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1. Motivation & Background

Groningen gas field was founded in 1959 and is
one of the largest gas fields in the world.

Extraction of gas from the field began in 1963 by
a joint venture by Shell and Exxon.

The extraction of gas has led to a number of
human-induced earthquakes (Hi-Quakes)
since 1991 in the province of Groningen, and this
remains a problem to this day, with the most
recent earthquake occurring on 13th August,
2024.

The induced seismic activity has caused damage
to buildings and infrastructure in the region,
leading to financial losses and safety concerns.

Figure 1: Reinforcement of some properties in Groningen due to
earthquake risk, while others are deemed too dangerous to
inhabit, illustrating the impact of induced seismic activity on
local infrastructure.

2. Hawkes Processes

A Hawkes process is a point process that is widely
used in earthquake modelling and financial analysis.
The defining characteristic of this process is that it
self-excites, meaning that each arrival increases the
rate of future arrivals for some period of time.

The intensity function is history dependent on
{t1, t2, . . . , tk} and is given by

λ(t | Ht) = µ +
∑
i :ti<t

γ(t − ti)

where µ is the background intensity and γ is the
excitation function. A common choice for the
excitation function is the exponential decay, that is,
γ(t) = αe−βt which is parameterised by constants α,
β > 0 which gives us

λ(t | Ht) =: λ
∗(t) = µ +

∑
i :ti<t

αe−β(t−ti)
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Figure 2: Conditional intensity function of a Hawkes process with
parameters µ = 1.2, α = 0.6, and β = 0.8.
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Figure 3: And the corresponding counting process.

3. Extreme Value Theory

Modelling of extremes can be done in the following
two ways:

1 Block Maxima
If X1, . . . ,Xn are i.i.d random variables, then there exist
sequences of constants {an > 0} and {bn} such that
Mn−bn

an

·∼ GEV(µ, σ, ξ) as n → ∞, where GEV is the
Generalized Extreme Value distribution with
parameters µ ∈ R, σ > 0, and ξ ∈ R, and
Mn := max{X1, . . . ,Xn}.

The CDF of the GEV distribution is given by:

G (x) =

exp
{
−
[
1 + ξ

(
x−µ
σ

)]−1/ξ

+

}
, ξ ̸= 0

exp
{
− exp

[
−
(
x−µ
σ

)]}
, ξ = 0
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Figure 4: Probability density function for GEV distribution with
µ = 0, σ = 1 and different values for ξ.

2 Threshold Excess Modelling
However, using only the maximum is a wasteful of data.
Using the same setting as above, for large enough u and
conditional on Xi > u, Xi − u

·∼ GPD(u, σ, ξ) as
n → ∞, where GPD is the Generalised Pareto
distribution.

The CDF of the GPD distribution is given by:

H(x)=

{
1−

[
1 + ξ

(
x−u
σ

)]−1/ξ

+
, ξ ̸= 0

1− exp
[
−
(
x−u
σ

)]
, ξ = 0
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Figure 5: Probability density function for GPD distribution with
u = 0, σ = 1 and different values for ξ.

4. Adding Measurement Errors

From here on, we model the magnitudes of
earthquakes as GPD distribution and assume that
measurement errors are i.i.d N (0, σ2

N), where σN is
known and the threshold u is fixed.
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Figure 6: Simulated data from a GPD distribution with threshold
u = 0, σ = 1, and ξ = 0.2, before (left) and after (right) adding
N (0, 1) errors.

5. Likelihood for Y = X + ϵ

We want to inference on the parameters σ and ξ
after adding the normal errors. One way to do this is
to use MLE approach for log-likelihood for
Y = X + ϵ, where X is the original data and ϵ are
errors.

Using convolution, the PDF for Y is given by:

fY (y | σ, ξ) =
∫ ∞

u

fX(x | σ, ξ)· 1√
2πσ2

N

e
−(y−x)2

2σ2
N dx

where X ∼ GPD(u, σ, ξ).
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Figure 7: Corrected figure shows the estimates gotten using the
log-likelihood for Y , while uncorrected uses the log-likelihood for
X . The red dotted line shows the true values of the parameters.
We have fixed threshold u = 0 and σN = 0.1.

6. ETAS Model

Epidemic Type Aftershock Sequence (ETAS)
model is an extension of Hawkes process that is
mainly used to model seismic occurrences and their
aftershocks.

The modified Omori formula describes the rate of
aftershocks as a power law decay function. So, the
intensity function for ETAS model is given by

λ∗(t) = µ +
∑
i :ti<t

K0

(t − ti + c)p
· eα(mi−Mr)

where K0, c , p, and α are parameters, µ is the
background intensity, mi are magnitudes of
earthquakes, and Mr is the pre-determined cut-off
magnitude.

7. Further Research

If σNσNσN is unknown, simply using it as an
additional parameter in the log-likelihood for Y
increases computational demands and
inaccuracies in estimating parameters when ξ is
positive due to the heavy-tailed nature of the
distribution.

Inferencing on the parameters of the ETAS model
is also very computationally intensive and better
techniques using Bayesian analysis are being
developed to reduce computation time.

The 2011 Japan earthquake shortened the day by about 1.8 microseconds. kushagra.agarwal@warwick.ac.uk


