Reinforcement Learning for Revenue Management and Dynamic Pricing Supervised by Adam Page

Keelan Adams

Durham University

30/08/24

< ∃⇒

Table of Contents

1 The Methodology

2 The Application

Keela

3 Further Development

			1 = 1	1 = 1	-	
n Adams (Durham)	Reinforcement Learning		30/08	3/24		2 / 22

The Problem

- We are a hotel trying to find an **optimal pricing policy** to maximise our **revenue** for a particular night
- Depends on how many rooms we have already sold
- Only information we have is observing what happens when we set a chosen price

This idea can be applied to any perishable good

(日本) (日本) (日本)

What is Reinforcement Learning?

- States rooms sold so far
- Actions prices
- Rewards revenue

The function Q(S, A) estimates the expected return taking action A from state S under a given policy We choose the value of the **exploration parameter** ϵ .

 $\epsilon\text{-}\mathsf{Greedy}$ Action Selection

With probability ϵ : **Explore** - Pick a random action

With probability $1 - \epsilon$: **Exploit** - Pick the action maximising Q (for the state we're in)

So how do we update Q(S, A) based on what we've seen?

$$Q(S_{t+1}, A_{t+1}) \leftarrow \underbrace{(1 - \alpha)Q(S_t, A_t)}_{\text{old estimate}} + \underbrace{\alpha\left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)\right)}_{\text{new observation}}$$

Weighted by learning rate α

Keelan Adams	(Durham)
--------------	----------

<ロ> <四> <ヨ> <ヨ>

3

Table of Contents

The Methodology

Keelan A

			< ₫ >	<	Þ	< ≣⇒	- 3	Ē	$\mathcal{O} \land \mathcal{O}$
dams (Durham)	Reinforcement Learning			30/	08	/24			7 / 22

Modelling Customers - No States

- Each customer has a random willingness to pay *W*, which decreases with respect to price
- *N* customers per episode
- Assume prices (actions a) range from £1 £100

30/08/24

Modelling Customers - No States

- Each customer has a random willingness to pay *W*, which decreases with respect to price
- *N* customers per episode
- Assume prices (actions a) range from £1 £100

Reward for each customer...

$$r_i(a) = \left\{ egin{array}{ccc} a & ext{if} & W > a \ 0 & ext{if} & W < a \end{array}
ight.$$

Total reward...

$$R(a) = \frac{\sum_{i=1}^{N} r_i(a)}{N}$$

Keelan Adams (Durham)

(日本) (日本) (日本)

Results - No States

Q-learning Without States, 100,000 Episodes

100 rooms. Now not every customer who tries to book will get a room.

Figure: Expected **return** for taking action *a* (x-axis) starting from state s (y-axis)

100 rooms. Now not every customer who tries to book will get a room.

Figure: Expected **return** for taking action *a* (x-axis) starting from state s (y-axis)

Figure: Estimates of Q(s, a) with 1,000,000 episodes - taking action a (x-axis) starting in state s (y-axis)

Tiered Product

Now assume there are multiple tiers of room.

Different customers will have different ways of selecting their preferred tier.

For this toy example, there are 2 tiers.

Tier	Possible Prices
1	£1 - £10
2	£11 - £20

Actions: $\mathbf{a} = (a_1, a_2)$; $a_1 = \text{Tier 1 price}$; $a_2 = \text{Tier 2 price}$

Now looking at $Q(a_1, a_2)$

Ignore states here... difficult to present as 4 dimensional!

Each customer has their fixed W, goes for most expensive room within their budget

$$r_i(a_1, a_2) = \begin{cases} a_2 & \text{if } W \ge a_2 \\ a_1 & \text{if } a_1 \le W < a_2 \\ 0 & \text{if } W < a_1 \end{cases}$$

Tiered: Customer 1 - Max Buying

Each customer has their fixed W, goes for most expensive room within their budget

Figure: Expected reward for taking action a_1 (y-axis) and a_2 (x-axis)

Tiered: Customer 1 - Max Buying

Each customer has their fixed W, goes for most expensive room within their budget

Figure: Expected reward for taking action a_1 (y-axis) and a_2 (x-axis)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y-axis) and a_2 (x-axis)

Tiered: Customer 2 - Desperate

Ke

Customer arrives in the middle of the night willing to pay anything for the room they want

elan Adams (Durham)	Reinforcement Learning	30/08/24

イロト イロト イモト イモト 三日

14 / 22

Tiered: Customer 2 - Desperate

Customer arrives in the middle of the night willing to pay anything for the room they want

Q-Learning Values - Q(a1,a2)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y-axis) and a_2 (x-axis)

Keelan Adams (Durham)

30/08/24

14 / 22

You're at the cinema. Which is the best deal for popcorn?

Small	Medium	Large
£3	£6.50	£7

You're at the cinema. Which is the best deal for popcorn?

Small	Medium	Large
£3	£6.50	£7

The medium option is a **decoy**

Can we get a Q-learner to pick up this pricing strategy?

Tiered: Customer 4 - Utility Maximisation

Customer sets willingness to pay for each tier:

$$\mathbf{W} = (W_1, W_2)$$

Customer wants to maximise (positive) difference:

$$W_i - a_i$$

	4	ㅁ ▶ ◀ @ ▶ ◀ 볼 ▶ ◀ 볼 ▶	E Jac
Keelan Adams (Durham)	Reinforcement Learning	30/08/24	16 / 22

Tiered: Customer 4 - Utility Maximisation

Q-Learning Values - Q(a1,a2)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y-axis) and a_2 (x-axis)

▲ 同 ト - 4 三 ト

17 / 22

Do we really need to do joint updates of $Q(a_1, a_2)$? What if we just had separate updates $Q(a_1)$ and $Q(a_2)$?

Keelan

			59
Adams (Durham)	Reinforcement Learning	30/08/24	18 / 2

Do we really need to do joint updates of $Q(a_1, a_2)$? What if we just had separate updates $Q(a_1)$ and $Q(a_2)$?

Update	Function	Tier 1	Tier 2
Joint	$Q(a_1,a_2)$	10	11
Separate	$Q(a_1), Q(a_2)$	6	16

Table: Optimal actions based on joint and separate Q-learning updates

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

Table of Contents

The Methodology

2 The Application

Keelan Adai

			< ⊡ >	$\in \Xi$	Þ	< ≣⇒	2	$\mathcal{O} \land \mathcal{O}$
ns (Durham)	Reinforcement Learning			30/)8/	/24		19 / 22

Function Approximation

Computing Q(S, A) for all S, A is costly for large state/action spaces (or impossible for continuous!)

Instead we estimate as a value function:

 $\hat{q}(s, a, \mathbf{w}) \approx q(s, a)$

We update the parameter \mathbf{w} , trying to minimise the mean-squared error between our approximate \hat{q} and true q:

$$J(\mathbf{w}) = \mathbb{E}_{\mathbf{w}}\left[(q(s, a) - \hat{q}(s, \mathbf{w}))^2
ight]$$

We adjust $J(\mathbf{w})$ in the direction of negative gradient each episode, to find the global minimum

Keelan Adams (Durham)

20 / 22

Alternatives to ϵ -greedy action selection?

Increasing Model Complexity:

- Booking in Advance
- Multiple Night Stays
- Competition/Locational Factors

< 回 > < 回 > < 回 >

Э

Thank you for listening!

	k	lee	lan /	٩c	lams (l	D)ur	ham)
--	---	-----	-------	----	--------	---	---	-----	-----	---

Image: A match a ma

э