Statistical Modelling for Earthquakes Accounting for Measurement Error

> Kushagra Agarwal¹ Supervised by: Wanchen Yue²

¹University of Warwick 2 Lancaster University

30/08/24

excellence with impact

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-21-0) 1 1 / 23

▶ ४ 로 ▶ 로!ㄹ ♡ ٩.૦

[Introduction & Background](#page-1-0)

Agarwal, Yue STOR-i Store S

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-0-0) 2 / 23

∢ 로 ▶ 토!로 ⊙ Q ⊙

K ロ ▶ K 何 ▶

- ▶ Groningen gas field was founded in 1959 and is one of the largest gas fields in the world.
- \triangleright Extraction of gas from the field began in 1963 by a joint venture by Shell and Exxon.
- ▶ The extraction of gas has led to a number of **human-induced earthquakes** (Hi-Quakes) since 1991 in the province of Groningen, and this remains a problem to this day.
- \triangleright The induced seismic activity has caused damage to buildings and infrastructure in the region, leading to financial losses and safety concerns.

Agarwal, Yue STOR-i Store S

ㅋ 로 > 트리드 ◇ Q ⊙

Figure 1: Impact of Hi-Quakes on the city of Groningen.

(ロ) (d)

(E) * E) (E) = ⊙٩⊙

[Hawkes Processes](#page-4-0)

Agarwal, Yue STOR-i Store S

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-0-0) 5 / 23

▶ 제품 ▶ 품|로 9 9.0

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

∍

[Introduction & Background](#page-1-0) [Hawkes Processes](#page-4-0) [Extreme Value Theory](#page-8-0) [Measurement Errors](#page-12-0) [Further Research](#page-18-0) [References](#page-21-0)

A Hawkes process is a counting process $(N(t): t \geq 0)$ with associated history $(H(t): t \ge 0)$ that satisfies:

$$
\int \lambda^*(t)h + o(h), \qquad m = 1
$$

$$
\mathbb{P}(N(t+h)-N(t)=m\mid \mathcal{H}(t))=\begin{cases}\nN(t)N+O(0), & m=1 \\
O(h), & m>1 \\
1-\lambda^*(t)h+O(h), & m=0\n\end{cases}
$$

where *λ ∗* (t) is the intensity function of the Hawkes process and is of the form:

$$
\lambda(t \mid \mathcal{H}_t) =: \lambda^*(t) = \mu + \sum_{i:t_i < t} \gamma(t - t_i)
$$
 (1)

The most common choice for the excitation function is the ϵ exponential decay, i.e., $\gamma(t)=\alpha e^{-\beta t}$, where $\alpha,\,\beta>0$ are parameters. K 등 K K 등 K (등)는 9000

Agarwal, Yue STOR-i Store S

Figure 2: Realisation of a Hawkes process with conditional intensity function (above) and the corresponding counting process (below) with parameters $\mu = 1.2$, $\alpha = 0.6$, and $\beta = 0.8$.

K ロ K K 伊 K K ミ K K ミ K 三 ヨ H Y O Q O

Epidemic Type Aftershock Sequence (ETAS) model is an extension of Hawkes process that is mainly used to model seismic occurrences and their aftershocks.

The modified Omori formula describes the rate of aftershocks as a power law decay function. So, the intensity function for ETAS model is given by

$$
\lambda^*(t) = \mu + \sum_{i:t_i < t} \frac{K_0}{(t - t_i + c)^p} \cdot e^{\alpha(m_i - M_r)}
$$

where K_0 , c, p, and α are parameters, μ is the background intensity, m_i are magnitudes of earthquakes, and M_c is the pre-determined cut-off magnitude.

K ロ K K 伊 K K ミ K K ミ K 三 ヨ H Y O Q O

[Extreme Value Theory](#page-8-0)

Agarwal, Yue STOR-i

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-0-0) 9 / 23

▶ ४ 로 씨 코 로 이익이

 4 D \rightarrow 4 \overline{m} \rightarrow 4 \equiv

If X_1, \ldots, X_n are i.i.d random variables, then there exist $\frac{1}{2}$ sequences of constants $\{a_n > 0\}$ and $\{b_n\}$ such that $\frac{M_n - b_n}{a_n} \sim$ GEV(μ , σ , ξ) as $n \to \infty$.

$$
\triangleright \hspace{0.2cm} G(x) = \begin{cases} \exp \left\{ -\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]_+^{-1/\xi} \right\}, & \xi \neq 0 \\ \exp \left\{ -\exp \left[-\left(\frac{x-\mu}{\sigma}\right)\right] \right\}, & \xi = 0 \end{cases}
$$

where x_+ = max(0, x).

K ロ K K 伊 K K ミ K K ミ K 三 ヨ H Y O Q O

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-0-0) 10 / 23

 \triangleright But, using only the maximum is a waste of data.

 \triangleright Using the same setting as above, for large enough u and i conditional on $X_i > u$, $X_i - u \sim \text{GPD}(u, \sigma, \xi)$ as $n \to \infty$.

$$
\blacktriangleright \ H(x) = \begin{cases} 1 - \left[1 + \xi \left(\frac{x - u}{\sigma}\right)\right]_+^{-1/\xi}, & \xi \neq 0 \\ 1 - \exp\left[-\left(\frac{x - u}{\sigma}\right)\right], & \xi = 0 \end{cases}
$$

[Statistical Modelling for Earthquakes Accounting for Measurement Error](#page-0-0) 11 000 11 / 23

▶ ४ 로 씨 로!ㄹ めんぺ

← ロ ▶ → イ 何 ▶

Probability Density Functions

Figure 3: Probability Density Functions for GEV and GPD Distributions with $\mu = 0$, $\mu = 0$, $\sigma = 1$, and different values for ξ .

