Statistical Modelling for Earthquakes Accounting for Measurement Error

> Kushagra Agarwal¹ Supervised by: Wanchen Yue²

¹University of Warwick ²Lancaster University

30/08/24

excellence with impact

•			× /	
$^{()}$	- n r	14/2	~	110
- 1 E	.a.	vva		ue

Statistical Modelling for Earthquakes Accounting for Measurement Error

Introduction & Background

Agarwal, Yue

Statistical Modelling for Earthquakes Accounting for Measurement Error

STOR-i

315

(日)

Introduction & Background Hawkes Processes Extreme Value Theory Measurement Errors Further Research References

- Groningen gas field was founded in 1959 and is one of the largest gas fields in the world.
- Extraction of gas from the field began in 1963 by a joint venture by Shell and Exxon.
- The extraction of gas has led to a number of human-induced earthquakes (Hi-Quakes) since 1991 in the province of Groningen, and this remains a problem to this day.
- The induced seismic activity has caused damage to buildings and infrastructure in the region, leading to financial losses and safety concerns.

Agarwal, Yue

< 差 ▶ < 差 ▶ 差 目目 の Q @

Measurement Errors Further Research Re 000000 000

Figure 1: Impact of Hi-Quakes on the city of Groningen.

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Agarwal, Yue

Measurement Error

Hawkes Processes

しょう (四) (山) (日)

Agarwal, Yue

A Hawkes process is a counting process $(N(t) : t \ge 0)$ with associated history $(\mathcal{H}(t) : t \ge 0)$ that satisfies:

Hawkes Processes

Extreme Value Theory

$$\lambda^*(t)h + o(h), \qquad m = 1$$

Further Research

References

$$\mathbb{P}(N(t+h)-N(t)=m\mid\mathcal{H}(t))=egin{cases}\mathrm{o}(h),&m>1\1-\lambda^*(t)h+\mathrm{o}(h),&m=0\end{cases}$$

where $\lambda^*(t)$ is the intensity function of the Hawkes process and is of the form:

$$\lambda(t \mid \mathcal{H}_t) =: \lambda^*(t) = \mu + \sum_{i: t_i < t} \gamma(t - t_i)$$
(1)

The most common choice for the excitation function is the exponential decay, i.e., $\gamma(t) = \alpha e^{-\beta t}$, where α , $\beta > 0$ are parameters.

Agarwal, Yue

Introduction & Background

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Figure 2: Realisation of a Hawkes process with conditional intensity function (above) and the corresponding counting process (below) with parameters $\mu = 1.2$, $\alpha = 0.6$, and $\beta = 0.8$.

Epidemic Type Aftershock Sequence (ETAS) model is an extension of Hawkes process that is mainly used to model seismic occurrences and their aftershocks.

The modified Omori formula describes the rate of aftershocks as a power law decay function. So, the intensity function for ETAS model is given by

$$\lambda^*(t) = \mu + \sum_{i:t_i < t} rac{K_0}{(t-t_i+c)^p} \cdot e^{lpha(m_i-M_r)}$$

where K_0 , c, p, and α are parameters, μ is the background intensity, m_i are magnitudes of earthquakes, and M_c is the pre-determined cut-off magnitude.

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Extreme Value Theory •000

Measurement Errors

Further Research References

Extreme Value Theory

Agarwal, Yue

Statistical Modelling for Earthquakes Accounting for Measurement Error

STOR-i

▶ If $X_1, ..., X_n$ are i.i.d random variables, then there exist sequences of constants $\{a_n > 0\}$ and $\{b_n\}$ such that $\frac{M_n - b_n}{a_n} \sim \text{GEV}(\mu, \sigma, \xi)$ as $n \to \infty$.

$$\bullet \quad G(x) = \begin{cases} \exp\left\{-\left[1+\xi\left(\frac{x-\mu}{\sigma}\right)\right]_{+}^{-1/\xi}\right\}, & \xi \neq 0\\ \exp\left\{-\exp\left[-\left(\frac{x-\mu}{\sigma}\right)\right]\right\}, & \xi = 0 \end{cases}$$

where $x_+ = \max(0, x)$.

Agarwal, Yue

- But, using only the maximum is a waste of data.
- ▶ Using the same setting as above, for large enough u and conditional on $X_i > u$, $X_i u \sim \text{GPD}(u, \sigma, \xi)$ as $n \rightarrow \infty$.

$$H(x) = \begin{cases} 1 - \left[1 + \xi\left(\frac{x-u}{\sigma}\right)\right]_{+}^{-1/\xi}, & \xi \neq 0\\ 1 - \exp\left[-\left(\frac{x-u}{\sigma}\right)\right], & \xi = 0 \end{cases}$$

ELE NQA

• • Ξ •

Agarwal, Yue

Probability Density Functions

Figure 3: Probability Density Functions for GEV and GPD Distributions with $\mu = 0$, u = 0, $\sigma = 1$, and different values for ξ .

