
Reinforcement Learning for Revenue
Management and Dynamic Pricing

Keelan Adams 1 Supervisor: Adam Page 2

1Durham University 2STOR-i, Lancaster University

The Problem

We want to find an optimal

pricing policy to maximise the

revenue of a hotel.

States: number of rooms sold so

far (up to hotel capacity)

Actions: prices we could set

Rewards: money we receive

from customers who book

Probabilities: likelihood of

customers booking at set price

The function Q(S, A) estimates the expected return when taking action A starting from
state S

Reinforcement Learning Methodology

We have to balance exploration - trying new actions to learn the values of Q(S, A)
across the action space, with exploitation - picking the action maximising Q(S, A).
What action do we pick at each step? → ε-Greedy Policy

Set exploration parameter ε
Explore with probability ε and exploit with probability 1− ε

How do we update our estimate Q(S, A) at each step? → Q-Learning

Set learning rate α. We take aweighted average of our current estimate and the return
based on what we’ve just observed:

Q(St+1, At+1)← (1− α)Q(St, At)︸ ︷︷ ︸
old estimate

+ α
(

Rt+1 + γ max
a

Q(St+1, a)
)

︸ ︷︷ ︸
new observation

No States - Infinite Number of Rooms

Each customer has a random willingness to payW , the distribution of which decreases

with respect to time. During each episode we observe 100 customers.

Assume we can set prices from £1 - £100. We set our price a, and the customer will
book ifW ≥ a, so the reward for each customer is either a or 0.

0 20 40 60 80 100

0
5

10
15

20

Q−learning Without States, 100,000 Episodes

Action a

Q

Q−Values
Expected Reward

Figure 1. Results using a decaying ε-greedy algorithm

Adding States to the Model

We now have a limited number of rooms available to sell, which are offered on a first-

come-first-served basis.

Figures 2 and 3 compare the expected return with the Q-learner estimates:

Expected Return

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97

0

20

40

60

80

Figure 2. Expected return for taking action a (x-axis)

starting from state s (y-axis)

Q−Learning with States − Q(s,a) Values

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
61
65
69
73
77
81
85
89
93
97

0

10

20

30

40

50

60

Figure 3. Q-learning estimates of Q(s,a) with

1,000,000 episodes - taking action a (x-axis) starting

in state s (y-axis)

Tiered Product

Now suppose we have two different tiers of room

available.

Actions: a = (a1, a2) - a price for Tier 1 and a price for
Tier 2

Tier Possible Prices

1 £1 - £10

2 £11 - £20

Different customers will have different preferences. Here we discuss two examples:

Max Buying Customer:

The customer books the most expensive room within their own willingness to payW .

Expected Reward

11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

1

1.5

2

2.5

3

3.5

4

Figure 4. Expected reward when taking actions a1
(y-axis) and a2 (x-axis)

Q−Learning − Q(a1,a2) Values

11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

1

1.5

2

2.5

3

3.5

4

Figure 5. Estimates of Q(a1, a2) with 100,000
episodes - taking action a1 (y-axis) and a2 (x-axis)

The Decoy Effect

Imagine you’re at the cinema buying popcorn. Which would you buy?

Small Medium Large

£3 £6.50 £7

By pricing the medium close to the large, it is more likely that customers will trade

up to buying the large. Here the medium option is called a decoy.

Can we apply this to our Q-learning setup?

Utility Maximisation

Customer:

Each customer has a

willingness to pay, Wi, for

each tier, based on their

preferences.

Then the customer wants

to maximise Wi − Ai, so

they get what they see as

the best deal.

The heatmap shows our

Q-learner has worked out

how to use the decoy

effect!

Q−Learning Values − Q(a1,a2)

11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

Figure 6. Estimates of Q(a1, a2) with 100,000 simulations - taking
action a1 (y-axis) and a2 (x-axis)

The optimal action here is to set Tier 1 at £10, Tier 2 at £11 - so nearly everyone would

choose the more expensive tier.

Further Development

Function Approximation:

Q-learning is costly for large state/action spaces (or impossible for continuous!).

We can instead estimate q(s, a) as a function q̂(s, a, w), where w is a parameter we

change to minimise the mean squared error between our estimate q̂ and true value q.

We minimise:

J(w) = Ew
[
(q(s, a)− q̂(s, a, w))2]

We do this by adjusting J(w) in the direction of negative gradient each episode, in order
to find the global minimum.

Other Considerations:

Investigate alternative policies to ε-greedy action selection

Increasing Model Complexity - we could consider additions such as booking in

advance, multiple night stays, incorporating competition/locational factors

References

Sutton, R. S. Barto, A. G. (2018), Reinforcement Learning: An Introduction, second edn, MIT Press, Cambridge, Mass

Bitran, G. R. Mondschein, S. V. (1995), ‘An application of yield management to the hotel industry considering multiple day

stays’, Operations Research 43(3), 427–443.

K. Adams, A. Page Reinforcement Learning STOR-i Centre for Doctoral Training

K. Adams, A. Page

