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The Problem

We want to find an optimal

pricing policy to maximise the

revenue of a hotel.

States: number of rooms sold so

far (up to hotel capacity)

Actions: prices we could set

Rewards: money we receive

from customers who book

Probabilities: likelihood of

customers booking at set price

The function Q(S, A) estimates the expected return when taking action A starting from
state S

Reinforcement Learning Methodology

We have to balance exploration - trying new actions to learn the values of Q(S, A)
across the action space, with exploitation - picking the action maximising Q(S, A).
What action do we pick at each step? → ε-Greedy Policy

Set exploration parameter ε
Explore with probability ε and exploit with probability 1− ε

How do we update our estimate Q(S, A) at each step? → Q-Learning

Set learning rate α. We take aweighted average of our current estimate and the return
based on what we’ve just observed:

Q(St+1, At+1)← (1− α)Q(St, At)︸ ︷︷ ︸
old estimate

+ α
(

Rt+1 + γ max
a

Q(St+1, a)
)

︸ ︷︷ ︸
new observation

No States - Infinite Number of Rooms

Each customer has a random willingness to payW , the distribution of which decreases

with respect to time. During each episode we observe 100 customers.

Assume we can set prices from £1 - £100. We set our price a, and the customer will
book ifW ≥ a, so the reward for each customer is either a or 0.
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Figure 1. Results using a decaying ε-greedy algorithm

Adding States to the Model

We now have a limited number of rooms available to sell, which are offered on a first-

come-first-served basis.

Figures 2 and 3 compare the expected return with the Q-learner estimates:
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Figure 2. Expected return for taking action a (x-axis)

starting from state s (y-axis)

Q−Learning with States − Q(s,a) Values
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Figure 3. Q-learning estimates of Q(s,a) with

1,000,000 episodes - taking action a (x-axis) starting

in state s (y-axis)

Tiered Product

Now suppose we have two different tiers of room

available.

Actions: a = (a1, a2) - a price for Tier 1 and a price for
Tier 2

Tier Possible Prices

1 £1 - £10

2 £11 - £20

Different customers will have different preferences. Here we discuss two examples:

Max Buying Customer:

The customer books the most expensive room within their own willingness to payW .
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Figure 4. Expected reward when taking actions a1
(y-axis) and a2 (x-axis)

Q−Learning − Q(a1,a2) Values
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Figure 5. Estimates of Q(a1, a2) with 100,000
episodes - taking action a1 (y-axis) and a2 (x-axis)

The Decoy Effect

Imagine you’re at the cinema buying popcorn. Which would you buy?

Small Medium Large

£3 £6.50 £7

By pricing the medium close to the large, it is more likely that customers will trade

up to buying the large. Here the medium option is called a decoy.

Can we apply this to our Q-learning setup?

Utility Maximisation

Customer:

Each customer has a

willingness to pay, Wi, for

each tier, based on their

preferences.

Then the customer wants

to maximise Wi − Ai, so

they get what they see as

the best deal.

The heatmap shows our

Q-learner has worked out

how to use the decoy

effect!

Q−Learning Values − Q(a1,a2)
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Figure 6. Estimates of Q(a1, a2) with 100,000 simulations - taking
action a1 (y-axis) and a2 (x-axis)

The optimal action here is to set Tier 1 at £10, Tier 2 at £11 - so nearly everyone would

choose the more expensive tier.

Further Development

Function Approximation:

Q-learning is costly for large state/action spaces (or impossible for continuous!).

We can instead estimate q(s, a) as a function q̂(s, a, w), where w is a parameter we

change to minimise the mean squared error between our estimate q̂ and true value q.

We minimise:

J(w) = Ew
[
(q(s, a)− q̂(s, a, w))2]

We do this by adjusting J(w) in the direction of negative gradient each episode, in order
to find the global minimum.

Other Considerations:

Investigate alternative policies to ε-greedy action selection

Increasing Model Complexity - we could consider additions such as booking in

advance, multiple night stays, incorporating competition/locational factors
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