< 口 > < 同 >

< E

→ < ∃ →</p>

三日 のへの

Agarwal, Yue

Measurement Errors

Statistical Modelling for Earthquakes Accounting for Measurement Error

<ロト < 部 > < 臣 > < 臣 > 王 = 今への STOR-i

13 / 23

- ▶ The errors are i.i.d $\mathcal{N}(0, \sigma_N^2)$, where σ_N is known and do not depend on the magnitudes of earthquakes.
- ▶ The threshold *u* is pre-determined and fixed.
- We model the magnitudes of earthquakes as a GPD distribution. Assume X ~ GPD(u, σ, ξ) where σ and ξ are unknown. Let Y := X + ε, where ε are the errors.

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Introduction & Background Hawkes Processes Extreme Value Theory Measurement Errors Further Research References $\infty = 0000$ Nethod 1: Estimation using Likelihood for $Y = X + \epsilon$

By convolution, the PDF for Y is given by:

$$f_{Y}(y \mid \sigma, \xi) = \int_{u}^{\infty} f_{X}(x \mid \sigma, \xi) \cdot \frac{1}{\sqrt{2\pi\sigma_{N}^{2}}} e^{\frac{-(y-x)^{2}}{2\sigma_{N}^{2}}} \mathrm{d}x \qquad (2)$$

and so, the log-likelihood is given by:

Ag Sta

$$\ell(y_1,\ldots,y_n \mid \sigma,\,\xi) = \sum_{i=1}^n \log(f_Y(y_i \mid \sigma,\,\xi)) \tag{3}$$

arwal, Yue	STOR-i
tistical Modelling for Earthquakes Accounting for Measurement Error	15 / 23

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ シスペ

Figure 4: Likelihood for Y against likelihood for X.

	 _	
Agarwal, Yue		STOR-i
Statistical Modelling for Earthquakes Accounting for Measurement Error		16 / 23

Method 2: Monte Carlo-Based Estimation

Introduction & Background

```
Input: Initial parameters \sigma, \xi, noise standard deviation \sigma_N, observed data Y,
               threshold u, maximum iterations M, tolerance \epsilon'
      Output: Estimated parameters \sigma^* and \xi^*
       Initialize: Set initial guesses for \sigma and \xi
      for iteration i = 1 to M do
            E-Step:
            for each observed Y_i do
                  Generate X_{ij} \sim \text{GPD}(\sigma, \xi, u) for j = 1 to N samples
                  Compute weights w_{ij} = \frac{1}{\sqrt{2\pi\sigma_N^2}} \exp\left(-\frac{(Y_i - X_{ij})^2}{2\sigma_N^2}\right)
                  Calculate expected value E[X_i | Y_i] = \frac{\sum_j X_{ij} w_{ij}}{\sum_{i} w_{ii}}
            end
            M-Step:
            Define negative log-likelihood function using E[X_i | Y_i]
            Optimize parameters \sigma and \xi by minimizing the negative log-likelihood
            Convergence Check:
            if change in parameters < \epsilon' then
                  Break
            end
      end
      return Estimated parameters \sigma^* and \xi^*
                                                                               <ロ> <回> <回> < 回> < 回> < 回> < 回</p>
                                                                                                                  STOR-i
Agarwal, Yue
Statistical Modelling for Earthquakes Accounting for Measurement Error
                                                                                                                  17 / 23
```

Extreme Value Theory

Measurement Errors

Further Research

References

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Figure 5: Estimates for σ and ξ by methods 1 and 2.

Agarwal, Yue	STOR-i
Statistical Modelling for Earthquakes Accounting for Measurement Error	18 / 23

Introduction & Background

Hawkes Processes

Extreme Value 7 0000 Measurement Er

Further Research Reference

Further Research

Agarwal, Yue

Statistical Modelling for Earthquakes Accounting for Measurement Error

STOR-i 19 / 23

<ロ> <回> <回> < 回> < 回> < 回> < 回</p>

Introduction & Background Hawkes Processes Extreme Value Theory Measurement Errors Further Research References

Unknown σ_N and its covariates

Figure 6: Estimates for σ_N with different values for ξ .

Agarwal, Yue	STOR-i
Statistical Modelling for Earthquakes Accounting for Measurement Error	20 / 23

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

- Inference on ETAS model parameters K₀, α, c, and p can be computationally intensive and costly, and better techniques using Bayesian analysis are being developed.
- A spatial parameter can be added in the ETAS model to take into account the space coordinates of earthquakes with different regions having different functions.
- Similar measurement errors might be present in time and space measurements, and one can research further to correct the errors.

> < = > = = + 000

- [1] S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.
- [2] Y. Ogata, "Space-time point process models for earthquake occurrences," *The Institute of Statistical Mathematics*, 1997.
- [3] Y. Ogata, "Statistical models for earthquake occurrences and residual analysis for point processes," *Journal of the American Statistical Association*, 1988.
- [4] Y. Chen, "Thinning algorithms for simulating point processes," *Florida State University, Tallahassee*, 2016.

▶ ▲ 王 ▶ 王 = りへ ○

Thank you for listening!

Agarwal, Yue	STOR-i
Statistical Modelling for Earthquakes Accounting for Measurement Error	23 / 23

Thank you for listening!

Any questions?

Agarwal, Yue	STOR-i
Statistical Modelling for Earthquakes Accounting for Measurement Error	23 / 23