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Motivation

Figure 1: Tesco Queue
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Why Queues?

Queueing systems are a fundamental part of our every day lives. For
example, we see queues in:

• Airports
• Retail
• Logistics
• Computing Systems

Our goal is to be able to accurately model these queues, in hopes
that we are able to optimise the system.
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Why Simulation?

• The issue often with analytical mathematical modelling is that
many assumptions are often made which are unrealistic for the
real world.

• As a result, we propose the usage of simulations as an approach
to model queueing systems.
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Queueing Theory Introduction



Distribution and Kendall’s Notation

Within queueing systems, there are two key features that we are
required to model.

• Arrival Process: Xt ∼ Poi(λ)
• Departure Process: Yt ∼ Exp(µ)

A key feature of these distributions are that they are memoryless
processes.

Hence, a system with one server would be denoted using Kendall’s
notation as an M/M/1 queue.
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Markov Chain

The state of the queues can also be modelled similar to that of a
continuous time Markov Chain.

0 1 . . . n− 1 n n+ 1 . . .

λ λ λ λ λ λ

µµµµµµ

Figure 2: Markov Chain Respresentation of Queue States
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M/M/1 Queue



Simulation of M/M/1 Queues

• The simulation of queues uses the interarrival time distribution
to simulate discrete time points where events occur.

• This interarrival time is distributed by an exponential
distribution.
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Simulation of M/M/1 Queues

Figure 3: Queueing Simulation with λ = 0.6 and µ = 0.8 up to t = 100
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Steady State Solution

How do we know our simulation is working?

STEADY STATE SOLUTION!
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Steady State Solution

In an M/M/1 queue when λ < µ, we have the closed form steady
state solution:

pn = (1− ρ)ρn, ρ =
λ

µ
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Comparison

Figure 4: Density Histogram of 1000 Queue Simulations to Steady State
Solution
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Issues with M/M/1

M/M/1 is nice and basic but misses out key features which may occur
in the real word, such as:

• Impatient Customers
• Scheduling Disciplines
• Group arrivals and departures
• and many more...

Today, we will look at the issue of non-constant arrival rate.
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M(t)/M/1 Queue



Inhomogeneous Poisson Process

Typically, it may be more realistic if λ is varying with time, i.e. λ(t).
Today, we will explore λ(t) = sin(t) + 1.

What could be the issues with an inhomogeneous poisson process?

• Now the interarrival time will not necessarily be exponentially
distributed. Could simulation be harder?

• With varying transitional properties, this makes the problem an
inhomogeneous process, hence a steady state solution will
likely not be available.
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Thinning Algorithm

• We simulate a homogeneous queue with an arrival rate of
λ = supt λ(t).

• For each arrival, we want to accept the arrival with probability:

P{Accept Arrival} =
λ(t)
λ

where t represents the time in which the arrival at rate λ has
occurred.

This is what is known as a thinning algorithm.
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Thinning Algorithm

Figure 5: Thinning algorithm [Chen, 2016]
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Inhomogeneous Poisson Process

Figure 6: Inhomogeneous Poisson Process with λ(t) = sin(t) + 1
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Numerical Integration

Due to a lack of steady state solution, we use numerical integration
for the comparison of our simulation.

Notation used:
pn(t) = P{n in state at time t}
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Numerical Integration

Choose a small time step d, and a large maximum queue capacity.

1. First, set the beginning of the queue where p0(0) = 1 and
pn(0) = 0.

2. Apply classical queueing theory model for the next time step:

pn(t+ d) = λ(t)dpn−1(t) + [1− λ(t)d− µd]pn(t) + µdpn+1(t)
p0(t+ d) = [1− λ(t)d]pn(t) + µdpn+1(t)

pnmax(t+ d) = λ(t)dpnmax−1 + [1− µd]pnmax
(1)

3. Increment time point: t = t+ d
4. Repeat until you reach maximum time.
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Comparison

To compare the results, we use average system length of both
simulation and numerical integration result.

