Reinforcement Learning for Revenue Management and Dynamic Pricing Supervised by Adam Page

Keelan Adams

Durham University

30/08/24

4 **EL** E

 \rightarrow \equiv \rightarrow

 \equiv

Table of Contents

1 [The Methodology](#page-1-0)

[The Application](#page-6-0)

The Problem

- We are a hotel trying to find an **optimal pricing policy** to maximise our revenue for a particular night
- Depends on how many rooms we have already sold
- Only information we have is observing what happens when we set a chosen price

This idea can be applied to any perishable good

4 **EL** E

 200

What is Reinforcement Learning?

- States rooms sold so far
- Actions prices
- **Rewards** revenue

The function $Q(S, A)$ estimates the expected return taking action A from state S under a given **policy**

We choose the value of the exploration parameter ϵ .

 ϵ -Greedy Action Selection

With probability ϵ : Explore - Pick a random action

With probability $1 - \epsilon$: **Exploit** - Pick the action maximising Q (for the state we're in)

 Ω

イ何 ト イヨ ト イヨ トー

4 **EL** E

Q-Learning

So how do we update $Q(S, A)$ based on what we've seen?

$$
Q(S_{t+1}, A_{t+1}) \leftarrow \underbrace{(1-\alpha)Q(S_t, A_t)}_{\text{old estimate}} + \underbrace{\alpha\left(R_{t+1} + \gamma \max_a Q(S_{t+1}, a)\right)}_{\text{new observation}}
$$

Weighted by learning rate α

Table of Contents

[The Methodology](#page-1-0)

Modelling Customers - No States

- \bullet Each customer has a random willingness to pay W, which decreases with respect to price
- N customers per episode
- Assume prices (actions a) range from £1 £100

Modelling Customers - No States

- \bullet Each customer has a random willingness to pay W, which decreases with respect to price
- N customers per episode
- Assume prices (actions a) range from £1 £100

Reward for each customer...

$$
r_i(a) = \left\{ \begin{array}{ll} a & \text{if} \quad W > a \\ 0 & \text{if} \quad W < a \end{array} \right.
$$

Total reward...

$$
R(a) = \frac{\sum_{i=1}^{N} r_i(a)}{N}
$$

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

4 **EL F**

 Ω

Results - No States

Q−learning Without States, 100,000 Episodes

100 rooms. Now not every customer who tries to book will get a room.

Figure: Expected return for taking action a (x-axis) starting from state s (y-axis)

 \leftarrow

100 rooms. Now not every customer who tries to book will get a room.

Figure: Expected return for taking action a (x-axis) starting from state s (y-axis)

Figure: Estimates of $Q(s, a)$ with 1,000,000 episodes - taking action a $(x-axis)$ starting in state s (y-axis)

Tiered Product

Now assume there are multiple tiers of room.

Different customers will have different ways of selecting their preferred tier.

For this toy example, there are 2 tiers.

Actions: $a = (a_1, a_2)$; $a_1 =$ Tier 1 price; $a_2 =$ Tier 2 price

Now looking at $Q(a_1, a_2)$

Ignore states here... difficult to present as 4 dim[en](#page-11-0)s[io](#page-13-0)[n](#page-11-0)[al!](#page-12-0) $AB + AB + AB + AB$

Keelan Adams (Durham) [Reinforcement Learning](#page-0-0) 180/08/24 11/22

Each customer has their fixed W , goes for most expensive room within their budget

$$
r_i(a_1, a_2) = \begin{cases} a_2 & \text{if } W \ge a_2 \\ a_1 & \text{if } a_1 \le W < a_2 \\ 0 & \text{if } W < a_1 \end{cases}
$$

K ロ > K @ > K 경 > K 경 > X 경

 Ω

Tiered: Customer 1 - Max Buying

Each customer has their fixed W , goes for most expensive room within their budget

Figure: Expected reward for taking action a_1 (y-axis) and a_2 (x-axis)

Tiered: Customer 1 - Max Buying

Each customer has their fixed W , goes for most expensive room within their budget

Figure: Expected reward for taking action a_1 (y-axis) and a_2 (x-axis)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y -axis) and a_2 (x -axis)

Tiered: Customer 2 - Desperate

Customer arrives in the middle of the night willing to pay anything for the room they want

Tiered: Customer 2 - Desperate

Customer arrives in the middle of the night willing to pay anything for the room they want

Q−Learning Values − Q(a1,a2)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y-axis) and a_2 (x-axis) Ω

Keelan Adams (Durham) [Reinforcement Learning](#page-0-0) 30/08/24 14/22

You're at the cinema. Which is the best deal for popcorn?

KID KID KERKER E 1990

You're at the cinema. Which is the best deal for popcorn?

The medium option is a **decoy**

Can we get a Q-learner to pick up this pricing strategy?

イ何 ト イヨ ト イヨ トー

4 **EL** E

Tiered: Customer 4 - Utility Maximisation

Customer sets willingness to pay for each tier:

$$
\textbf{W}=(\textit{W}_1,\textit{W}_2)
$$

Customer wants to maximise (positive) difference:

$$
W_i-a_i
$$

KORK EXTERN EL ARCH

Tiered: Customer 4 - Utility Maximisation

Q−Learning Values − Q(a1,a2)

Figure: Estimates of $Q(a_1, a_2)$ with 100,000 episodes - taking action a_1 (y-axis) and a_2 (x-axis)

 $\left\{ \left. \right. \left. \oplus \right. \left. \right. \left. \left. \right. \right\} \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \right. \left. \right. \left. \left. \right. \right. \left. \left. \right. \right. \left. \left. \right. \left. \right. \left. \left$

 \leftarrow \Box \rightarrow

Do we really need to do joint updates of $Q(a_1, a_2)$? What if we just had separate updates $Q(a_1)$ and $Q(a_2)$?

Do we really need to do joint updates of $Q(a_1, a_2)$? What if we just had separate updates $Q(a_1)$ and $Q(a_2)$?

Table: Optimal actions based on joint and separate Q-learning updates

KED KARD KED KED E LORO

Table of Contents

[The Methodology](#page-1-0)

[The Application](#page-6-0)

Function Approximation

Computing $Q(S, A)$ for all S, A is costly for large state/action spaces (or impossible for continuous!)

Instead we estimate as a value function:

 $\hat{q}(s, a, \mathbf{w}) \approx q(s, a)$

We update the parameter **w**, trying to minimise the mean-squared error between our approximate \hat{q} and true q :

$$
J(\mathbf{w}) = \mathbb{E}_{\mathbf{w}}\left[(q(s, a) - \hat{q}(s, \mathbf{w}))^2 \right]
$$

We adjust $J(\mathbf{w})$ in the direction of negative gradient each episode, to find the global minimum

Keelan Adams (Durham) [Reinforcement Learning](#page-0-0) 180/08/24 20/22

KEIN KARIK SEIN SEIN KARIK KEIN KARI

Alternatives to ϵ -greedy action selection?

Increasing Model Complexity:

- Booking in Advance
- Multiple Night Stays
- Competition/Locational Factors

G. Ω

4. 重

4 **EL** E

Thank you for listening!