4 0 8 ∢● ∍

一 (語) 。

星目 のへぐ

[Measurement Errors](#page-12-0)

- \blacktriangleright The errors are i.i.d $\mathcal{N}(0, \sigma_N^2)$, where σ_N is known and do not depend on the magnitudes of earthquakes.
- \blacktriangleright The threshold u is pre-determined and fixed.
- ▶ We model the magnitudes of earthquakes as a GPD distribution. Assume X *∼* GPD(u*, σ, ξ*) where *σ* and *ξ* are unknown. Let $Y := X + \epsilon$, where ϵ are the errors.

▶ ४ 로 씨 코 로 이익이

[Introduction & Background](#page-1-0) [Hawkes Processes](#page-4-0) [Extreme Value Theory](#page-8-0) [Measurement Errors](#page-12-0) [Further Research](#page-18-0) [References](#page-21-0) Method 1: Estimation using Likelihood for $Y = X + \epsilon$

By convolution, the PDF for Y is given by:

$$
f_Y(y \mid \sigma, \xi) = \int_u^{\infty} f_X(x \mid \sigma, \xi) \cdot \frac{1}{\sqrt{2\pi\sigma_N^2}} e^{\frac{-(y-x)^2}{2\sigma_N^2}} dx \qquad (2)
$$

and so, the log-likelihood is given by:

$$
\ell(y_1,\ldots,y_n\mid\sigma,\xi)=\sum_{i=1}^n\log(f_Y(y_i\mid\sigma,\xi))\qquad \qquad (3)
$$

K ロ ▶ K 御 ▶ K 결 ▶ K 결 ▶ (결) ≥ 19 Q Q Q

Figure 4: Likelihood for Y against likelihood for X.

K ロ K K 伊 K K ミ K K ミ K ミ ミ ヨ つ Q Q O

[Introduction & Background](#page-1-0) [Hawkes Processes](#page-4-0) [Extreme Value Theory](#page-8-0) [Measurement Errors](#page-12-0) [Further Research](#page-18-0) [References](#page-21-0)

Method 2: Monte Carlo-Based Estimation

```
Input: Initial parameters \sigma, \xi, noise standard deviation \sigma_N, observed data Y,
               threshold u, maximum iterations M, tolerance \epsilon'Output: Estimated parameters σ
∗ and ξ
∗
      Initialize: Set initial guesses for σ and ξ
      for iteration i = 1 to M do
            E-Step:
            for each observed Yi do
                 Generate X_{ij} \sim \text{GPD}(\sigma, \xi, u) for j = 1 to N samples
                  Compute weights w_{ij} = \frac{1}{\sqrt{2\pi\sigma_N^2}} \exp\left(-\frac{(Y_i - X_{ij})^2}{2\sigma_N^2}\right)\setminus2\sigma_{\Lambda}^2Calculate expected value E[X_i \mid Y_i] = \frac{\sum_j X_{ij} w_{ij}}{\sum_j w_{ij}}end
            M-Step:
            Define negative log-likelihood function using E[Xi
| Yi]
            Optimize parameters \sigma and \xi by minimizing the negative log-likelihood
            Convergence Check:
            if change in parameters < ϵ′
then
                 Break
            end
      end
      return Estimated parameters σ
∗ and ξ
∗
                                                                           K ロ K K 伊 K K ミ K K ミ K 三 ヨ H Y O Q O
Agarwal, Yue STOR-i Store S
Statistical Modelling for Earthquakes Accounting for Measurement Error 17 / 23
```


Figure 5: Estimates for *σ* and *ξ* by methods 1 and 2.

[Further Research](#page-18-0)

メロメメ 倒え メミメメミメ 毛性 めんぺ

Unknown σ_N and its covariates

Figure 6: Estimates for σ_N with different values for ξ .

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ [로]로 19 Q @

- \blacktriangleright Inference on ETAS model parameters K_0 , α , c, and p can be computationally intensive and costly, and better techniques using Bayesian analysis are being developed.
- ▶ A spatial parameter can be added in the ETAS model to take into account the space coordinates of earthquakes with different regions having different functions.
- ▶ Similar measurement errors might be present in time and space measurements, and one can research further to correct the errors.

▶ 제품 ▶ 틀[팀 9000

← ロ ▶ → イ 何 ▶

重

- [1] S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.
- [2] Y. Ogata, "Space-time point process models for earthquake occurrences," The Institute of Statistical Mathematics, 1997.
- [3] Y. Ogata, "Statistical models for earthquake occurrences and residual analysis for point processes," Journal of the American Statistical Association, 1988.
- [4] Y. Chen, "Thinning algorithms for simulating point processes," Florida State University, Tallahassee, 2016.

K個→ K ヨ K K ヨ K ヨ ヨ のんぐ

Thank you for listening!

メロメメ 倒え メミメメミメ 毛性 めんぺ

Thank you for listening!

Any questions?

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ [글] = 10 Q Q O