We use this formula to calculate average system length of queue.

L(t) =
nmax∑
n=0

npn(t)
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Comparison

Figure 7: M(t)/M/1 Average System Length
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Queue Extensions



Comparison

Figure 8: Taxi Queue in Ibiza
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Double-ended Queues

One of the extensions we looked at was double-ended queueing
systems.

Figure 9: Double-Ended Queueing System

21



Simulation

Figure 10: Simulation of a double-ended queue with λ1 = λ2 = 1 and µ = 2.
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Sanity Check

With µ → ∞, one side of the queue will always be empty.

Figure 11: Simulation of a double-ended queue with λ1 = λ2 = 1 and
µ = 10000
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Decision Making - Optimisation



Introduction to Simulation Optimisation

• Target variable is λ.
• We want to optimise to a certain objective denoted F(λ).
• An example can be within an M/M/1 queue where we maximise
entry with respect to a cost of waiting time.

• Typically in reality, we will also require observations of our
service time to complete this µ̂.
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Steps to Optimisation

To begin the cycle, select a suitable λ0. If unsure usually start rather
high as it would provide better estimations for µ̂.

We also need to select our objective function F(λ). This will depend
on the needs of the decision maker.

1. Observe a period of time tmax with true µ and λt.
2. Use the MLE to estimate the departure parameter µ.
3. Simulate the queue over a selected set of λs.
4. Choose λ∗

t = argmaxλ F(λ). Set the next cycle λt+1 = λ∗
t .
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Flow Chart

Figure 12: Simulation Optimisation Flow Chart
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Assumptions

Decision-making assumptions made:

• At tmax, the queue no longer accepts entries but the simulation
continues until all customers are served.

• Without this, computation may be more difficult as it would
skew rate µ̂ upwards and average waiting time downwards.
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Example Setup

• Begin with λ0 = 0.2 and true µ = 1.5.
• Cycle through 24 time units per cycle for 365 cycles.
• 40 (week long) simulations for each λ when optimising.
• Objective function is set as:

F(λ) = #arrivals
tmax

−
∑n

i=1 wi
n

• The steady state equivalent for this is

F(λ) = λ− λ

µ(µ− λ)
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Example Optimisation
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Pros and Cons

Pros
• Converges relatively quickly
dependent on µ̂.

• Corrects a poorly chosen λ0.
• With simulation, correctly
accounts where steady state
does not (if λ > µ).

• Convexity is not required.

Cons
• Computationally slow with
more complex systems.

• Does not settle on a solution
and constantly fluctuates
(hence the need for splines
for understandability).
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Conclusion



Further Work

• Improve computational time for simulations.
• Develop simulations for more advanced queues with less
assumptions, i.e. multi-server queue

• Develop optimisations for more advanced queues, i.e.
double-ended taxi queues.

• Explore further simulation optimisation methodologies.
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Any Questions?

Any questions?
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Appendix



Proof: Poisson Arrival Implies Exponential Interarrival

Let Tn and Tn−1 denote the time difference between two arrivals, i.e.
the interarrival time, and pn(t) = (λt)n

n! exp(λ(t)).

F(t) = P(Tn − Tn−1 ≤ t)
= P(T1 ≤ t) due to memoryless property
= P{at least one event occured (0, t]}
= 1− P{no event occured (0, t]}
= 1− p0(t)
= 1− exp(−λt)

(2)

Hence obtaining the PDF, we can differentiate F(t)

f(t) = dF(t)
dt = λ exp(−λt)

Which is the PDF for the exponential distribution.
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Alternative Objective Functions

Objective functions can be chosen to suit needs of decision maker.
Examples:

• Maintain unit of time by replacing arrival count with interarrival
time.

F(λ) = − 1
λ
− λ

µ(µ− λ)

• Adjust severeness of reward or cost of existing objective
function by α and β.

F(λ) = αλ− β

(
λ

µ(µ− λ)

)
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