Any difference in parameter ordering would bind
parameters to the wrong values, and missing or extra pa-
rameters would silently prevent the plan from matching at
all. These problems can be alleviated by tools that gener-
ate agent stubs and warn about schema mismatches. Ideally,
the programming model should make it clear—via typing—
what parameters of an enabled message a plan needs to bind.

8.2 Directions in Addressing Opportunities
MAS software methodologies, e.g., Prometheus (Padgham
and Winikoff 2005), typically support deriving informal
UML interaction diagrams from requirements. Some works

address the anatomy of information protocols (Singh 2014).
A crucial direction is methodologies for obtaining informa-
tion protocols and agents from requirements. The reduction
in complexity due to Orpheus can help manage the complex-
ity of testing BDI programs (Winikoff and Cranefield 2014).

The Orpheus adapter uses KQML’s tell primitive for com-
munication, though only for transport. KQML and the FIPA
ACL (FIPA 2002) have well-known limitations that make
them unsuited to multiagent systems (Singh 1998). An in-
teresting direction would be to make information protocols
native to cognitive agent languages, obviating their use of
KQML or ACL and improving MAS quality by systemati-
cally modeling interactions (Chopra and Christie V 2023).

JaCaMo (Boissier et al. 2019) is a framework for pro-
gramming MAS that combines Jason, CArtAgO (Ricci
et al. 2009), and MOISE (Hübner, Sichman, and Boissier
2007). Orpheus will enable improvements through the Ja-
CaMo value chain, including by taking fuller advantage of
CArtAgO and MOISE for improved programming and sup-
port for commitment-based reasoning (Baldoni et al. 2018).

Kiss, Madden, and Logan (2010) propose enhancements
to agent programming to tackle plan failures atomically.
These are interesting improvements but not directly related
to our present research questions. Yet, extending Orpheus to
support protocol-based fault handling, as done in (Christie,
Chopra, and Singh 2022), would be valuable.

Imperative cognitive languages, e.g., ASTRA (Dhaon and
Collier 2014) and SARL (Galland, Rodriguez, and Gaud
2020), can also support protocols. Though our Kiko pro-
gramming model and adapter (Christie, Singh, and Chopra
2023) doesn’t tackle cognitive programming, it can guide the
development of Orpheus-like adapters for imperative cogni-
tive languages since it is built on Python. Comparing Or-
pheus implementations with Kiko in terms of code quality
and performance could yield insights into the tradeoffs be-
tween various agent programming paradigms for protocols.

Information protocols fit well with declarative business
process modeling based on data (Montali, Calvanese, and
Giacomo 2014; Lichtenstein et al. 2024). Orpheus can help
relate data-driven and BDI approaches, combining flexible
decision making with routine computations.

Günay, Winikoff, and Yolum (2015) and Meneguzzi et al.
(2018) generate commitments based on goals. Singh and
Chopra (2020) generate protocols from commitments. What
we need is a comprehensive model of goals, commitments,
and protocols. Our recent work, Azorus, recasts commit-
ment semantics into Jason to realize a programming model
in the style of Orpheus (Chopra et al. 2025). One direction
is to incorporate joint formal reasoning about commitments
and protocols. Another is to support protocols based not on
messages, but on communicative actions, as in Langshaw
(Singh, Christie, and Chopra 2024). Langshaw improves the
compactness and flexibility of protocols and is well-suited
to modeling commitments. How can we develop effective
cognitive agents for such languages?

9 Reproducibility
The entire codebase (including tooling) and full versions of
all examples are available at https://gitlab.com/masr.
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